
Application-level Energy Awareness for
OpenMP

Ferdinando Alessi1, Peter Thoman1, Giorgis Georgakoudis2, Thomas
Fahringer1, and Dimitrios S. Nikolopoulos2

1 University of Innsbruck, Austria, {petert,tf}@dps.uibk.ac.at
2 Queen’s University of Belfast, United Kingdom,
{g.georgakoudis,d.nikolopoulos}@qub.ac.uk

Abstract. Power, and consequently energy, has recently attained first-
class system resource status, on par with conventional metrics such as
CPU time. To reduce energy consumption, many hardware- and OS-
level solutions have been investigated. However, application-level infor-
mation - which can provide the system with valuable insights unattain-
able otherwise - was only considered in a handful of cases. We introduce
OpenMPE, an extension to OpenMP designed for power management.
OpenMP is the de-facto standard for programming parallel shared mem-
ory systems, but does not yet provide any support for power control. Our
extension exposes (i) per-region multi-objective optimization hints and
(ii) application-level adaptation parameters, in order to create energy-
saving opportunities for the whole system stack. We have implemented
OpenMPE support in a compiler and runtime system, and empirically
evaluated its performance on two architectures, mobile and desktop. Our
results demonstrate the effectiveness of OpenMPE with geometric mean
energy savings across 9 use cases of 15% while maintaining full quality
of service.

1 Introduction

Mobile computing devices such as laptops, tablets and smartphones are becom-
ing more widespread. The performance that these devices offer is increasing at
a steady pace, with octa-core processors powering contemporary smartphones.
Mobile systems are even being considered as low-cost energy-efficient candidates
for HPC [19]. However, mobility comes at a price: energy is a scarce resource
on these devices, especially with power-hungry media consumption constituting
a major use case. Furthermore, mobile computing is not the sole field where
energy is increasingly relevant - the tremendous increase in power consumption
by performance-oriented servers has made power budgeting unavoidable in HPC
as well.

Several solutions have been proposed to address the energy problem on dif-
ferent levels. On the hardware level, energy-driven circuit design and features
such as multiple available frequency and voltage scaling levels (DVFS) are widely



employed. Proposed energy-aware OSes exploit these operating modes accord-
ing to actual and predicted device load, in some cases with additional knowledge
provided by the application itself [22]. On the user level, frameworks have been
introduced to implement content adaptation policies based on resource avail-
ability [2] and more generally to define a power management strategy steering
multi-mode operating devices [14]. While system-level approaches have been
explored to a certain extent, we believe there still exists a lot of room for im-
provement on the application level since no power management interface that
can be considered complete, generic and easy to use has been proposed so far.

To fill this gap we propose a dedicated API for application-level energy aware-
ness – and, more generally, multi-objective optimization. Rather than designing
a completely new interface, we opt for extending OpenMP API [16], the de-facto
standard for parallel shared-memory computing. Our choice is driven by the in-
herent parallelism of modern architectures, which exposes opportunities to save
energy requiring close interaction with the parallel runtime system.

This paper explores application-level energy saving opportunities through the
specification, implementation and evaluation of OpenMPE – an OpenMP exten-
sion for Energy. OpenMPE adds new directives and clauses to enable per-region
customization of multiple optimization objectives and tunable parameters. We
provide three major contributions:

– A novel API for application-level energy-aware programming, allowing pro-
grammers to expose energy saving opportunities through i) characteriz-
ing application behavior by providing a semantic region structure, ii) set-
ting per-code region multi-objective goals and constraints, and iii) exposing
application-level tunable parameters.

– A compilation and runtime system supporting OpenMPE. The runtime sys-
tem exploits opportunities exposed by programmers through several tech-
niques such as dynamic frequency and voltage scaling (DVFS), dynamic
concurrency throttling (DCT), and application-level content adaptation.

– An empirical evaluation of the effectiveness of OpenMPE. A video codec
reference implementation is enriched with OpenMPE and benchmarked on
a desktop and mobile platform.

The rest of this paper is organized as follows: Section 2 motivates the pro-
posed research work. Section 3 introduces OpenMPE, and Section 4 presents a
compiler and runtime prototype implementation. To demonstrate the validity of
our extension, experimental results are shown in Section 5. Related work and
our conclusions are presented in Section 6 and 7, respectively.

2 Motivation

In this section we illustrate the three main considerations that motivate our
proposed OpenMPE extensions.

Firstly, single-objective optimization is no longer sufficient. While execution
time was the main and only concern in the past, with the advent of mobile plat-
forms and the currently unsustainable energy consumption of supercomputers,



1
6
0
0

1
5
0
0

1
4
0
0

1
3
0
0

1
2
0
0

1
1
0
0

1
0
0
0

9
0
0

8
0
0

1
2
0
0

1
1
0
0

1
0
0
0

9
0
0

8
0
0

7
0
0

6
0
0

5
0
0

0

1

2

3

Cluster switch

CPU frequency [MHz]

A
v
g

p
ow

er
[W

]

10

15

20

25

F
ra

m
e

ra
te

[F
P

S
]

Fig. 1: Average power consumption of a video decoder at various DVFS levels

new objectives must be considered as well. With OpenMPE, energy and power
are also raised to first-class resources, forming a total of four, potentially con-
flicting, goals with the inclusion of quality of service. Furthermore, our generic
design is extendable for any additional objectives which might become relevant
in the future.

A second observation concerns phase detection, which is still generally hard
without application-level support. Different program regions have different re-
quirements and applying the same optimization strategies without distinction
can deteriorate optimization goals such as execution time and energy use. Con-
sequently, correctly identifying program phases is a main concern for dynam-
ically adaptable systems. Many solutions have been proposed so far to detect
and predict program behavior automatically, both online and offline, yet current
techniques still suffer from overhead and misclassification [4]. Therefore, we be-
lieve that allowing developers to easily expose program phases directly at the
application level is the most practical approach.

Thirdly and most crucially, application semantics are not derivable by under-
lying layers. Functional constraints and goals are only known by the application
programmer. For example, in soft real-time use cases, the time constraints are
unknown to underlying layers unless explicitly communicated. As such, devel-
opers have access to important information that is unattainable by runtime and
operating systems: in this paper we demonstrate how beneficial it can be to
forward such application-level knowledge to underlying layers.

As a concrete example of this issue, Figure 1 illustrates the average power
consumption of a video decoder executed at multiple CPU frequencies. This data
was collected on a mobile development board (detailed in Section 5) where two
heterogeneous CPU clusters coexist. As the frequency is lowered, the average
power decreases but the same occurs for the frame rate achieved by the applica-
tion: only the performance-oriented cluster can maintain an optimal frame rate,



Table 1: OpenMPE constructs and clauses
Constructs

// Definition of an explicit region
#pragma omp region [objective(...)] [param(...)]

structured-block

Clauses
// Specification of a multi−objective optimization goal
objective(weights : constraints)
// Specification of a tunable parameter
param(var, [range(value-range:quality-range) | enum(values, size:quality-range)])

down to a minimum of 1100 MHz. Clearly, this frame rate threshold should be
taken into account by DVFS algorithms, but the desired framerate is semantic
information only known at the application level.

As a side rationale, ease of use cannot be disregarded while designing an
application-level interface. Our choice for a minimal directive-based API exten-
sion is intended to address this point.

3 OpenMPE

OpenMPE is based on OpenMP 4 and extends it for multi-objective optimiza-
tion. Preserving the execution and memory models, directives and API functions
defined in the base OpenMP language, OpenMPE adds one new construct and
two clauses as listed in Table 1. Both clauses may annotate the parallel, for,
task and region constructs.

Explicit regions Since OpenMP addresses parallel computing, it allows marking
code regions for parallelization, worksharing and synchronization. While adding
clauses to existing constructs would be sufficient to achieve our goals for such
regions, for completeness we also offer the possibility to delineate code regions
independently of parallelization purposes, by introducing the region construct.
The region construct defines a region encompassing the subsequent single-entry-
single-exit language block. This construct supports both OpenMPE clauses, and
its syntax is specified in Table 1.

Multi-objective optimization goals By means of this clause, programmers can in-
struct the system about multi-objective optimization goals in terms of execution
time, power, energy and quality of service for a specific code region: the compiler
and runtime system are guided by the objective clause in their transformation
and resource allocation policies.

Objectives can be expressed through a set of weights or constraints with the
following syntax:

weights = f1 ∗ P1 + f2 ∗ P2 + · · ·+ fN ∗ PN

constraints = {Pi < ci; constraints} | ∅



where ci ∈ R, fi ∈ R and
∑i<=N

i=1 fi = 1.0. Pi can be any of the non-functional
parameters T (execution time), P (power consumption), E (task energy) or Q
(quality of service) and the unit for ci is, respectively, seconds, watts, joules, or
a pure integer value. While estimating performance in terms of execution time,
power and energy consumption is straight-forward, quality of service requires a
specific definition. We define the quality of service delivered by a code region
indirectly by its degradation, as an integer value between 0 and ∞ where 0 is
the best achievable.

Some usage examples of the objective clause are:

1 #pragma omp ... objective(E)
2 #pragma omp ... objective(0.8∗E+0.2∗T)
3 #pragma omp ... objective(T : P<p)

On line 1 the programmer instructs the OpenMPE system to attempt minimizing
the task energy required for executing the binding region. Instructed with line
2, the system performs a weighted optimization between energy and time, with
0.8 as the weighting factor for energy and 0.2 for time. Processing line 3, the
system tries to achieve the minimum run time possible while staying below a
given power consumption p (specified in watts in double precision floating point
– p can be a dynamically evaluated expression).

Tunable application parameters The param clause specifies tunable parameters
affecting the behavior of the program which are not introduced by the compiler
or hardware platform but are inherent in user code. Its syntax specifies a base
language variable storing the tunable parameter and either i) range specified as a
lower bound expression, upper bound expression and step, all three expressions of
the same type as the variable, ii) enum specified as a base language array storing
elements of the same type as the variable and the size of the array, or iii) if the
variable type is boolean, no range or enum expressions need to be specified. Each
of these specifications can optionally be enriched with an expression defining the
mapping between possible values for the variable and quality-of-service ratings,
evaluated by the system to achieve Q objectives.

Some usage examples of the param clause are:

1 #pragma omp ... param(rate, range(24, 74, 10))
2 #pragma omp ... param(rate, range(24, 74, 10: 5, 0, 1))
3 #pragma omp ... param(name, enum(names array, names len)

The example on line 1 specifies that the base language variable rate can assume
for the binding code region any value val which satisfies val = 24+ i∗10; val <=
74 where i ∈ N . Line 2 enriches the semantics of line 1 with a mapping to quality
weights: a rate of 24 has an associated quality metric of 5, 34 maps to quality
4 and so on up to value 74 with quality 0 (the best possible). With line 3, the
value of the variable name for the binding code region is picked by the OpenMPE
runtime system among the first names len elements of the array names array.



#pragma omp
parallel
objective(

0.6*E +
0.3*T +
0.1*P: Q<4)

fun();

C & OpenMPE

Frontend
merge(parallel
(job([1-inf],
fun)));

INSPIRE
E:0.6
T:0.3
P:0.1
Q:0-3

Backend

variants = {
fun,.6,.3,.1
};

rt mer(rt par(
&variants[0]

));

C

C
om

p
ile
r

1
2
3
4
5
6
7

1
2
3
4
5
6
7

void rt par(...)
{
eopt conf();
...
eopt eval();
}

R
u
nt
im

e
S
ys
te
m

01101101101
01010101011
10110111010
01101011010
11100111111
11000011101
1100001 ...

Binary

GCC

Fig. 2: OpenMPE compilation workflow

4 Compilation and Runtime System

This section outlines a reference implementation of OpenMPE, built upon the
Insieme project [12]. It comprises two central components, the Insieme Compiler
and the Insieme Runtime System (Insieme RS). To implement OpenMPE, these
were modified by extending (1) the compiler frontend to process OpenMPE
clauses and directives, (2) both the Insieme internal representation and encoding
of meta-information statically collected by the compiler to reflect OpenMPE
semantics, (3) the compiler backend to forward OpenMPE meta-information to
the runtime system, (4) the runtime system framework to acquire OpenMPE
information and achieve defined multi-objective goals through an optimization
algorithm, and (5) the runtime system instrumentation facilities according to
the requirements of the optimization algorithm.

Source-to-source compilation The Insieme compiler is a source-to-source com-
piler for C/C++ which supports OpenMP. Source code is translated into an
internal representation (IR), optimizations are performed, and it is converted
back to C. Figure 2 depicts the compilation process.

To integrate OpenMPE directives into Insieme, we directly translate region

and param directives into IR constructs, while the objective clause is handled as
meta-information annotating IR nodes. The compiler backend was extended to
convert this representation into suitable Insieme RS calls and meta-information
into appropriate C data structures.

Runtime system Insieme RS is an execution framework complementing the In-
sieme Compiler. Its application model is based on low-overhead user-level task
processing and scheduling enriched by the availability of a large set of meta-
information. It features a powerful instrumentation infrastructure capable of
collecting per-region performance data from a variety of architectures and APIs,
including PAPI, Intel RAPL – taking care of potential overflow issues – and an
interface specifically designed for the mobile system described in Section 5.



iteration iteration counter
done true if a definitive configuration has been identified
best conf best configuration found so far
best perf data performance data for the best configuration
curr conf current configuration
THRESHOLD iterations before hill climbing

1: if !done then
2: if iteration++ < THRESHOLD then
3: curr conf = random selection()
4: else
5: (curr conf, done) = hill climbing()
6: end if
7: else
8: curr conf = best conf
9: end if

10: annotated task()
11: if !done and get curr perf data() > best perf data

and constraints are satisfied(get curr perf data()) then
12: best perf data = get curr perf data()
13: best conf = curr conf
14: end if

Fig. 3: The e-optimizer algorithm

Within the scope of OpenMPE, the runtime system is also responsible for
achieving per-region multi-objective goals specified by programmers. An addi-
tional module, the e-optimizer , was introduced for this purpose. Its task is the
(re)configuration of available optimization knobs based on collected performance
data to fulfill defined per-region objectives. In this implementation, we consider
as optimization knobs system-level features such as DVFS and DCT as well as
OpenMPE tunable parameters exposed via the param clause.

The e-optimizer , outlined in Figure 3, is an online optimizer, exploiting the
fact that objective enriched code regions are typically executed several times.
For one, the objective clause augments constructs such as for which semanti-
cally require multiple executions. Moreover, many applications iterate over those
constructs, as is the case for the benchmark described in Section 5. This structure
provides an opportunity to evaluate different configurations for the same task
in a single program execution. To this end, e-optimizer configuration and eval-
uation function calls are inserted at the beginning and end of each code region
representing a task annotated with multi-objective goals. During the configura-
tion phase, a configuration of optimization knobs is selected, including a specific
CPU frequency, number of threads to employ and a set of values for the possible
param variables. During the evaluation phase, performance data is collected and
stored for the previous configuration and region. After a given task has been ex-
ecuted a threshold number of times, the e-optimizer picks the best configuration
fulfilling the defined goals among the ones evaluated. This configuration is subse-
quently refined by a multi-dimensional hill climbing over all optimization knobs
until a definitive solution is found. Configurations are initially selected randomly
for two main reasons: (a) it is not trivial to determine how different values for
a specific knob will affect energy consumption (reducing core frequency will re-
duce power consumption but execution time will increase) and (b) to mitigate
the issue of local optima which might occur in a pure hill-climbing approach.



1 #pragma omp parallel for schedule(dynamic)
2 for (int y=0; y<rows; y+=2)
3 for (int x=0; x<cols 2; x++) { ... }
Listing 1.1: tmndec main loop parallelized using a dynamic schedule

1 #pragma omp parallel for schedule(dynamic)
objective(E : T<1/f rate; Q<3) param(scaling, range(1:8:1))

2 for (int y=0; y<rows; y+=2∗scaling)
3 for (int x=0; x<cols 2; x+=scaling) {
4 ...
5 if(scaling > 1) { ... }
6 }
Listing 1.2: tmndec with multi-objective goals and tunable parameter

5 Evaluation

To demonstrate the effectiveness of OpenMPE, we have annotated an existing
real-world application with our proposed API. We subsequently employed our
reference OpenMPE compiler and runtime system, and analyzed the energy con-
sumption of the resulting program on two distinct hardware architectures. The
results obtained with our implementation are compared to the same application
parallelized with plain OpenMP and compiled by GCC.

Hardware setup For our experiments we use systems representative of two device
classes, mobile and desktop. The mobile system is an ODROID XU+E developer
board based on a Samsung Exynos 5 Octa (5420) SoC, implementing the ARM
big.LITTLE architecture comprising a Cortex-A15 quad-core and a Cortex-A7
quad-core. Either one of the clusters can be active at a time and both offer
DVFS, with 9 frequencies available for the Cortex-A15 and 8 for the Cortex-A7.
The board is equipped with current and voltage sensors to individually measure
power consumptions of both core clusters, memory and gpu.

The desktop system is an Intel i7-3770k Ivy Bridge quad-core offering 16
frequency settings. For this system, energy estimations are collected from the
Intel RAPL interface. In terms of software infrastructure, the Exynos board
runs Linux kernel version 3.4.75, while the Ivy Bridge system uses 3.11.0. GCC
4.8.3 was employed as the backend compiler and for comparison purposes on
both systems.

Benchmark application To evaluate our proposal we choose an application from
the benchmark suite MediaBench II [8]. Among the available options we selected
tmndec, a video decoder based on the ITU H.263 standard. Although more recent
codecs are available in the suite, their far greater complexity would add major
engineering and parallelization effort to our study while not providing significant
new insight. We optionally enable vertical and horizontal deposterization filters
in order test our proposal on additional load scenarios.

Since tmndec is a purely sequential implementation, as a first step we par-
allelize it via OpenMP. The application features a central two-level nested loop



which accounts for video frame decoding: thus, it was a prime target for opti-
mization (Listing 1.1).

Semantically, this code region needs to be executed sufficiently fast such that
the application can still achieve its target frame rate. A constraint of this type
is easily expressible through OpenMPE as shown in Listing 1.2. The weights
expression of the objective hints at a minimization of energy consumption
without regard for power or time, while the constraints expression guarantees
that a specific frame rate f rate is maintained.

Finally, we introduce content-adaptation by the OpenMPE param clause and
a constraint on the quality of service. With the addition of the subsampling factor
scaling it is possible to adjust the resolution – and thus quality – of the decoded
video. As shown in Listing 1.2, the param clause indicates that the variable
scaling can assume any integral value in range [1,8] at runtime. Subsampling
is enabled accordingly on line 5. The addition of the quality constraint (Q<3)
prevents the optimizer from choosing scaling factors which significantly degrade
quality – a user-adjustible variable could be employed in real-world scenarios.

Experimental results We performed experiments using two resolutions, 704x576
(4CIF) and 1408x1152 (16CIF), and for each of them we used three load variants:
i) full (horizontal and vertical) deposterization, ii) a single vertical deposteriza-
tion pass, and iii) no filter at all. On the mobile system only the 4CIF resolution
was tested, while both were explored on the desktop system for a total of 6
configurations. For comparison purposes, the ondemand cpufreq governor [17],
default for most Linux systems, was also evaluated for each configuration.

The e-optimizer search phase is generally very short (around 20 frames, less
than a second) and will not significantly impact performance in production sce-
narios. However, for our testing, the insufficient temporal resolution of the energy
measurement hardware provided by our mobile system required us to evaluate
the otherwise single execution of each OpenMPE code region in groups, with
a resulting expansion of the e-optimizer search time. A longer, realistic video
playback scenario would still mitigate this initial loss of performance but would
also dramatically increase the experiment duration. For this reason, the data
collected from our experiments and shown in Figure 4 is limited to the final
3000 frames of a 12000 frames video.

When discussing the results presented in Figure 4, we would first like to note
that despite the energy savings it achieves, our system maintains a quality of
service (FPS, as indicated by the numbers on each bar in the chart) on par with
the reference governor in all scenarios. Some observations can be made across
both platforms and are related to the features of this particular benchmark
application: (1) allowing the e-optimizer to use DCT capabilities (+DCT) does
not add to energy gains for this testing scenario. This is due to the fact that both
systems provide an ample variety of DFVS frequencies, and that the algorithm
features nearly linear parallel scaling. (2) the addition of content-adaptation
(+param) is not effective when no filters are applied, as in such cases the overall
computational load is very small. (3) the geometric mean of the energy savings



double filter single filter no filter
0

20

40

60

80

2
3
.9

1

23
.9

23
.9

2
3
.8

8

2
3.

9

23
.9

22
3.

8
9

23
.8

8

2
3
.9

1

23
.9

1

2
3
.9

1

2
3
.9

E
n

er
g
y

[j
]

cpufreq ondemand
OMPE DVFS
OMPE +DCT
OMPE +param

(a) Mobile platform, 704x576 resolution

double filter single filter no filter
0

200

400

600

800

1,000

1,200

24

24

24

24

24

24

24 24

24

24

24 24

E
n
er

gy
[j

]

(b) Desktop platform, 704x576

double filter single filter no filter
0

200

400

600

800

1,000

1,200

1,400

24

24

24

24

24

24

24

24

24

24

24

24

E
n
er

gy
[j

]

(c) Desktop platform, 1408x1152

Fig. 4: Energy consumption of tmndec with different optimization knobs and
filtering applied; frame rate achieved noted on top of each bar

achieved by our system using all of its capabilities compared to the baseline,
across all 9 scenarios, is 15%.

On the mobile system we observe a large range of findings from an energy
point of view, with our system performing significantly better than the onde-
mand governor for the full filter configuration, saving up to 77% energy, while
managing about 20% energy savings in the single filter case and performing
on par with no filtering. This range of effectiveness is related to the relative
CPU load incurred in the various scenarios: in the very low-load no-filtering sce-
nario, the default governor is able to determine that the lowest CPU frequency
is sufficient because of the long sleep periods of the application, bringing its
performance up to par with our approach.

On the desktop system achieving an optimal frame rate is not an issue and
our implementation generally performs better than the cpufreq governor with



energy savings up to 31%. Once again, the only exception is the 704x576 reso-
lution scenario with no filtering: due to the comparatively light computational
load of this configuration, both approaches detect that the lowest possible fre-
quency setting is sufficient. It is interesting to note that even though the range
of available frequencies is larger on the desktop system, they offer a smaller gain
in terms of energy savings compared to the mobile system. This is evident from
Figure 4c: the desktop system is capable of maintaining an optimal frame rate
with each of the available frequencies, but the energy savings with DVFS, while
significant, are comparatively minor remaining between 12% and 18%.

6 Related Work

Proposed solutions for energy and power management range from the lowest to
the upper levels of the system stack involved: hardware-, system software- and
application-based approaches have been investigated over the last decade.

At the hardware level, energy savings can be achieved through low-power
circuit design [1] or providing different operational modes for a particular com-
ponent [9].

At the system software level, studies range from energy-oriented operating
systems [5, 15, 18], over compilers [11, 21] to runtime systems [10, 20]. Inter-
actions between OpenMP and energy consumption have also been investigated.
A pure OpenMP runtime that applies DVFS and DCT according to predicted
performance of application phases has been proposed [3], and this concept was
also generalized to hybrid MPI/OpenMP programming [13]. However, none of
these works consider application-level knowledge for power management.

At the application level, Odyssey [6, 7] is one of the first projects to demon-
strate the benefits of content adaptation for a reduced energy profile. In this
work, the user provides a goal for battery duration to the operating system that,
assessing the system status, informs the application about a target quality for the
output. A multimedia oriented operating system is proposed with Grace OS [22].
With starting time and duration of tasks provided by applications, Grace OS
determines a system-wide CPU voltage and frequency. A more generic approach
is evaluated within Anole [2]. This proposed framework updates the application
about the current energy status of the device and the application can then adapt
its behavior in an arbitrary manner. Notifications about energy availability are
forwarded to the operating system as well: hardware and service adaptation can
then be offered through ad-hoc modules. A different triggering strategy charac-
terizes the Chameleon interface [14]. A compliant application does not react to
energy events, rather it can monitor processor load and set a desired speed.

Even though some of these studies propose power management interfaces
with application-level involvement, they differ substantially from our work. Pre-
vious work focuses on dynamic objectives and overall system load, while we opt
for highlighting per-application-region static energy saving opportunities to the
underlying levels of the system. The OpenMPE API, compared to prior work,
is:



– less intrusive and easier to integrate, since we provide a minimal directive-
based interface,

– more expressive, since it is possible to directly specify energy constraints
(power budgeting) and arbitrary tunable parameters (content adaptation),

– more generic, as user-defined multi-objective goal functions and constraints
across an existing, easily extensible set of four metrics are supported,

– more flexible, since the OpenMPE specification does not prescribe or restrict
the optimization techniques applied by the runtime system, and

– up-to-date, since we inherently deal with parallel codes in the parallel archi-
tecture era by basing our approach on OpenMP.

7 Conclusion and Future Work

This paper describes an extension to OpenMP, OpenMPE, which provides two
novel features: multi-objective goals and constraints and application adaptation.
These features allow our interface to address the issue of energy consumption
and power budgeting, fundamental on modern mobile and HPC systems. Ap-
plication programmers know the non-functional requirements and adaptation
opportunities of each code region, and with OpenMPE they can conveniently
provide this knowledge to all underlying layers. We have developed a compiler
and associated runtime system for OpenMPE which are able to perform system-
and program-level adjustments to achieve specified multi-objective goals while
respecting given constraints. Experimental results demonstrate energy savings
up to 77% are feasible with this prototype implementation.

In the future, more extensive evaluation of the OpenMPE API would be
desirable, targeting several applications. Furthermore, analysis and refinement
of the system’s interaction with external load is an important goal.

Acknowledgments

This research has been partially funded by the FWF Austrian Science Fund
under contract I01079 (GEMSCLAIM).

References

[1] AP. Chandrakasan et al. “Low-power CMOS digital design”. Solid-State Circuits,
IEEE Journal of 27.4 (1992), pp. 473–484.

[2] Hui Chen et al. “Anole: A Case for Energy-Aware Mobile Application Design”.
Parallel Processing Workshops (ICPPW), 2012 41st Int. Conf. on. 2012, pp. 232–
238.

[3] Matthew Curtis-Maury et al. “Prediction Models for Multi-dimensional Power-
performance Optimization on Many Cores”. Proc. of the 17th Int. Conf. on
Parallel Architectures and Compilation Techniques. PACT ’08. Toronto, Ontario,
Canada: ACM, 2008, pp. 250–259.

[4] Ashutosh S. Dhodapkar and James E. Smith. “Comparing Program Phase Detec-
tion Techniques”. Proc. of the 36th IEEE/ACM Int. Symp. on Microarchitecture.
MICRO 36. Washington, DC, USA: IEEE Computer Society, 2003.



[5] Krisztián Flautner et al. “Automatic Performance Setting for Dynamic Voltage
Scaling”. Wirel. Netw. 8.5 (09/2002), pp. 507–520.

[6] Jason Flinn and M. Satyanarayanan. “Energy-aware Adaptation for Mobile Ap-
plications”. Proc. of the Seventeenth ACM Symp. on Operating Systems Princi-
ples. SOSP ’99. Charleston, South Carolina, USA: ACM, 1999, pp. 48–63.

[7] Jason Flinn and M. Satyanarayanan. “Managing Battery Lifetime with Energy-
aware Adaptation”. ACM Trans. Comput. Syst. 22.2 (05/2004), pp. 137–179.

[8] Jason E. Fritts et al. “MediaBench II Video: Expediting the Next Generation of
Video Systems Research”. Microprocess. Microsyst. 33.4 (06/2009), pp. 301–318.

[9] Hewlett-Packard Corp., Intel Corp., Microsoft Corp., Phoenix Technologies Ltd.,
Toshiba Corp. Advanced Configuration and Power Interface Specification (ACPI).
Specification Revision 5.0. 2013.

[10] Chung-hsing Hsu and Wu-chun Feng. “A Power-Aware Run-Time System for
High-Performance Computing”. Proc. of the 2005 ACM/IEEE Conf. on Super-
computing. SC ’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 1–.

[11] Chung-Hsing Hsu and Ulrich Kremer. “The Design, Implementation, and Eval-
uation of a Compiler Algorithm for CPU Energy Reduction”. Proc. of the ACM
SIGPLAN 2003 Conf. on Programming Language Design and Implementation.
PLDI ’03. San Diego, California, USA: ACM, 2003, pp. 38–48.

[12] Herbert Jordan et al. “A Multi-objective Auto-tuning Framework for Parallel
Codes”. Proc. of the Int. Conf. on High Performance Computing, Networking,
Storage and Analysis. SC ’12. Salt Lake City, Utah: IEEE Computer Society
Press, 2012, 10:1–10:12.

[13] Dong Li et al. “Hybrid MPI/OpenMP power-aware computing”. Parallel Dis-
tributed Processing (IPDPS), 2010 IEEE Int. Symp. on. 2010, pp. 1–12.

[14] Xiaotao Liu et al. “Chameleon: Application-Level Power Management”. Mobile
Computing, IEEE Transactions on 7.8 (2008), pp. 995–1010.

[15] Jacob R. Lorch and Alan Jay Smith. “Operating System Modifications for Task-
Based Speed and Voltage”. Proc. of the 1st Int. Conf. on Mobile Systems, Ap-
plications and Services. MobiSys ’03. San Francisco, California: ACM, 2003,
pp. 215–229.

[16] OpenMP Architecture Review Board. OpenMP Application Program Interface.
Specification Version 4.0. 2013.

[17] Venkatesh Pallipadi and Alexey Starikovskiy. “The ondemand governor”. Proc.
of the Linux Symp. Vol. 2. sn. 2006, pp. 215–230.

[18] N. Pettis et al. “Automatic Run-Time Selection of Power Policies for Operat-
ing Systems”. Design, Automation and Test in Europe, 2006. DATE ’06. Proc.
Vol. 1. 2006, pp. 1–6.

[19] Nikola Rajovic et al. “Supercomputing with Commodity CPUs: Are Mobile SoCs
Ready for HPC?” Proc. of the Int. Conf. on High Performance Computing, Net-
working, Storage and Analysis. SC ’13. Denver, Colorado: ACM, 2013, 40:1–
40:12.

[20] Barry Rountree et al. “Adagio: Making DVS Practical for Complex HPC Ap-
plications”. Proc. of the 23rd Int. Conf. on Supercomputing. ICS ’09. Yorktown
Heights, NY, USA: ACM, 2009, pp. 460–469.

[21] Qiang Wu et al. “Dynamic-Compiler-Driven Control for Microprocessor Energy
and Performance”. IEEE Micro 26.1 (01/2006), pp. 119–129.

[22] Wanghong Yuan and Klara Nahrstedt. “Practical Voltage Scaling for Mobile
Multimedia Devices”. Proc. of the 12th ACM Int. Conf. on Multimedia. MUL-
TIMEDIA ’04. New York, NY, USA: ACM, 2004, pp. 924–931.


