
A localised data assimilation framework within the
‘AllScale’ parallel development environment

Albert Akhriev∗, Fearghal O’Donncha∗, Philipp Gschwandtner†, Herbert Jordan†
∗IBM Research - Ireland

Email: {albert akhriev, feardonn}@ie.ibm.com
†University of Innsbruck, Austria

Email: {philipp,herbert}@uibk.ac.at

Abstract—This paper presents a localised data assimilation
framework for forecasting the evolution of marine oil spills.
It consists of an advection-diffusion model together with data
assimilation and adaptive meshing to improve the accuracy
and precision of forecasts, respectively. To provide high parallel
scalability, all computation is localised to individual subdomains
with the solution being synchronized between direct neighbours
at the end of each timestep. No global communication is required
during the simulation. The scheme is developed within a novel
programming environment aimed at facilitating efficient code
development by leveraging advanced ‘separation of responsibil-
ities’ principles. The front-end API provides the developer with
a simple C++ development environment and a suite of parallel
constructs that denote tasks to be operated concurrently. Lower
level tasks related to the machine and system level are managed
by computer scientists at the core-level. We present parallel
scalability compared to a benchmark MPI implementation.

I. INTRODUCTION

Feasible and scalable systems for the accurate estimation
of advection diffusion processes are required in several appli-
cations. Examples include forecasting oil spill evolution for
remediation efforts [1], quantifying the transport of nutrients
around aquaculture installations [2] and monitoring releases
from industrial operations [3]. Typically, these are provided
from the solution of a set of Partial Differential Equations
(PDEs) on a discretised grid. To improve the accuracy of
the prediction, methods exist to update the solution using
measurements of the actual state via data assimilation (DA).
DA improves the accuracy of forecasts provided by physical
models and evaluates their reliability by optimally combining
a priori knowledge encoded in equations of mathematical
physics with a posteriori information in the form of sensor
data. The situation being studied reduces to an inverse prob-
lem, where one wishes to use sensor observations to infer
the set of parameters or causal factors that produced them.
Prediction, or the forward model, then proceeds from this
updated state.

A key challenge facing the merging of mathematical models
and data is computational expense. One desires an approach
that provides the best estimate of the ”true” solution cognizant
of model limitations and sensor uncertainties [4]. With the
drive to model more realistic and detailed simulations, the
computational demands of numerical solutions increase. At the
same time, the last few years have seen an increased abundance
and availability of sensors data, ranging from satellite data

to in-situ marine data. Developing computationally efficient
DA implementation is challenging with PDEs since the com-
putational costs and demands escalate with the increase in
the degrees of freedom of the corresponding discretization.
For this reason, methods that enable practical state estimation
approaches by reducing the dimensionality of the problem and
distributing across compute resources are very active research
areas.

Domain Decomposition (DD) is a standard tool in many
scientific domains to reduce the complexity or computational
cost of solution. Some of the factors which have motivated
DD approaches include: 1) the solution of the subproblems is
qualitatively or quantitatively easier than the original, 2) the
original problem does not fit into the available memory space
and 3) the subproblems can be solved with some concurrency
(i.e. in parallel). This has facilitated many advances in simu-
lation capabilities in the geosciences with most operational
large-scale models adopting this paradigm [5]–[7]. In this
approach, subdomains are distributed across computational
cores and solved independently with a periodic synchroniza-
tion step to ensure the fidelity of the solution. Synchronization
typically occurs at the end of each computational timestep
and involves a communication of boundary solution state
to neighbour subdomains with MPI being the most popular
protocol for exchanging data and synchronizing solutions. To
improve computational performance, fine-grained parallelism
is often implemented within subdomains, via for-example the
OpenMP paradigm.

Synchronization requirements and multiple parallelisation
schemas enforced by performance considerations means that
the development of efficient code places very high skill de-
mands on the application developer, encompassing knowledge
of sophisticated domain related algorithmic formulation and
solvers together with complex software engineering skills.
This is accentuated as degree of parallelism becomes larger
and codes are deployed on hundreds of thousands to millions
of computational cores. Indeed, recent efforts have addressed
this such as the LFric research project from the UK Met
Office that aims to develop a replacement for the Met Office
Unified Model in order to meet the challenges which will be
presented by the next generation of ExaScale supercomputers
[8]. Design of the model revolves around a principle of a
’separation of concerns’, whereby the natural science aspects

of the code can be developed without worrying about the
underlying architecture, while machine dependent optimisa-
tions can be carried out at a high level (by HPC experts).
A particular advocate of this ”separation of concerns” is the
firedrake framework [9] which aims for an automated system
for the portable solution of partial differential equations using
the finite element method (FEM). It builds on the Unified
Framework Language (UFL) [10] employed by the FEniCS
project [11] to provide an API that enables scientists express
PDEs in a high-productivity intepreted language. The PyOP2
framework [12] provides an abstraction between the domain
scientist concerned with implementing the PDE numerics and
parallel execution over multi-core platforms.

AllScale (www.allscale.eu/) is a FET H2020 (Frontiers and
Emerging Technologies in Horizon 2020) funded project that
aims to provide computational paradigms that can tackle
extreme-scale ExaScale computing (1012 Flops). A key com-
ponent of these future systems is parallelism of the order
of 105 – 106 cores. This degree of parallelism requires
novel algorithmic structures to improve efficiency together
with decoupling of the specification of parallelism from the
associated management activities during program execution
to improve productivity and the development environment.
Those impose significant challenges for developers aiming
to efficiently utilise all available resources. In particular, the
development of such applications is accompanied by the
complex and labour intensive task of managing parallel control
flows, data dependencies and underlying hardware resources
each of these obligations constituting challenging problems on
its own.

In this paper we present the paralellisation of a DA scheme
for advection-diffusion flows using a novel toolchain that
empowers effective development of highly scalable parallel
applications. The design of the ExaScale development envi-
ronment, named the AllScale tool chain, is based on 3 key
principles

1) Enabling the separation of responsibilities in the devel-
opment of HPC applications,

2) Utilizing industry standard programming languages and
preserving compatibility to existing development and
debugging tools, as well as,

3) Employing advanced programming language, compila-
tion and runtime system technology to transparently
integrate sophisticated services into parallel applications.

From the application developer perspective, it promises highly
increased productivity by hiding parallel constructs and pro-
viding a development API reminiscent of serial applications.
Results are compared with a benchmark MPI implementation
from the perspective of performance (computational through-
put) and developer productivity (ease of development).

In the remainder of this paper, Section II describes the
model governing equations and numerical implementation
together with the data assimilation scheme. The AllScale
development environment and API is also briefly introduced.
Section III outlines the experimental results and compares with

an MPI implementation. Finally, we draw conclusions from the
study and present the future research steps.

II. METHODOLOGY

This paper focuses on the development, performance and
scalability of an advection-diffusion code with localised data
assimilation schemes within the AllScale toolchain. Aspects
related to the development of the code within the user API
are assessed while parallel performance within the AllScale
runtime system (based on the HPX parallel standard library
[13]) is compared against both benchmark MPI simulations
and simulations using the standard GNU C++ runtime system..

A. AMDADOS

AMDADOS (Adaptive Meshing and Data Assimilation for
Dispersion of Oil Spills) is a model for simulating conser-
vative tracer transport in subsurface flows. It resolves the
time-dependent advection-diffusion model on a discretized
finite difference grid. This paper considers the simulation of
transport within a domain, Ω, with some initial concentration
ugt(x, y, 0) at location pc and time t = 0 that is propagated
forward in time. Some sparse information, or ground-truth data
is available on the evolution of the constituent concentration
over time from sensors distributed within the domain (typically
with some associated sensor uncertainty level). Applying the
problem to the marine environment, the data assimilation
problem can be formulated as follow: find a reasonably good
approximation to the distribution of contaminant in the domain
as a function of space and time given only a physical model
and sparse observations.

The physical model of dispersion over a spatial domain is
described by the following equation [14]:

∂u

∂t
=D

(
∂2u

∂x2
+
∂2u

∂y2

)
− vx

∂u

∂x
− vy

∂u

∂y
,

s.t. u|t=0 = δ(x−xc, y−yc), u|∂Ω = 0.

(1)

where D is diffusion coefficient, vx = vx(x, y, t), vy =
vy(x, y, t) are the flow (current) velocity components and the
initial condition is defined as point source at some location
(xc, yc). Information external to the computational domain
are specified by boundary conditions. Ideally, the absorbing
boundary condition should be applied at the outer border ∂Ω
of the domain Ω. In our case, a high density value is mostly
obtained far from the boundary and we can go for a simple
Dirichlet condition [15].

The numerical solver used is the implicit (or backward)
Euler method; it is used for its unconditional stability and
ability to handle stiff problems, although the method is only
first order accurate in time [16], [17].

The data assimilation (DA) scheme employed is that of
the Kalman Filter. The fundamental goal of data assimilation
methods is to integrate available observation data with a
dynamical model using an assimilation scheme. Since the
data contains errors and models are imperfect representation,
the assimilation scheme needs to consider confidence in both
observations and model during the update phase. The Kalman

filter produces an estimate of the state of the system as
an average of the system’s predicted state and of the new
measurement using a weighted average.

In this scheme the analysis in the assimilation cycle is
computed of the form [18]:

xa = x̂ + K(x◦ −Hx̂) (2)

where xa are the a posteriori state estimate (or the updated
solution), x̂ are the modelled data and x◦ are the observed
data. H is an operator that maps the forecasted data vectors
into the observation space and K represents the Kalman gain
which can be written as:

K =
PHT

HPHT + R
(3)

where P and R are the State Error Covariance Matrix and
the Observation Error Covariance Matrix respectively. We see
from equation 3 that as the measurement error covariance R
approaches zero, the gain weights the residual, (x◦ − Hx̂),
more heavily guiding the model towards the measured state.
On the other hand, as the a priori estimate error covariance P
approaches zero, the gain K weights the residual less heavily.

Various methods of distributed Kalman filtering have been
proposed, but many still suffer from scalability issues or
depend on the structure of the problem. A detailed survey
of those methods can be found in [19]. The common feature
of those methods is that the distribution of filters is done
for a discrete model by decomposition of the corresponding
matrix. In this study, the global domain Ω is decomposed
into a set of smaller sub-domains which are distributed across
computational cores. Each subdomain is implemented as a
grid of nodal cells. The size of a subdomain must be fixed
because it is defined by template parameters in corresponding
C++ class and should be available at compile time. Within
each subdomain, the filtering of model and observations is
implemented and at the end of each iteration, neighbouring
subdomain solutions are synchronized. At the run time, each
subdomain is assigned to so called worker either an execution
thread or a process in case of distributed application. The
assignment and workload balancing is done automatically once
the grid of subdomains have been exposed to parallel AllScale
operators (as described in Section II-B).

To improve the precision of the data assimilation framework
and allow for more accurate specification of sensor location,
subdomains are processed at different resolution using the
multi-scaling capability of Allscale API. Namely, the sub-
domains with observations are processed at fine resolution
because this yields better Kalman filtering estimation. On
the other hand, domains without observations (where we just
integrate the governing equation) are processed at coarser
resolution with less computational cost. In order to yield
a seamless solution we operate over extended subdomain
that comprises border points of the neighbour subdomains.
Extended subdomain is depicted by dotted rectangle on Fig. 1.

Algorithm 1 summarizes the major steps in the data assim-
ilation method. The solution propagates forward in time over

Algorithm 1 Data Assimilation Framework
1: ### ∗ ∗ ∗ ∗ ∗ AMDADOS solver. ∗ ∗ ∗ ∗ ∗
2: Input: file of sensor locations, file of observations, initial

field u(x, y, t)|t=0 = 0, ∀x, y ∈ Ω.
3: Require: sub-divide the whole domain Ω into a number

of subdomains Nsubdomain.
4: ### Integrate forward in time and estimate the density field

u(x, y, t).
5: for (with time-step ∆t) t = 0 to T do
6: for (in parallel using Allscale API) c = 1 to

Nsubdomain do
7: if c-th subdomain contains at least one sensor

then
8: Solve governing equation (1) forward in

time inside c-th subdomain using dis-
cretization in the form of: ut+1 = B−1

t ut.
(where B−1

t represents an implicit Euler
discretization).

9: Update state inside subdomain using the
Kalman filter and observation value.

10: else
11: Solve governing equation (1) forward in

time inside c-th subdomain using dis-
cretization in the form of: ut+1 = B−1

t ut.
12: end if
13: end for
14: end for

the period [0 . . . T] starting from zero density u(x, y, t)|t=0 =
0. The data assimilation method then nudges towards the
actual density as observed by sensors. We employ Kalman
filter (line 8) that brings otherwise simulated density closer
to observation (if there is a sensor in the subdomain), and
this important driving force is responsible for convergence of
estimated density field towards the true state. In the absence
of observations in a subdomain, the conventional integration
step is fulfilled (line 11).

B. AllScale toolchain

This section outlines the AllScale programming environ-
ment and motivates why we chose it for the implementation
of our application. The AllScale programming environment
aims at providing a separation of concerns between domain
scientists, HPC experts, and system level experts by offering
a well-defined bridge between their worlds. This bridge, pro-
vided by the AllScale API consists of two parts that represent
the basic building blocks of every parallel algorithm:

• parallel control flow primitives, and
• data structures.
The former are defined via a single, recursively parallel,

higher-order operator (prec) [20], whereas the latter fulfil the
concept of a data item. Both are part of the AllScale Core API
and follow the open/close principle of software engineering
by being open for extension but closed for modification. This
allows any high-level operators and data structures needed

Down

Up

Left Right

Fig. 1: Example of a grid subdomain, constituted by the blue
nodal points, and corresponding extended one, outlined by
dotted rectangle. Border (green) points of four immediate
neighbour subdomains (Left, Right, Up, Down) are available
for exchange.

by domain scientists (e.g. parallel loops, stencils, structured
and unstructured meshes) to be implemented by HPC experts
on top of these two components in the extensible AllScale
User API. The high-level constructs of the User API can then
be used by domain scientists without requiring knowledge
on the design of scalable operators or the need for low-
level data management or parallelism and synchronisation
control code that would obstruct an otherwise clear imple-
mentation of a high-level algorithm. HPC experts likewise
are relieved of the need for domain-specific knowledge or
low-level optimisations, but can focus on the development of
efficient parallel operators offering domain-decomposition that
can be reused among multiple applications, reducing overall
development overheads. Finally, system level experts are not
required to support any high-level components but only their
common base in the Core API, greatly reducing maintenance,
optimisation, and tuning effort. Furthermore, as the AllScale
API is implemented as an embedded DSL [21] in pure C++-14,
compatibility with existing compilers, debuggers, and many
other toolchain tools required during the development process
is preserved.

The parallelism exposed via the parallel primitives of the
AllScale API is controlled by the AllScale Runtime System,
an extension of HPX, an established task-based runtime sys-
tem [13]. Its application runtime model [22] is based on tasks,
represented by calls to the prec operator. The conversion
of prec calls to runtime-compatible entities is done by the

AllScale Compiler, and while it provides additional features,
their discussion is omitted for brevity as they are not used
in this work. Each runtime task can either be sent to a so-
called worker for processing, or be split into two smaller tasks,
which in turn can be processed in parallel or be split again.
This recursive nesting of parallelism enables automatic, per-
subdomain control over the degree of parallelism at runtime
without any additional manual effort. It is the foundation for
sophisticated runtime system features such as automatic load
balancing and provides a clear advantage over application
models where application developers are tasked with manually
implementing such features per application.

The specific operator used the work presented here is the
stencil operator, which provides domain decomposition in both
space and time in order to generate parallelism. Several imple-
mentations of this operator are available, including one with
fine-grained task synchronisation that removes the otherwise
global barrier often occurring in many implementations at the
end of every stencil iteration. The data item in use is a regular,
adaptive grid providing a user-defined, per-subdomain number
of refinement levels and appropriate element access utilities.

By following the open/close principle, the AllScale API
offers but is not limited to additional parallel primitives such as
pfor (parallel loops), preduce (parallel reductions), or vcycle
(V-cycle multi-grid solvers). Similarly, while the application
presented in this work uses a regular adaptive grid, additional
data structures currently offered by the API include non-
adaptive grids, maps, trees, or unstructured meshes [23], [24].

III. RESULTS

An assessment of an application developed within a novel
programming environment such as AllScale requires consid-
eration of three points: 1) one must ensure that the computed
solution is correct and appropriate algorithmic sophistication
is supported, 2) the parallel scalability of the application and
3) whether the API improves developer productivity and code
maintainability. Experiments on a shared memory cluster were
conducted to assess parallel scalability and the correctness
of solution of the model. Experimental tests were conducted
on compute server with 2 Intel Xeon 2.20GHz processors
providing total of 44-core machine with Linux RedHat-7.4,
64-bit operating system. An MPI implementation served as
benchmark of parallel scalability.

Many technical details differentiate the two implementation
and how they invoke parallelism at different levels of inter- and
intra-node computation. MPI is aimed primarily at distributed
memory parallelism and requires explicit communication (e.g
via MPI Send/MPI Recv). It is often implemented using an
MPI + X model where MPI provides inter-node parallelism
and a thread based paradigm such as OpenMP managing intra-
node parallelism – this comes with the development overhead
of having two separate protocols to manage (and code bases
to maintain, potentially). The AllScale environment, which
leverages the AllScale toolchain, supports both distributed and
shared memory implementation. It computes over localities
(inter-node) and threads (intra-node). In essence, it combines

Fig. 2: Simulation of advection-diffusion process. Top row: Evolution in time of the “ground-truth” solution computed offline as
a single global domain. Bottom row: data-assimilation solution that starts from zero density field and gradually catches up the
ground-truth. There are 72960 nodal points representing 304×240 domain divided into 19×15 sub-domains for parallelization
and 182 sensors pseudo-randomly scattered therein.

the advantages of MPI inter-node and thread-based parallelism
intra-node within a single parallel programming paradigm.

Fig. 3: Relative difference (ε = ‖ugt − u‖2/‖ugt‖2) between
the ground-truth density and data-assimilation solution, as a
function of “relative time”: τ = 100 t/T , where t is a physical
time in seconds, and T is an integration period.

Domain decomposition based approaches have huge appli-
cability in simulation due to the promise of reduced com-
putational demand (by distributing across compute resources,
reducing the size of linear algebra matrices, etc.). An important
consideration however, is to ensure fidelity of the solution;
i.e. the computed solution should be qualitatively (if not
quantitatively) equivalent to that computed if modelled as a
single global domain. To provide a benchmark of correctness,
we first run the simulation as a single, global domain, from
which we extract ”observations” for the data assimilation
scheme. This also serves as the true solution against which
the computed result from the distributed model can be readily
compared

Fig. 2 presents snapshots of results from a number of
stages during the simulation cycle. Results are compared to
the “ground-truth” solution computed as part of the obser-
vation generator routine (i.e. routine that generates data for
assimilation into the model).

Fig.3 shows how relative error fades away as simulation
progresses. The relative error is computed as a ratio between
L2-norm of flatten field of density difference and L2-norm of
flatten ground-truth density: ε = ‖ugt−u‖2/‖ugt‖2. The data-
assimilation solver ’nudges’ the solution towards the correct
solution catching up with the true distribution when sufficient
sensor information on the true state is ingested. Of importance,
no contamination of results develops from boundary exchange
protocols; i.e. no aliasing is evident at sub-domain boundaries
in Fig. 2 while Fig. 3 demonstrates that data assimilation
directs error towards zero over time.

Performance results are a key metric of this analysis. We
focus on weak scaling analysis to provide insight into the
ability of the model to increase computational throughput as
the number of compute threads increases. Throughput for this
study is defined as the number of subdomains computed per
second simulation time. In this experiment, the number of ex-
periments were increased proportionally with compute threads
(with 8 subdomains assigned to each thread to ensure compute
saturation). As some of the subdomains contain observation
data (and hence invoke data assimilation), the computational
expense of subdomains varies significantly (with a data assim-
ilation step being approximately four times more expensive
than a Fig 4 presents the weak scaling results comparing
AllScale implementation to the MPI benchmark. We see
that at low number of compute threads, the computational
throughput is quite similar. As number of cores increases,
AllScale significantly outperforms the MPI implementation.
At 44 threads, AllScale processes 36.8 subdomains compared
to 25.5 for MPI – an increase of 44%.

This increase in computational performance is comple-

Fig. 4: Weak scaling test results computed using the AllScale
API. Results present throughput – defined as the number of
subdomains computed per second – plotted against number of
threads, with the size of the problem domain (i.e. number of
subdomains) increased proportionally with compute threads.
Results compare the AllScale implementation (red) to MPI
(cyan).

mented by a more delineated development interface that makes
performance tuning and optimisation simpler. In a shared
memory implementation such as this, OpenMP would likely
give superior performance than MPI by avoiding unnecessary
data exchange; this however would involve developing and
maintaining an additional parallel programming paradigm. The
Allscale implementation leverages thread based parallelism
intra-node with communication between nodes thereby avoid-
ing the overheads of MPI in shared memory.

From the application developer perspective, a key difference
between the AllScale and MPI implementation is the level of
control that the developer must enforce over communication.
Within the AllScale API, synchronisation aspects are managed
at the core API level facilitating trivial implementation of
boundary exchange operations. The user simply invokes what
data is passed to particular neighbours and the runtime system
manages aspects such as ordering of send/receive, computa-
tional overlapping, etc. This can be an arduous and error-prone
task in MPI to provide an efficient implementation that ensures
MPI send/receive pairs are correctly coupled and there is no
excessive wait-time between when processes send and receive
data. This greatly simplifies coding implementation. Following
the templates provided by the AllScale SDK users can develop
a huge range of domain decomposition based applications with
little knowledge of HPC or parallel computing concepts (i.e.
simply by learning usage of AllScale API).

IV. CONCLUSIONS

This study demonstrates the capabilities of the AllScale
toolchain and its feasibility as part of the next generation
of HPC programming environments. Developing within the
AllScale user API provides many advantages to the scientist.
User productivity is greatly enhanced as parallel structures are

hidden at the core level of the API. All programming is done
in pure C++ eliminating the need to learn any specific parallel
tools and avoiding the MPI+X burden of having different
parallel languages for different architecture.

Work is ongoing on performance tuning of a distributed
memory implementation using the AllScale toolchain. Large
scale experiments will be conducted to evaluate 1) scalability
of the code at the many 1000 core level and assess the
performance of the load balancing module (data assimila-
tion provides a valuable test-case due to the very different
computational expense of subdomains depending on whether
observation exists or not). To meet the needs of the scientific
community, the objective is a code that provides a delineated,
maintainable code (i.e. separation of concern) together with
high scalability at large number of cores.

ACKNOWLEDGEMENTS

This project has received funding from the European Unions
Horizon 2020 research and innovation programme as part
of the FETHPC AllScale project under grant agreement No
671603.

REFERENCES

[1] W. J. Guo, Y. X. Wang, M. X. Xie, and Y. J. Cui, “Modeling oil
spill trajectory in coastal waters based on fractional Brownian motion,”
Marine Pollution Bulletin, vol. 58, no. 9, pp. 1339–1346, 2009.

[2] F. O’Donncha, M. Hartnett, and S. Nash, “Physical and numerical
investigation of the hydrodynamic implications of aquaculture farms,”
Aquacult. Eng., vol. 52, pp. 14–26, 2013.

[3] L. Koziy, V. Maderich, N. Margvelashvili, and M. Zheleznyak, “Three-
dimensional model of radionuclide dispersion in estuaries and shelf
seas,” Environmental Modelling & Software, vol. 13, no. 5-6, pp. 413–
420, 1998.

[4] F. O’Donncha, M. Hartnett, S. Nash, L. Ren, and E. Ragnoli, “Char-
acterizing observed circulation patterns within a bay using {HF} radar
and numerical model simulations,” Journal of Marine Systems, vol. 142,
pp. 96–110, 2015.

[5] J. Michalakes, S. Chen, J. Dudhia, L. Hart, J. Klemp, J. Middlecoff,
and W. Skamarock, “Development of a next generation regional weather
research and forecast model,” in Developments in Teracomputing: Pro-
ceedings of the Ninth ECMWF Workshop on the use of high performance
computing in meteorology, vol. 1. World Scientific, 2001, pp. 269–276.

[6] F. O’Donncha, E. Ragnoli, and F. Suits, “Parallelisation study of a three-
dimensional environmental flow model,” Computers & Geosciences,
vol. 64, pp. 96–103, 2014.

[7] G. E. Hammond, P. C. Lichtner, and R. T. Mills, “Evaluating the
performance of parallel subsurface simulators: An illustrative example
with PFLOTRAN,” Water resources research, vol. 50, no. 1, pp. 208–
228, 2014.

[8] T. Melvin, S. Mullerworth, R. Ford, C. Maynard, and M. Hobson,
“LFRic: Building a new Unified Model,” in EGU General Assembly
Conference Abstracts, vol. 19, 2017, p. 13021.

[9] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini,
A. T. T. Mcrae, G.-T. Bercea, G. R. Markall, and P. H. J.
Kelly, “Firedrake,” ACM Transactions on Mathematical Software,
vol. 43, no. 3, pp. 1–27, dec 2016. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2988516.2998441

[10] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N.
Wells, “Unified form language: A domain-specific language for weak
formulations of partial differential equations,” ACM Transactions on
Mathematical Software (TOMS), vol. 40, no. 2, p. 9, 2014.

[11] A. Logg, K.-A. Mardal, and G. Wells, Eds., Automated Solution of
Differential Equations by the Finite Element Method, ser. Lecture
Notes in Computational Science and Engineering. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, vol. 84. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-23099-8

[12] F. Rathgeber, G. R. Markall, L. Mitchell, N. Loriant, D. A. Ham,
C. Bertolli, and P. H. Kelly, “PyOP2: A High-Level Framework for
Performance-Portable Simulations on Unstructured Meshes,” in 2012
SC Companion: High Performance Computing, Networking Storage
and Analysis. IEEE, nov 2012, pp. 1116–1123. [Online]. Available:
http://ieeexplore.ieee.org/document/6495916/

[13] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey,
“Hpx: A task based programming model in a global address space,”
in Proceedings of the 8th International Conference on Partitioned
Global Address Space Programming Models, ser. PGAS ’14. New
York, NY, USA: ACM, 2014, pp. 6:1–6:11. [Online]. Available:
http://doi.acm.org/10.1145/2676870.2676883

[14] W. Hundsdorfer and J. G. Verwer, Numerical solution of time-dependent
advection-diffusion-reaction equations. Springer Science & Business
Media, 2013, vol. 33.

[15] T. Y. Miyaoka, J. F. d. C. A. Meyer, and J. M. R. SOUZA, “A General
Boundary Condition with Linear Flux for Advection-Diffusion Models,”
TEMA (São Carlos), vol. 18, no. 2, pp. 253–272, 2017.

[16] T. Sauer, Numerical Analysis (2nd). Addison-Wesley, New Jersey, 2012.
[17] J. C. Butcher, Numerical methods for ordinary differential equations.

John Wiley & Sons, 2016.
[18] G. Welch and G. Bishop, “An Introduction to the Kalman filter.

University of North Carolina at Chapel Hill, Department of Computer
Science,” TR 95-041, Tech. Rep., 2004.

[19] M. S. Mahmoud and H. M. Khalid, “Distributed Kalman filtering: a

bibliographic review,” IET Control Theory & Applications, vol. 7, no. 4,
pp. 483–501, 2013.

[20] H. Jordan, P. Thoman, P. Zangerl, T. Heller, and T. Fahringer, “A context-
aware primitive for nested recursive parallelism,” in Euro-Par 2016:
Parallel Processing Workshops, F. Desprez, P.-F. Dutot, C. Kaklamanis,
L. Marchal, K. Molitorisz, L. Ricci, V. Scarano, M. A. Vega-Rodrı́guez,
A. L. Varbanescu, S. Hunold, S. L. Scott, S. Lankes, and J. Weidendorfer,
Eds. Cham: Springer International Publishing, 2017, pp. 149–161.

[21] P. Zangerl, H. Jordan, P. Thoman, P. Gschwandtner, and T. Fahringer,
“Exploring the Semantic Gap in Compiling Embedded DSLs,” in
2018 International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS). Zenodo, Jul. 2018.
[Online]. Available: https://doi.org/10.5281/zenodo.1309475

[22] H. Jordan, T. Heller, P. Gschwandtner, P. Zangerl, P. Thoman,
D. Fey, and T. Fahringer, “The AllScale Runtime Application Model
(incl. Appendix),” in 2018 IEEE International Conference on Cluster
Computing (CLUSTER). Zenodo, Jul. 2018. [Online]. Available:
https://doi.org/10.5281/zenodo.1322421

[23] “AllScale API Wiki,” 2018. [Online]. Available:
https://github.com/allscale/allscale api/wiki

[24] H. Jordan and P. Gschwandtner, “D2.6 AllScale API Specification
(b),” AllScale: An Exascale Programming, Multi-objective Optimisation
and Resilience Management Environment Based on Nested Recursive
Parallelism. Project Number 671603, Tech. Rep., 2017.

