
CELERITY: Towards an Effective Programming
Interface for GPU Clusters

Peter Thoman, Herbert Jordan,
Philipp Gschwandtner and Thomas Fahringer

Distributed and Parallel Systems Group
University of Innsbruck, 6020 Austria

Email: {petert,herbert,tf}@dps.uibk.ac.at

Biagio Cosenza and Ben Juurlink
AES Group, EECS

Technical University of Berlin
Berlin, 10623 Germany

Email: {cosenza,b.juurlink}@tu-berlin.de

I. INTRODUCTION & MOTIVATION

The complexity of today’s HPC systems is growing along
with their computational power. The TOP 500 list [1] shows
that the most powerful current HPC systems are highly parallel
and heterogeneous, consisting of a combination of multi-core
CPUs, GPUs and accelerators in clusters of interconnected
nodes. Writing efficient applications for such systems is chal-
lenging, as it requires the use of specific low-level parallel
programming paradigms at node level (e.g., OpenMP [2]
or OpenCL [3]), while leaving inter-node communication to
libraries such as MPI [4]. Although the latter has evolved over
time, its use still limits productivity as the application pro-
grammer is responsible for the complexity of task scheduling.

To deliver higher productivity for scientists and other end-
users, a number of high-level, abstract programming models
have been proposed, which leverage run-time systems and
task-based DAG representation in order to distribute tasks
among available processing devices. Most programming mod-
els require the user to locate and specify parallelism or ex-
plicitly require user-placed synchronization; examples include
UPC [5], Cilk [6], and Chapel [7]. Although static, user-
specified schedules and partitionings are common, the increas-
ing complexity of future systems will require automatic tuning
support to dynamically optimize the utilization of resources
through runtime systems; examples of such dynamic systems
supporting heterogeneous distributed memory architectures are
StarPU [8] and OmpSs [9].

A promising HPC programming approach leverages C++
template libraries, which hide the details of the underlying
infrastructure from application experts. Implementations of
this principle include Kokkos [10] from Sandia National
Laboratories and the RAJA portability layer [11], which is
currently under development at Lawrence Livermore National
Laboratory. A lower level of abstraction, which is based on
similar technology, is provided by the OCCA library [12].

Unfortunately, all of these template libraries require signif-
icant changes to existing code bases, and none of them seems
likely to develop into an industry standard. Therefore, we are
currently designing a programming system for accelerator
and GPU clusters, CELERITY, which requires only minor
adaption from applications developed for SYCL, an industry

standard supported by the Khronos group.

II. THE CELERITY PROGRAMMING INTERFACE

The high-productivity of the CELERITY environment relies
on a simple programming model, which is based on the
SYCL standard [13], a royalty-free, cross-platform abstraction
layer that builds on the underlying concepts, portability and
efficiency of OpenCL [3] and enables code for heterogeneous
processors to be written in a single-source style using standard
C++. SYCL has the advantage to clearly distinguish the
parallel (kernel) from the sequential part (host)1 of a program,
while keeping the source code simple and concise. Existing
SYCL implementations only target shared memory multi-core-
systems and GPUs. In CELERITY, we extend the SYCL
standard by introducing a transparent distributed work queue
representing the whole distributed memory HPC cluster and
hiding implementation issues such as task partitioning and
resource management. The following code shows a vector
addition as created for the CELERITY environment:

1 #include <sycl.hpp>
2 #include <celerity.hpp>
3 using namespace cl::sycl;
4 constexpr int SIZE = 1024; // size of vectors
5
6 int main() { // input/output host vectors
7 std::vector h_a(SIZE), h_b(SIZE), h_c(SIZE);
8 // fill inputs with random float values
9 for(int i = 0; i < SIZE; i++) {

10 h_a[i] = rand() / (float)RAND_MAX;
11 h_b[i] = rand() / (float)RAND_MAX;
12 }
13 buffer d_a(h_a), d_b(h_b), d_c(h_c);
14 celerity::distr_queue queue;
15 queue.submit([&](execution_handle& cgh) {
16 // data accessors
17 auto a = d_a.get_access<acc::read>();
18 auto b = d_b.get_access<acc::read>();
19 auto c = d_c.get_access<acc::write>();
20 // kernel
21 cgh.parallel_for(count,
22 celerity::kernel_functor(
23 acc::one_to_one(a,b,c),
24 [=](id<> item) {
25 int i = item.get_global(0);
26 c[i] = a[i] + b[i];
27 }));
28 });
29 // ... use result vector c ...
30 }

Listing 1. Vector addition example code.

1We adopt OpenCL terminology: a computing systems consists of a host
processor (typically a CPU) and a number of compute devices (e.g., GPUs).
A kernel is a program that executes on a device.

CELERITY provides an implementation of the SYCL stan-
dard with a distributed queue object, offering a transparent
way to see the whole computing infrastructure as a single
device queue. Lines 2, 14, 22 and 23 are the only difference
between a usual SYCL code executed for a single GPU and
the distributed environment provided by CELERITY; other
concepts such as buffers and accessors, follow the same logic
of a normal SYCL application.

III. METHODOLOGY

In order to allow the CELERITY runtime to transparently
and effectively distribute tasks in a heterogeneous cluster,
it needs to be aware of the fine-grained data dependencies
induced by sub-ranges of a given kernel invocation. We
propose a minimal set of API extensions to the base SYCL
standard [13] which allows the user to supply this information.
We believe that our proposed design combines a maximum
of flexibility with a minimum of effort required to express
common patterns.

a) CELERITY Kernel Functor.: The primary difference
between a standard SYCL program and a proposed CELER-
ITY program lies in the construction of kernel functors. While
a SYCL kernel specifies the execution of individual work
items, a celerity::kernel_functor additionally specifies a
function describing the mapping from sub-ranges of execution
to sub-ranges of buffer accessors, as shown in Listing 2. The
parameters to this function describe an N-dimensional offset
and a N-d range respectively, and any accessors - captured
by reference - are adjusted to indicate the relevant sub-range.
In the example, a direct one-to-one mapping is performed for
b, while the range is extended by two elements for a as the
kernel accesses a neighborhood.

1 auto a = d_a.get_access<acc::read>();
2 auto b = d_b.get_access<acc::write>();
3 auto f = celerity::kernel_functor(
4 [&](range<> offset, range<> range) {
5 // access specifier
6 a.access_range(offset-1, range+2);
7 b.access_range(offset, range);
8 },
9 [=](id<> item) {

10 b[i] = -a[i-1] + a[i]*2 - a[i+1];
11 }
12);

Listing 2. CELERITY kernel functor example.

b) Access Specifier Generators.: As a major goal of
CELERITY is providing a high-productivity environment for
programming heterogeneous clusters, a set of access spec-
ifier generators will be provided. These higher-order func-
tions generate access specifiers for common patterns, e.g.
one_to_one for cases where each work item accesses the
directly mapped element in the given buffer (of the same
dimensionality), or neighborhood<N> to includes a neigh-
borhood of N elements in every dimension around each directly
mapped element.

The generated access specifiers can be combined using
an overloaded & operator, allowing a concise and intuitive
formulation of Listing 2, as shown in Listing 3.

1 auto a = d_a.get_acc<acc::read>();
2 auto b = d_b.get_acc<acc::write>();
3 auto f = celerity::kernel_functor(
4 acc::neighborhood<1>(a) & acc::one_to_one(b),
5 [=](id<> item) {
6 b[i] = -a[i-1] + a[i]*2 - a[i+1];
7 }
8);

Listing 3. Access specifier generators.

IV. SUMMARY & CONCLUSION

Current approaches for programming heterogeneous clus-
ters either rely on the user to handle partitioning and data
dependencies [14], are targeted only at specific domains [15],
or require a major re-engineering effort compared to industry
standard approaches [16]. Conversely, the CELERITY API
allows its system to manage partitioning for general programs
while requiring only minimal extensions to SYCL code.

ACKNOWLEDGMENT

This work is supported by the D-A-CH project CELERITY,
funded by DFG project CO1544/1-1 and FWF project I3388.

REFERENCES

[1] “The top 500 list,” November 2017. [Online]. Available:
http://www.top500.org

[2] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-
memory programming,” Computational Science & Engineering, IEEE,
vol. 5, no. 1, pp. 46–55, 1998.

[3] K. O. W. Group, “The opencl specification, version 2.0,” Tech. Rep.,
2014.

[4] M. P. Forum, “Mpi: A message-passing interface standard,” Knoxville,
TN, USA, Tech. Rep., 1994.

[5] W. W. Carlson, J. M. Draper, and D. E. Culler, “Introduction to upc and
language specification,” Tech. Rep., 1999.

[6] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
in Proceedings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), 1995, pp. 207–216.

[7] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability
and the chapel language,” Int. J. High Perform. Comput. Appl., vol. 21,
no. 3, pp. 291–312, Aug. 2007.

[8] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
A Unified Platform for Task Scheduling on Heterogeneous Multicore
Architectures,” in Euro-Par Parallel Processing, Aug. 2009.

[9] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas, “Ompss: a proposal for programming heterogeneous
multi-core architectures,” Parallel Processing Letters, vol. 21, no. 2, pp.
173–193, 2011.

[10] H. C. Edwards and C. R. Trott, “Kokkos: Enabling performance portabil-
ity across manycore architectures,” in Extreme Scaling Workshop (XSW).
IEEE, 2013, pp. 18–24.

[11] R. Hornung, J. Keasler et al., “The raja portability layer: overview
and status,” Lawrence Livermore National Laboratory, Livermore, USA,
2014.

[12] D. S. Medina, A. St-Cyr, and T. Warburton, “Occa: A unified approach
to multi-threading languages,” arXiv preprint arXiv:1403.0968, 2014.

[13] K. O. W. Group, “Sycl specification 1.2,” Tech. Rep., 2015.
[14] J. Kim, G. Jo, J. Jung, J. Kim, and J. Lee, “A distributed opencl frame-

work using redundant computation and data replication,” in Proceedings
of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2016, pp. 553–569.

[15] Y. Zhang and F. Mueller, “Autogeneration and autotuning of 3d stencil
codes on homogeneous and heterogeneous gpu clusters,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 24, no. 3, pp. 417–427,
2013.

[16] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fetterly, “Dande-
lion: a compiler and runtime for heterogeneous systems,” in Proceedings
of the ACM Symposium on Operating Systems Principles, 2013, pp. 49–
68.

