Simulating the Grid

Robert Samborski

Robert Walter

Seminar "Grid Computing 2"
(SE 2.0, 703822)
WS 2006/07
Presentation Overview

- Introduction
 - Overview & motivation
- Simulation basics
 - Definition & techniques
 - Emulation, discrete events, …
- Simulation of the Grid
 - Principles, problems & trends
- Simulation tools
 - Some of a large number of existing tools divided into simulators and emulators
Motivation for Simulation

- Grids are complex
- Testbeds not always available
- Speed up research
- High costs
- Specific scenarios
Simulation

- Definition:

“A simulation is an imitation of some real thing, state of affairs, or process. The act of simulating something generally entails representing certain key characteristics or behaviors of a selected physical or abstract system.”

(from Wikipedia)
Simulation techniques basics

- Mathematical simulation
 - Mathematical formulas
 - Abstract
 - Fast
Simulation techniques basics

- Emulation
 - code execution on virtualized resources
 - Real/simulated resources
 - Real/accelerated system time
 - Real life behavior (?) = closer to reality
 - Real life problems
Simulation techniques basics

- “Classical” simulation
 - Discrete event simulation
 - Time steps (granularity)
 - Evaluation on event
 - No idle time
Simulation techniques basics

- Agent driven simulation
 - Widely used computer simulation technique
 - Biotechnology, AI, …
 - Special case of discrete event simulation
 - Resources modeled as objects
 - Each object “knows” it’s behavior
Grid Simulators

- Reuse of well-known principles
- Implementation on top of existing tools
 - SimJava, Ptolemy, NS
- Representation of the Grid
 - Implicit
 - Tables, Objects
 - Structures
 - Tree, Graph
Problems of Grid Simulations

- Emulations
 - Typical test bed problems
 - Really reproducible results?

- Abstract simulator problems
 - Matching the reality?

- Using the results
 - Verification
 - Validation
Observations

- Last 5 years
 - Scheduling, replication

- Trends
 - More powerful Grids & test beds
 - Security issues gain importance

- Latest simulator development
 - Lightweight & as abstract as possible
 - CATNETS, animat agents, …
Grid Simulation Tools

- Emulators
 - MicroGrid, PlanetLab, EmuLab
 - Specialized Grid test beds

- Simulators
 - Bricks, ChicagoSim, GangSim, GridNet, OptorSim, SimGrid and GridSim
Grid Emulators

- MicroGrid
 - Project to provide virtual grid infrastructure
 - Controlled, repeatable experiments
 - Emulates Globus Grids only
 - Globus components on virtual hosts
 - Network simulated
 - Discrete events on packet level
 - Continuous time, virtual time
Grid Emulators

- PlanetLab

- 722 nodes @ 349 sites on Dec. 11 2006
- Open platform
- Real "real life" problems
Grid Emulators

- EmuLab
 - Same script language as NS simulator
 - Maybe not so hard to configure
 - Over 200 nodes, most are PCs
 - Front-end to PlanetLab
Beyond Grid Emulators

- Real life research platforms
 - Explicitly built for Grid research
 - No production cluster
 - DAS (Distributed ASCI Supercomputer)
 - DAS1: pioneer research project
 - DAS2: 5 homogeneous clusters with 200 nodes
 - DAS3: on the way
 - Grid’5000
 - Can be configured as an emulator
 - Large scale infrastructure to study under real conditions
Grid Simulators

- Bricks
 - Discrete event simulation
 - Written in JAVA
 - Purpose
 - Resource allocation strategies
 - Scheduling
 - Integration of real components
 - Associated with NWS
Grid Simulators

- **ChicagoSim**
 - Discrete event simulation
 - CPU, network, apps
 - Built on top of Parsec
 - C-based language
 - Parallel architectures, VLSI
 - Behavior of an “entire” Grid as events
 - Plug in your algorithms
Grid Simulators

- GangSim
 - Discrete event simulation
 - Periodical evaluation of all components
 - Associated with Ganglia
 - High scalability
 - 100’000’s PCs & storage systems
 - Models sites & VOs with different policies
Grid Simulators

- **GridNet**
 - Built on top of NS
 - Event driven
 - Data exchange as stream of packets
 - Written in C++
 - Purpose
 - Evaluation of scalable replication topologies
Grid Simulators

- OptorSim
 - Discrete event simulator
 - Associated with European Data Grid (EDG)
 - ITC-first, Univ.Glasgow, CERN
 - Architecture based on EDG model
 - CEs, resource brokers, routers
 - Allows different network topologies & file access patterns
Grid Simulators

- **SimGrid**
 - Toolkit with core functionalities
 - Distributed applications
 - Heterogeneous distributed environment
 - Discrete event simulator
 - Uses a lot of mathematical simulation
 - Configurable topology
 - Resources & tasks in high detail
 - SimBOINC built on top of SimGrid
Grid Simulators

■ GridSim (briefly)
 ■ Discrete event simulator
 ■ Built on SimJava
 ■ Core classes for discrete events
 ■ Distributed systems, networks, protocols, architectures
 ■ Large scale resources simulation
 ■ Economy based scheduling
 ■ Multiple concurrent submission, resource booking
 ■ Until recently missing explicit Grid topology
GridSim by example

- Part II of the presentation
 - SimJava background
 - GridSim in detail
 - Source code explanation
 - Running examples
- Presentation of part II
 - Robert Walter