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Abstract. Task-based programming models for shared memory, for ex-
ample OpenMP and Cilk, have existed for decades, and are well doc-
umented. However, with the increase in heterogeneous, many-core and
parallel systems, a number of research-driven projects have developed
more diversified task-based support, employing various programming and
runtime features. Unfortunately, despite the fact that dozens of different
task-based systems exist today and are actively used for parallel and
high-performance computing, no comprehensive overview or classifica-
tion of task-based technologies for HPC exists.
In this paper, we provide an initial task-focused taxonomy for HPC tech-
nologies, which covers both programming interfaces and runtime mech-
anisms. We demonstrate the usefulness of our taxonomy by classifying
state-of-the-art task-based environments in use today.
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1 Introduction

A large number of task-based programming environments have been developed
over the past decades, and even well-established programming languages like
C++ have now integrated tasks, allowing their use for shared memory paral-
lelism. For the purpose of this work, we define a task as follows

A task is a sequence of instructions within a program that can be processed
concurrently with other tasks in the same program. The interleaved execu-
tion of tasks may be constrained by control- and data-flow dependencies.

The Cilk language [19] allows task-focused parallel programming, and is an early
example of efficient task scheduling via work stealing. Language extensions like
OpenMP [4] (since version 3.0) integrate tasks into their programming interface.
Industry-standard and well-supported parallel libraries based on task parallelism



have emerged, such as Intel TBB [24]. Task-based environments for heteroge-
neous hardware have also naturally developed with the emergence of accelerator
and GPU computing; StarPU [8] is an example of such an environment.

In addition, task-based parallelism is increasingly employed on distributed
memory systems, which constitute the most important target for high-performance
computing (HPC). In this context, tasks are often combined with a global ad-
dress space (GAS) programming model, and scheduled across multiple processes,
which together form the distributed execution of a single task-parallel program.
While some examples of global address space environments with task-based par-
allelism are specifically designed languages such as Chapel [6] and X10 [18], it is
also possible to implement these concepts as a library. For instance, HPX [10] is
an asynchronous GAS runtime, and Charm++ [23] uses a global object space.

This already very diverse landscape is made even more complex by the recent
appearance of task-based runtimes using novel concepts, such as the data-centric
programming language Legion [1]. Many of these task-based programming envi-
ronments are maintained by a dedicated community of developers, and are often
research-oriented. As such, there might be relatively little accessible documen-
tation of their features and inner workings.

Crucially, at this point, there is no up to date and comprehensive taxonomy
and classification of existing common task-based environments. This makes it
very difficult for researchers or developers with an interest in task-based HPC
software development to get a concise picture of the alternatives to the om-
nipresent MPI programming model. In this work, we attempt to address this
issue by providing a taxonomy and classification of both state-of-the-art task-
based programming environments and more established alternatives. We con-
sider a task-based environment as consisting of two major components: a pro-
gramming interface (API) and a runtime system; the former is the interface that
a given environment provides to the programmer, while the latter encompasses
the underlying implementation mechanisms. We present a set of API charac-
teristics allowing meaningful classification in Section 2. For discussing the more
involved topic of runtime mechanisms, we further structure our analysis into
the overarching topics of scheduling, performance monitoring, and fault han-
dling (see Section 3). Finally, based on the taxonomy introduced, we classify
and categorize existing APIs and runtimes in Section 4.

2 Task-Parallel Programming Interfaces (APIs)

The Application Programming Interface (API) of a given task-parallel program-
ming environment defines the way an application developer describes parallelism,
dependencies, and in many cases other more specific information such as the
work mapping structure or data distribution options. As such, finding a way to
concisely characterize APIs from a developer’s perspective is crucial in providing
an overview of task-parallel technologies.

In this work, we define a set of characterizing features for such APIs which en-
compasses all relevant aspects while remaining as compact as possible. A subset
of these features was adapted from previous work by Kasim et al. [11]. To these
existing characteristics we added additional information of general importance
– such as technological readiness levels – as well as features which relate to new



capabilities particularly relevant for modern HPC like support for heterogeneity
and resilience management. We will now define each of these characteristics and
their available options for categorization. Note that explicit (e) support generally
refers to features which are supported, but require extra effort or implementation
by the application developer, while implicit (i) support means that the toolchain
manages the feature automatically given a default representation of the program
in the API.

Technology Readiness The technology readiness of the given API and its
implementations according to the European Commission definition.5

Distributed Memory Whether targeting distributed memory systems is sup-
ported. Options are no support, explicit support, or implicit support. explicit
refers to, for example, message passing between address spaces, while auto-
matic data migration would be an example of implicit support.

Heterogeneity Indicates whether tasks can be executed on accelerators (e.g.
GPUs). Again, explicit and implicit as well as no support are possible, where
the former means that the application developer has to actively provision
tasks to run on accelerators, using a distinct API.

Worker Management Whether the worker threads and/or processes need to
be started and maintained by the user (explicit) or are provided automati-
cally by the environment (implicit).

Task Partitioning This feature indicates whether each task is atomic – can,
thus, only be scheduled as a single unit – or can be subdivided/split.

Work Mapping Describes the way tasks are mapped to the existing hardware
resources. Possibilities include explicit work mapping, implicit work mapping
(e.g. stealing), or pattern-based work mapping.

Synchronization Whether tasks are synchronized in an implicit fashion, e.g.
by regions or the function scope, or explicitly by the application developer.

Resilience Management Describes whether the API has support for task re-
silience management, e.g. fine-grained checkpointing and restart.

Communication Model Either shared memory (smem), message passing (msg),
or Partitioned Global Address Space (pgas).

Result Handling How the tasking model supports handling the results of task
computation: implicit via write-back to existing data, or explicitly provided
task result types (which might, for example, be accessed as futures).

Graph Structure The type of task graph dependency structure supported by
the given API: a tree structure, an acyclic graph (dag) or an arbitrary graph.

Task Cancellation Whether the tasking model supports cancellation of tasks:
no cancellation support; cancellation is supported either cooperatively (only
at task scheduling points) or preemptively.

Implementation Type How the API is implemented and addressed from a
program. A tasking API can be provided either as a library, a language
extension, e.g. pragmas, or an entire language with task integration.

5 https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/

annexes/h2020-wp1415-annex-g-trl_en.pdf. Accessed: 2017-05-03

https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
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3 Many-Task Runtime Systems

Many-task runtime systems serve as the basis for implementing these APIs, and
are considered a promising tool in addressing key issues associated with Exascale
computing. In this section we provide a taxonomy of many-task runtime systems,
which is summarized and illustrated in Figure 1.

A crucial difference among various many-task runtime systems is the tar-
get architecture they support. The evolution of many-task runtime systems
started from homogeneous shared-memory computers with multiple cores and
continued with runtimes for heterogeneous shared-memory and/or distributed-
memory systems. The way different runtimes support distributed-memory sys-
tems is not uniform in terms of distribution of computations across the nodes.
In case of implicit data distribution, data distribution is handled by the runtime,
without putting any burden on the application developer. On the other hand, in
explicit data distribution, distribution across the nodes is explicitly specified by
the programmer.

The increase in the number and type of compute units in HPC systems nat-
urally requires efficiency not only in total execution times of applications, but
also in power and/or energy. Thus, whether the runtime provides additional
scheduling objectives other than the total execution time is another impor-
tant distinction. At the same time, there is not a single standard scheduling
methodology that is being used by all many-task runtime systems. Some of
them provide automatic scheduling within a single shared-memory machine while
the application developer needs to handle distributed-memory execution explic-
itly, while others provide uniform scheduling policies across different nodes.

Many-task runtimes may require performance introspection and moni-
toring to facilitate implementation of different scheduling policies. While tra-
ditionally it was not part of runtimes, requirements for on-the-fly performance
information have surfaced. Thus, most task-based runtimes already provide and
make use of introspection capabilities.

Fault tolerance is another key factor that is important in many-task run-
time systems in the context of Exascale requirements. As detailed in Section 3.3,
a runtime may have no resilience capabilities, or it may target task faults or even
process faults.

3.1 Scheduling in Many-Task Runtime Systems

Task Scheduling Targets Depending on the capabilities of the underlying
many-task runtime system, its scheduling domain is usually limited to a sin-
gle shared-memory homogeneous compute node, a heterogeneous compute node
with accelerators, homogeneous distributed-memory systems of interconnected
compute nodes, or in a most generic form to heterogeneous distributed-memory
systems. By supporting different types of heterogeneous architectures, the run-
time can facilitate source code portability and support transparent interaction
between different types of computation units for application developers.

Traditionally, the execution time has been the main objective to minimize for
different scheduling policies. However, the increasing scale of HPC systems makes
it necessary to take the energy and power budgeting of the target system into
account as well. Therefore, some many-task runtime systems have already started
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Fig. 1: Taxonomy of Many-Task Runtime Systems.

providing energy-aware [14] scheduling policies6. In addition, recent research
projects, such as AllScale7 focus on multi-objective scheduling policies trying to
find optimal trade-offs among conflicting optimization objectives like execution
time, energy consumption and/or resource utilization.

Task Scheduling Methods Extensive research has been conducted in task
scheduling methodologies. We do not try to list all different techniques for task
scheduling, but rather highlight methods used in state-of-the-art many-task run-
time systems. The task scheduling problem can be addressed either in static or
dynamic way. In the former case, depending on the decision function it is as-
sumed that either one or more of the following inputs are known in advance: the
execution times of each task, inter-dependencies between tasks, task precedence,
resource usage of each task, the location of the input data, task communica-
tions, and synchronization points. This is by no means an exhaustive list but it
gives an indication of the multiple possible a priori inputs for static scheduling.
Using all this information the scheduling can be performed offline during com-

6 http://starpu.gforge.inria.fr/doc/html/Scheduling.html#Energy-basedScheduling
7 The AllScale EC-funded FET-HPC project: allscale.eu.

allscale.eu


pilation time. On the other hand, dynamic scheduling is mainly used in the case
where there is not enough information in advance or obtaining such information
is not trivial. Additionally, hybrid policies which integrate static and dynamic
information are possible.

Most static scheduling algorithms used in many-task runtime systems are
based on the list scheduling methods. Here, it is assumed that the scheduling
list of tasks is statically built before any task starts executing and the sequence
of the tasks in the list is not modified. The list scheduling approach can easily
be adapted and used for dynamic scheduling by re-computing and re-sequencing
the list of tasks. As a matter of fact, heuristic policies based on list scheduling
and performance models are employed in some many-task runtime systems [8].

Work-stealing [2] can be considered as the most widely used dynamic
scheduling method in task-based runtime systems. The main idea in work-
stealing is to distribute tasks between per-processor work queues, where each
processor operates on its local queue. The processors can steal tasks from other
queues to perform load-balancing. There are two main approaches in implement-
ing work-stealing, namely, child-stealing and parent-stealing. In parent-stealing,
which is also called work-first policy, a worker executes a spawned task and
leaves the continuation to be stolen by another worker. Child-stealing, which
is also called help-first policy, does the opposite, namely, the worker executes
the continuation and leaves the spawned task to be stolen by the other workers.
Another approach to dynamic scheduling for many-task runtime systems is the
work-sharing strategy. Unlike the work-stealing, it schedules each task onto a
processor when it is spawned and it is usually implemented by using a centralized
task pool. In work-sharing, whenever a worker spawns a new task, the scheduler
migrates it to a new worker to improve load balancing. As such, migration of
tasks happens more often in work-sharing than that of in work-stealing.

Few of the existing many-task runtime systems provide energy efficient schedul-
ing policies. In the primitive case it is assumed that the application can provide
an energy consumption model which can be used by a scheduling policy as part
of its objective function. In more advanced cases, the runtime provides offline or
online profiling data, such as, instructions per cycle (IPC) and last level cache
misses (LLCM). This data is used to build a look-up table that maps each fre-
quency setting with the triple of IPC, LLCM, and the number of active cores.
Then, a scheduling decision based on this information [14].

3.2 Performance Monitoring

The high concurrency and dynamic behavior of upcoming Exascale systems
poses a demand for performance observation and runtime introspection. This
performance information is very valuable to guide HPC runtimes in their exe-
cution and resource adaption, thereby maximizing application performance and
resource utilization.

When targeting performance observation, performance monitoring software
is either generating data to be used online [7,1,13,15,16] or offline [15,8,5,1]. In
other words, whether the collected data is going to be used while the application
still runs or after its execution. Furthermore, this taxonomy can be extended with
respect to who is consuming data – either the end user (performance analysis)



or the runtime itself (introspection and historical data). Real-time performance
data (introspection and performance models from historical data) will play an
important role in Exascale for runtime adaptation and optimal task-scheduling.

3.3 Task, Process, and System Faults

For this topic, we extend a recent taxonomy [22] from the HPC domain to include
the concept of task faults. We retain detectability of faults as the main criterion,
but distinguish three levels of the system: distributed execution, process, and
task (see Figure 2). Each of these levels may experience a fault, and each of
them has a different scope.

Distributed execution

Process

Task

System Fault

Process fault

Task
fault

detects
detects

Undetected

Fig. 2: A taxonomy of faults
based on the detection capa-
bilities: task faults, process
faults, and system faults.

Task Faults: Tasks have the smallest scope
of the three; still, a failure of a task may affect
the result of a process, and subsequently of a dis-
tributed run. A typical example are undetected
errors in memory. The process which runs a
task is generally capable of detecting task faults.
There are several examples of shared-memory
runtimes, where task faults within parallel re-
gions have been detected and corrected [20,17].

Process Faults: A process may also fail,
which leads to the termination of all underlying
tasks. For example, a node crash can lead to a
process failure. In such a scenario, a process can-
not detect its failure; however, in a distributed

run, another process may detect the failure, and trigger a recovery strategy
across all processes. A recovery strategy in this case may rely on one of two
redundancy techniques: checkpoint/restart or replication.

System Faults: On the last level, a distributed system execution may fail
in cases of severe faults like switch failure, or power outage. In this case, a failure
cannot be detected. No recovery strategy can be applied in such scenarios.

4 Classification

Table 1 classifies the existing task-parallel APIs according to the API taxonomy
(see Section 2), however with additional clarifications. First, for an API to sup-
port a given feature, this API must not require the user to resort to third party
libraries or implementation-specific details of the API. For instance, some APIs
offer arbitrary task graphs via manual task reference counting [21]. This does
not qualify as support in our classification. Second, all APIs shown as featuring
task cancellation do so in a non-preemtive manner due to the absence of OS-level
preemption capabilities.

Some entries require additional clarification. In C++ STL, we consider the
entity launched by std::async to represent a task. Also, while StarPU offers
shared memory parallelism, it is capable of generating MPI communication from
a given task graph and data distribution [8], hence it is marked with explicit
support for distributed memory using a message-based communication model.
Furthermore, PaRSEC includes both a task-based runtime that works on user-
specified task graph and data distribution information, as well as a compiler that
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Table 1: Feature Comparison of APIs for Task Parallelism.

accepts serial input and generates this data. As the latter is limited to loops, we
only consider the runtime in this work.

Several observations can be made from the data presented in Table 1. First,
all APIs with distributed memory support also allow task partitioning and
support heterogeneity in some form. APIs offering implicit distributed mem-
ory support employ a global address space. Second, among APIs lacking dis-
tributed memory, only OmpSs offers resilience (via its Nanos++ runtime), and
distributed memory APIs only recently started to include resilience support [3]
– likely driven by the continuous increase in machine sizes and hence decreased
mean-time-between-failures. Finally, some form of heterogeneity support is pro-
vided in almost all modern APIs, though it often requires explicit heterogeneous
task provisioning by the programmer.

Table 2 provides the corresponding classification with respect to the run-
time system and its subcomponents (see Section 3). It is worth mentioning that
there are various contributions extending runtime features, but these contribu-
tions are not part of the main release yet. We do not consider such extended
features in our taxonomy. For instance, recent work in X10 [12] extends the X10
scheduler with distributed work-stealing algorithms across nodes; however, we
classify X10 as not (yet) having a distributed scheduler. The same applies to
StarPU and OmpSs. Namely, new distributed-memory scheduling policies are
being developed for both runtimes, however, they are not part of their main
release yet8. Also, for Chapel, X10, and HPX, there is automatic data distri-
bution support (runtime feature); however, these runtimes require explicit work
mapping in distributed memory environments (API feature).

8 We received feedback from their developers
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Table 2: Feature Comparison of Runtimes for Task Parallelism.

Most of the runtime systems have similarities in scheduling within a single
shared-memory node and work-stealing is the most common method of schedul-
ing. On the other hand, there is no established method for inter-node scheduling.
For instance, ParSEC [9] only provides a limited inter-node scheduling based on
remote completion notifications, while Legion uses distributed work-stealing.

5 Conclusions

The shift in HPC towards emerging task-based parallel programming paradigms
has led to a broad ecosystem of different task-based technologies. With such
diversity, and some degree of isolation between individual communities of devel-
opers, there is a lack of documentation and common classification, thus hindering
researchers to have a complete view of the field. In this paper, we provide an
initial attempt to establish a common taxonomy and provide the corresponding
categorization for many existing task-based programming environments.

We divided our taxonomy into two broad categories: API characteristics,
which define how the programmer interacts with the system; and many-task
runtime systems, classifying the underlying technologies. For the latter, we an-
alyze the types of scheduling policies and goals supported, online and offline
performance monitoring integration, as well as the level of resilience and detec-
tion provided for task, process and system faults.
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