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Abstract—Providing standardized building blocks for task-
parallel programs within a language and its standard library
has several advantages over other solutions. Close integration
with compilers and runtime systems allows for potentially higher
performance and portability facilitates wide-spread use.

In the recently ratified C++11 standard, language constructs
have been added along with a memory model to provide the
developer with such building blocks. They allow accessing task
parallelism and synchronization in a flexible and standardized
way, potentially removing the need for third-party solutions.
Nevertheless, since parallelization aims at high performance,
an examination of the quality of implementation of these stan-
dardized means is necessary to determine their suitability for
replacing established solutions.

To that end, we present INNCABS, a new cross-platform cross-
library benchmark suite consisting of 14 benchmarks with vary-
ing task granularities and synchronization requirements. Based
on these benchmarks, we demonstrate that the performance
of C++11 parallelism constructs in the three most commonly
employed C++ runtime libraries prevents their use as a full
replacement for third-party solutions due to simplistic parallelism
implementations and high synchronization overheads.

I. INTRODUCTION

Task-based parallelism is a widespread and useful paradigm,
which has applications in areas ranging from embedded sys-
tems, over user-facing productivity software, to high perfor-
mance computing clusters. The C++ programming language
is one of the most widely-used languages for performance-
sensitive applications in all of these fields. Before the intro-
duction of the ISO/IEC C++11 standard [1], there was no way
within the language or its standard library to target thread-level
parallelism. This led to a proliferation of third party solutions
for task parallelism in C++.

In the C++11 standard, which is now implemented in all
the most widely-used C++ compilers, a memory model for
parallel systems was specified in the base language [1], and
based on this foundation several parallelism-related functions
and classes were introduced in the standard library. One of the
most interesting from both the perspective of an application
developer and a library implementation is the async function
template. It has the potential to express both coarse and fine-
grained task parallelism, and can serve as a building block for
more complex and feature-rich parallel patterns.

Clearly, providing a standardized building block for task
parallelism has many advantages over a smorgasbord of third-
party and homegrown solutions: it is easier to teach and

read, thereby increasing programmer productivity, it can be
more closely integrated and supported within a given compiler
and its associated runtime library, thereby potentially offering
superior performance, and it is portable to any standard-
conformant implementation of C++ without external depen-
dencies. However, the primary reason for parallelization is
generally the desire to improve program performance. As such,
the standard library facilities for parallelism need to provide
a high quality of implementation in terms of runtime effi-
ciency, overhead and scalability. Unlike traditional sequential
algorithms, where specific complexity classes for time and
space are mandated within the standard, doing the same for
parallel programs is significantly more challenging. Therefore,
we propose a new set of task-parallel benchmarks, INNCABS
(Innsbruck C++11 Async Benchmark Suite), designed to eval-
uate the parallel performance of C++11 implementations over
a variety of testing scenarios.

The concrete contributions of this paper are as follows:
• A new suite of 14 task parallel benchmarks, implemented

in standard C++11, which feature distinct parallel patterns.
• An evaluation of the performance, overheads and scal-

ability of the three most common C++11 library imple-
mentations on these benchmarks.

Section II will provide an overview of related work, fol-
lowed by Section III introducing the C++11 async prim-
itive and some related library functionality. The proposed
INNCABS benchmark suite and each of its test cases are
introduced in Section IV, and its results are used to evaluate
the behavior and quality of implementation of existing C++
standard libraries in Section V. It is followed by a conclusion
in Section VI.

II. RELATED WORK

Three established areas of scientific and engineering work
are relevant for this paper: task-parallel language extensions,
parallel C and C++ libraries and benchmark suites.

In terms of languages and language extensions, Cilk was
one of the first to establish a simple but reasonably complete
set of parallel language primitives as well as providing a
high-quality implementation and runtime system based on
work-stealing, later refined and extended for C++ in Intel’s
Cilk Plus [2]. The widely used OpenMP standard for shared-
memory multiprocessing added task support in version 3.0 of
the standard [3]. Finally, a more research-oriented platform
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is provided by StarSs [4], allowing to target also distributed
memory clusters and accelerators with task constructs. All of
these extensions provide unique features and solid implemen-
tations, but they lack in portability, maintainability and ease
of deployment in comparison to functionality included directly
in the C++ standard, such as the async primitive.

Many C and C++ libraries provide support for task-based
parallelism. Perhaps the most widely used of these are the
Intel Threading Building Blocks (TBB) [5], a rich, portable,
and mature platform for shared memory parallel systems.
The Boost [6] project Thread component provides an async
primitive very similar to the standardized C++11 option, as
well as a range of experimental Executors which implement
concepts with a potentially high performance impact, such
as thread pools. The HPX project [7] is more ambitious and
more research-focused, as it also targets distributed memory.
While such libraries are capable of providing good parallel
performance, none of them are as ubiquitous, easy to integrate
and deploy and, hopefully, well-tested as the standard library.
As such, we believe that they cannot replace it. Crucially, their
existence does not justify a lack of performance and scalability
testing in the standard library primitives, but they should rather
be used to provide a guideline regarding the performance to
be achieved.

Finally, a large number of established parallel benchmark
suites for C and C++ do already exist. However, the vast major-
ity of these – including the popular SPEC OMP [8] and NAS
parallel benchmark [9] suites – predominantly or exclusively
feature a flat, loop-oriented parallel structure. Others, such as
ParBenCCh [10] are based on either language extensions or
outdated C++ concepts and libraries. Conversely, INNCABS
is designed to measure the performance of a variety of task-
parallel programs using pure standard C++11. A selection of
the individual INNCABS benchmarks is based on adapted
code from the Barcelona OpenMP Tasks Suite [11], the single
most widely-used task-parallel benchmark suite, though many
of these codes are in turn adapted from previous benchmarks
originally written for Cilk.

III. LIBRARY SPECIFICATION OVERVIEW

The C++11 thread support library provides classes and
functions for dealing directly with threads, guaranteeing mu-
tual exclusion, signaling conditions, and exchanging data
between asynchronous tasks using futures. Of these facilities,
we consider the async primitive and the variadic lock
function for the deadlock-free acquisition of multiple mutexes
the most interesting from a quality of library implementation
perspective. Standard library threads generally map directly
to operating system (OS) threads, and so do mutexes in a
single-lock scenario. As such, their performance is influenced
primarily by the underlying OS facilities, and beyond the
control of the library implementation. For async and lock,
however, the situation is different, and they are therefore
covered in INNCABS. We will now provide a short overview
of these primitives, and explain why they allow for highly
significant implementation differences.

A. The async Primitive
In the C++11 standard, the async function template is defined

as follows:
template< c l a s s Func t ion , c l a s s . . . Args >
s t d : : f u t u r e < typename s t d : : r e s u l t o f <

F u n c t i o n ( Args . . . ) > : : t y p e >
async ( s t d : : l a u n c h p o l i c y , F u n c t i o n&& f ,

Args &&. . . a r g s ) ;

Semantically, it launches a given function f with arguments
args according to some policy, and returns an instance
of the std::future template class which can be used to
asynchronously query its result. The policy parameter is
of type std::launch, and can be either std::async,
std::deferred, some implementation-defined value, or
any combination of those. The policy parameter is optional,
and, crucially, if omitted it defaults to std::async |
std::deferred. Throughout the remainder of this docu-
ment, we will refer to these launch policies as async, deferred,
and optional. These options are defined as follows:

• async always launches a new thread to execute the
provided function asynchronously.

• deferred implements lazy evaluation, that is,
f(args...) is executed synchronously the first
time the returned future object is queried.

• optional gives the implementation a choice of whether
to execute the given function asynchronously or syn-
chronously.

Of these policies, optional is the most interesting in terms of
implementation quality, as it gives the library implementation
a large room for optimization. It is a well-studied fact that op-
tional task parallelism is highly advantageous when managing
the degree of software parallelism in a system, and can greatly
influence parallel performance and scalability [12].

As such, it is a good design decision to make the optional
policy the default, as it allows this type of optimization to be
performed. Consequently, we will focus on the performance of
this option during the evaluation in Section V, though results
with all policies will be provided for completeness.

B. The Variadic lock Function
Unlike the lock method of the std::mutex class, which

has clear semantics and generally maps directly to an OS
primitive, the std::lock function provides more room for
library implementations to influence performance. Syntacti-
cally, it is defined as follows:
template< c l a s s Lockable1 , c l a s s Lockable2 ,

c l a s s LockableN . . . >
void l o c k ( Lockab le1& lock1 , Lockab le2& lock2 ,

LockableN& l o c k n . . . ) ;

Its semantics are interesting, as the standard stipulates that it
shall employ an (unspecified) deadlock avoidance algorithm in
order to lock all the lockable objects passed to it. Clearly, there
are many implementation options for this functionality, and
their performance may differ significantly across platforms, us-
age scenarios and external load profiles. Therefore, INNCABS
includes a benchmark specifically designed for testing the
performance of this function, and it is also used heavily in
another benchmark (intersim).
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Fig. 1: Task-parallel structure types

IV. THE INNCABS PROGRAMS

In this section we present the overall design of and the
individual programs included in INNCABS. These explana-
tions are intended to focus not on the actual algorithms
or calculations the benchmarks perform, but rather on their
parallel structure, their average task granularity, and their
synchronization requirements. Knowing these features for each
benchmark is essential in order to interpret their performance
results on a given testing hardware/software platform.

Figure 1 illustrates the three categories of task-parallel
structures which are featured in the benchmark suite. They
can be summarized as follows:

• Recursive parallelism features nested async invocations
forming a tree pattern. Up to some cutoff point, each
async function spawns multiple further asynchronous
calls. This is the typical structure traditionally encoun-
tered in Cilk programs, and common in functional pro-
gramming languages. For this type of parallelism, the
arity and depth are significant parameters influencing
runtime behavior and performance.

• Loop-like structures simulate loop parallelism using the
async primitive within a basic for or while loop running
in a root thread. These are comparable to traditional loop
parallelism, and present a very different scheduling chal-
lenge compared to recursively nested parallel programs.
Therefore, a few such cases are included in INNCABS.

• Co-dependent task parallelism in this case refers to a
sea of asynchronously spawned tasks, which depend
on a set of mutexes shared by two or more partici-
pants. These benchmarks test the performance of the
deadlock-free lock acquisition algorithm implemented in
the std::lock function.

Note that some benchmarks may use combinations of the
above, e.g. a nesting of multiple levels of loop-like parallelism.

As a benefit of being implemented within the INNCABS
framework, each benchmark application has standardized ac-
cess to the following features: (i) execute all async calls with
any combination of std::launch parameters; (ii) built-in
result testing for successful execution; (iii) support for multiple
runs with statistical evaluation; (iv) multiple output formats,
including comma-separated values (CSV); (v) timeout support
in order to limit the execution time of complete benchmark
runs to reasonable values (see Section V for details).

TABLE I: INNCABS benchmark characteristics

benchmark origin structure granularity synchronization
Alignment AKM loop-like coarse -

FFT Cilk rec. balanced variable -
Fib - rec. balanced fine -

Floorplan AKM rec. unbalanced fine atomic/pruning
Health BOTS loop-like moderate -

Intersim New co-dependent fine mult. mutexes per task
NQueens Cilk rec. unbalanced moderate -
Pyramids New rec. balanced coarse -

QAP New rec. unbalanced fine atomic/pruning
Round Hinnant co-dependent fine two mutexes per task

Sort Cilk rec. balanced variable -
SparseLU BOTS loop-like coarse -
Strassen Cilk rec. balanced moderate -

UTS UNC rec. unbalanced variable -

While a detailed description of each benchmark’s charac-
teristics can be found online1, a summary of the applications
and their characteristics is presented in Table I. The “origin”
column contains the original source of the benchmarks (which
were rewritten for C++11): “BOTS” refers to the Barcelona
OpenMP Tasks Suite, “Cilk” to the Cilk language distribution,
“UNC” to the University of North Carolina and “AKM” to
the Cray Application Kernel Matrix. The benchmarks marked
as “New” were created for INNCABS and are based on the
respective algorithms mentioned in their description. If an ap-
plication uses additional synchronization beyond the joining of
future objects returned from async calls, its type is listed
in the “synchronization” column. The INNCABS framework
and all of the benchmark codes are available online1.

V. PERFORMANCE RESULTS

A. Experimental Setup

Our target platform is a quad-socket shared-memory system
equipped with Intel Xeon E5-4650 Sandy Bridge EP pro-
cessors, each offering 8 cores clocked at a frequency of 2.7
GHz (up to 3.3 GHz with Turbo Boost), and a total of 256
GB of main memory. The software stack consists of clang
3.4.2 using libc++ 3.4.2 and -O3 optimizations (abbreviated
as clang throughout the remainder of this section), gcc 4.9.0
using libstdc++ 3.4.20 and -O3 optimizations (gcc) on a Linux
OS with a 2.6.32-431 kernel, as well as the MS Visual C/C++
compiler 2013 v120 using msvcp 12.0.21005.1 (vc) and -Ox
optimizations on MS Windows Server 2012 R2.

The thread affinity for all benchmark runs was fixed us-
ing a fill-socket-first policy. Hyper-threading was enabled,

1https://github.com/PeterTh/inncabs
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TABLE II: Overall results for clang, gcc and vc. A Variable
performance due to early tree pruning. B Inefficient lock
implementation. C Concurrency error in C++ runtime library.

benchmark clang:async gcc:async vc:optional vc:async
Alignment scales to 64 scales to 64 scales to 64 scales to 32

FFT timeout partial timeout no scaling timeout
Fib timeout timeout scales to 8 timeout

Floorplan timeout no scalingA partial
timeout timeout

Health timeout partial timeout scales to 8 timeout
Intersim timeout timeout scales to 32 timeout
NQueens timeout timeout scales to 8 timeout

Pyramids partial timeout scales to 8 scales to 16 scales to 16,
overheadB

QAP timeout no scalingA scales to 8 timeout

Round scales to 64 scales to 64 scales to 64,
overheadB

scales to 64,
overheadB

Sort timeout scales to 8 scales to 64 timeout
SparseLU scales to 64 scales to 64 scales to 64 scales to 32

Strassen timeout timeout scales to 4,
partial errorC timeout

UTS timeout timeout scales to 16 timeout

but hardware threads sharing a core were only used when
employing all threads of the system. Time was measured
using std::chrono::high_resolution_clock and
all reported numbers are medians over five runs. A timeout
was set at 900 seconds in order to limit total execution time,
as the exact amount of time beyond this degree of slowdown
is not particularly informative – sequentially, all benchmarks
complete within 60 seconds or less on all platforms.

B. General Observations
While in theory, the optional policy of the async primitive

is supposedly the most interesting in terms of quality of
implementation, our results show that it simply maps to async
on clang and deferred on gcc. This impression, based on the
obtained data, was confirmed by a study of the source code
of both libraries. Hence, detailed presentation of these cases
is omitted for brevity.

Table II presents the results for the optional and async cases
of clang, gcc, and vc. In order to make more effective use of
the available space, instead of providing all 4410 numbers
obtained in our benchmark runs, we focus on a qualitative
analysis of the overall performance of each implementation.
As evident, clang shows poor behavior for all benchmarks
except for Alignment, Round and SparseLU, which also scale
well in gcc. Unlike clang, gcc also provides acceptable per-
formance in the Pyramids, Floorplan and QAP benchmarks.
The Microsoft vc compiler and its library is the only standard
implementation to make use of the optional launch policy,
allowing it to achieve better performance in the vast majority
of INNCABS benchmarks using this setting.

Adhering to the categorization presented in Section IV,
detailed discussion of the results is grouped into benchmarks
featuring recursive, loop-like, and co-dependent parallelism,
with a further division of the recursive category into balanced
and unbalanced tree structures.

C. Recursive Parallelism
1) Balanced Tree Structure: Relatively coarse-grained, bal-

anced recursive parallelism is an ideal case in terms of parallel
scaling, and places the least burden on a given runtime library
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Fig. 2: Execution times for the Pyramids benchmark
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Fig. 3: Execution times for the UTS benchmark

implementation. The Pyramids benchmark represent such a
use case within the INNCABS suite. Consequently, it scales
to some extent in all tested implementations and launch types.

However, as shown in Figure 2, even for a relatively easy
to scale case such as this, leveraging the opportunities offered
by an optional launch policy greatly improves scalability and
overall performance. The difference between the vc:optional
and vc:async results is stark, and demonstrates both the power
of optional parallelism and the high cost of OS-level thread
creation on Windows.

Both the clang and gcc implementations perform
comparably, and fall in between the two vc results. It
is also noteworthy that Strassen failed for vc:optional
when using 8 or more hardware threads with a
Concurrency::scheduler_resource_allocation
_error exception, indicating an issue in the msvcp
concurrency library.

2) Imbalanced Tree Structure: The UTS benchmark rep-
resents an extreme case of fine-grained, highly imbalanced
parallelism. As such, it challenges runtime systems in both
their capabilities for low-overhead invocation or elision of
parallel tasks, and in the dynamic redistribution of workloads
across hardware resources.

As Figure 3 illustrates, none of the existing C++11 im-
plementations manage to scale to the full degree of hard-
ware parallelism in this case. In fact, all versions except
for vc:optional time out, requiring far more time than a
simple sequential execution of the benchmark. However, the
Microsoft implementation of optional asynchronous launches
manages to scale up to 16 hardware threads.

D. Loop-Like Parallelism

While loop-like parallelism cannot be directly represented
using the C++11 thread support library, it is trivially ex-
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Fig. 4: Execution times for the SparseLU benchmark
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Fig. 5: Execution times for the Round benchmark

pressed using a composition of base-language loops and
std::async calls for each iteration or set of iterations.
This use case is most accurately represented by the SparseLU
test case in INNCABS, which accordingly scales well on all
implementations. Figure 4 summarizes the results obtained on
each platform in this benchmark.

Beyond the generally good scaling behavior of the bench-
mark, two results stand out: vc:optional scales better beyond 8
threads than the gcc and clang alternatives, which is explained
by its adaptive nature and resulting lower overhead per addi-
tional hardware thread. On the other hand, the 64 threads result
for vc:async illustrates a common issue with allocating a large
number of hardware threads on Windows OSes.

E. Co-dependent Parallelism

Figure 5 illustrates the results of the Round benchmark
for each of our tested platforms. Both the gcc and the clang
implementation perform very well in this oversubscribed lock-
ing scenario, while the results for vc indicate that significant
overhead is introduced by the deadlock-free mutex acquisition
method its library employs. While we cannot investigate the
source code in this case, based on the results it seems likely
that a loop based on repeated try_lock calls is used.
Hence, when the degree of oversubscription is higher while
being limited to a small number of hardware threads, there
is a particularly large performance drop compared to the
other implementations. Conversely, both gcc and clang use
mechanisms which yield to the operating system when a
locking attempt fails, and perform well.

VI. CONCLUSION

We have presented a new benchmark suite for C++11 paral-
lelism, INNCABS, comprising 14 benchmark applications and

covering three major types of task parallelism: loop-like, recur-
sively nested and co-dependent. The implementation quality of
the three predominant C++ standard library implementations
(libstdc++, libc++ and msvcp) was evaluated for up to 64
hardware threads based on these benchmarks, and a number
of shortcomings were identified.

While C++11 provides a programmer-friendly and flexible
interface for task parallelism with the std::async function,
our findings indicate that its current implementation quality
across platforms prevents its intended use as a replacement
for third-party or custom parallel task libraries. In particular,
heavy performance degradation can be observed when fine-
grained tasks are utilized, and in two of the three imple-
mentations (libc++ and libstdc++) no effort is currently made
to implement any kind of adaptive decision making or low-
overhead user-level threading in cases where this would be
viable. Conversely, the Microsoft C++ library provides much
better performance for fine-grained tasks, but employs a
spinning mechanism in std::lock which heavily affects
performance in oversubscription scenarios.

By providing a set of open source benchmarks (INNCABS)
and an in-depth cross-platform and cross-library performance
evaluation we hope to motivate the authors and companies
behind each of these implementations to improve on their re-
spective weaknesses, and make the C++11 standard parallelism
functions a viable choice for cross-platform high performance
applications.
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