
Energy Prediction of OpenMP Applications using Random Forest Modeling

Approach

Shajulin Benedict, Rejitha R.S.

HPCCLoud Research Laboratory,

SXCCE, Anna University,

Nagercoil, India, Email: shajulin,rejitha@sxcce.edu.in

Philipp Gschwandtner, Radu Prodan, and Thomas Fahringer

Institute of Computer Science,

University of Innsbruck, Austria,

Email: philipp,radu,tf@dps.uibk.ac.at

Abstract—OpenMP, with its extended parallelism features
and support for radically changing HPC architectures, spurred
to a surge in developing parallel applications among the HPC
application developers community, leading to severe energy
consumption issues. Consequently, a notion of addressing
the energy consumption issue of HPC applications in an
automated fashion increased among compiler developers al-
though the underlying optimization search space could increase
tremendously. This paper proposes a Random Forest Modeling
(RFM) approach for predicting the energy consumption of
OpenMP applications in compilers. The approach was tested
using OpenMP applications, such as, NAS benchmarks, matrix
multiplication, n-body simulations, and stencil applications
while tuning the applications based on energy, problem size,
and other performance concerns. The proposed RFM approach
predicted the energy consumption of code variants with less
than 0.699 Mean Square Error (MSE) and 0.998 R

2 value
when the testing dataset had energy variations between 0.024
joules and 150.23 joules. In addition, the influences of energy
variations, number of independent variables used, and the
proportion of testing dataset used during the RFM modeling
process are discussed.

Keywords-Energy Prediction; HPC; Modeling; OpenMP;
Scientific Applications

I. INTRODUCTION

Developing HPC applications uprooted heavily among the

minds of application developers due to the paradigm shift

in recent architectures - most of the CPU vendors moved

away from improving CPU clock speed to adding multi-

cores on chips. Hence, application developers are urged to

write efficient parallel algorithms considering the hardware

parallelism of machines and various other performance con-

cerns, including energy.

OpenMP, with its simplest programming approach (using

OpenMP constructs) and its support to the varying HPC

architectures, has widely attracted application developers

from diverse fields, such as, High Energy Physics, cloud

manufacturing sector, and so forth. In succinct, the HPC ap-

plication developers community preferably opts for writing

their parallel applications using OpenMP constructs [3].

However, due to the emerging unskilled HPC application

developers and architecture-application mismatches, applica-

tions could easily lead to performance concerns, including

the energy consumption issue. For instance, an application

developer could develop OpenMP applications with too

much sequential code or too many fine granular parallel

codes. In fact, tradeoffs exist in terms of optimization

solutions when a specific performance problem would be

addressed. Interestingly, these optimization possibilities are

comparatively increasing from time to time due to the mud-

dled up complicated architectures and varying application

requirements. Thus, a need for an auto-tuning mechanism

for compilers is emerging as a mandatory solution for HPC

application developers.

In general, an auto-tuning mechanism of compilers could

be assisted using predictive modeling solutions so that a

wide coverage of solutions in an optimization search space

is possible with limited executions.

This paper proposes an energy prediction mechanism of

OpenMP applications using a Random Forest Modeling

(RFM) approach for compilers. RFM is a bagging tree

based modeling mechanism. The proposed energy predic-

tion mechanism was developed at the HPCCLoud Research

Laboratory, India. To validate the proposed mechanism,

the training and testing data are gotten after experiments

were remotely conducted on the Thomson machine of the

University of Innsbruck, Austria. Several HPC applications,

such as, NAS benchmarks, n-body simulations, stencil com-

putations, and a matrix multiplication application, were

predicted for various problem sizes. In succinct, the RFM

mechanism was used to predict the energy consumption of

various problem sizes of applications.

The rest of the paper is organized as follows. Sec-

tion II presents the existing energy prediction mechanisms.

Section III explains the need for an energy prediction

mechanism and a proposed energy prediction architecture

for compilers and Section IV explains the proposed RFM

mechanism. Section V validates the proposed approach

using OpenMP-based applications. And, finally, Section VI

presents a few conclusions.

II. RELATED WORK

There have been several attempts to predict the execu-

tion time of sequential applications employing a variety of

methods (e.g. combining application models with machine

profiles [7], [22], [25], analytical models [2], [6], [29],

statistical models [4], hybrid analytical and statistical meth-

ods [8], historical data [16], data mining methods [16], [21],

queuing theory [27], partial program executions [28], simu-

lation [24], and skeleton [23]). Similarly, the performance of

full applications has been analytically modelled in [14], [17].

Numerous efforts use [16] machine learning to predict task

execution times, the effects of compiler transformations [10],

schedulingand the performance of networks.

In terms of energy modeling, technologies such as Intel

Speedstep and AMD CoolnQuiet / PowerNow involve scal-

ing the operational frequency and voltage of processors. The

ACPI standard (http://www.acpi.info) defines a set of power

states for subsystems to facilitate this. [1], [9] explored

power saving strategies on specific scientific workloads like

matrix multiplication and LU factorization.

Although many works focus on estimating energy con-

sumption of systems [5], [11], [15], [26], there are a very

few works that focus exclusively on estimating the energy

consumption of OpenMP applications in compilers.

III. ENERGY PREDICTION MECHANISM

This Section explains the need for an energy prediction

mechanism for recent architectures and it explains the pro-

posed energy prediction architecture for compilers.

A. Need for Energy Prediction Mechanism

On the path to exa-scale computing, a need for devel-

oping energy tuning mechanisms has emerged recently. To

illustrate, the Department of Energy, US, has planned to

reduce the energy consumption of exa-scale systems to 20

MW by 2022 [18]. In order to achieve this goal, several

energy reduction mechanisms were proposed at various

levels of computing systems by various researchers. For

instance, energy reduction techniques that are practiced at

the application level are discussed in [20].

Applying energy tuning mechanisms over a preferably

large optimization search space, which emerges due to

various factors, such as, number of cores used, behavior

of applications, performance concern of applications, and

so forth, could lead to a hectic overhead and thereby to

an unprecedented consumption of energy. Thus, the energy

tuning mechanism could effectively be eased if a suitable

energy prediction mechanism was accomplished so that

executing every possible solution of the optimization search

space could be avoided.

A few approaches how models could remarkably assist

auto-tuning tools is described below:

1) Finding Optimal Problem Size: Solving an application

using an optimal problem size could improve the per-

formance of an application. However, finding an optimal

problem size for OpenMP applications might lead to various

execution requirements if an exhaustive search mechanism

is applied to the process. In most cases, the problem size of

an application is reflected in the iterative parts of its code in

terms of application parameters. Modeling based solutions

could assist user in finding an optimal problem size for an

application.

2) Finding Optimal Hardware Resource: An application

scales only if the algorithm is capable of scaling well. In fact,

most HPC applications are restricted to a limited number

of processors or threads. Finding an optimal combination

of number of threads or cores for OpenMP applications

can become a challenging task when exa-scale applications

are considered - ie., exa-scale applications would require

thousands to tens of thousands of cores. Training a few sets

of combinations of processes and threads for an application

could be utilized to predict the other few combinations of

processes and threads while finding an optimal hardware

resource setup.

3) Finding Optimal CPU Frequency: CPU frequencies

are controlled in modern architectures. Each core of a

machine could work in different possible CPU frequencies

as specified by the user or OS. The code regions of OpenMP

applications are either parallel or sequential. If the code

regions of OpenMP applications are coarsely granular, CPU

frequencies of cores could be elegantly altered so that the

energy consumption of the application becomes minimal.

Finding an optimal CPU frequency of cores while running

applications could be effected using energy models.

4) Finding Optimal Code Variants: In addition to several

energy optimal solutions, an HPC application could be tuned

by applying various traditional code optimization techniques,

such as, loop fusion, loop unrolling, scalar replacement, tail

call reduction, and so forth in compilers. As code optimiza-

tion techniques are massive solutions when applied to the

application-as-a-whole, it is advisable to prefer modeling

approaches while finding an optimal code variant option in

an application.

B. Energy Prediction Architecture for Compilers

The proposed architecture has the capability of predicting

the energy consumption of OpenMP code variants using

RFM modeling approach in compilers. The processes in-

volved while predicting the energy consumption of OpenMP

applications for compilers are expressed in five steps as

follows:

1) OpenMP-based parallel applications are given as input

to the analyzer entity of the Insieme compiler [19]

which does the initial analysis of applications in terms

of parallelism and code regions and various other

factors.

2) The identified code regions are handed to the optimizer

entity of compiler in order to find the energy optimal

solution considering performance concerns of the code

and the underlying machine characteristics.

Figure 1. Energy Prediction Architecture for Compilers

3) In order to find the energy optimal solution, the

optimizer prepares a list of configurations and submits

them to the proposed RFM-based energy prediction

mechanism.

4) The role of the RFM prediction processes is to split

the list of available configuration settings into the

training and testing dataset. The list of configura-

tions in the training dataset, the list of the various

problem sizes of OpenMP applications, is executed

on the underlying parallel machines. Subsequently,

the performance values of code regions due to the

corresponding configuration setting are entered as a

training dataset. This includes energy consumption

values in joules, memory hierarchy issues, execution

time, total number of instructions, and so forth. Having

the performance values in the training dataset, RFM

is applied for constructing RFTrees. Later, the energy

consumption values of testing dataset are predicted

using RFM.

5) The predicted energy consumption values gotten from

RFM, in addition to the energy consumption values

of the training dataset, are fed to the optimizer of

compilers. Later on, the optimizer would provide the

best solutions to the backend and thereby to the

runtime system.

IV. RFM MECHANISM

As discussed in Section III, prediction based on modeling

assists autotuning tools or application developers while

predicting an energy optimal solution amongst a larger

optimization search space. The prediction could be done

either as a regression approach or a classification approach.

This paper discusses the application of RFM based en-

ergy prediction mechanism using regression approach for

predicting the energy consumption of OpenMP applications

during the process of selecting an optimal problem size.

This section, hence, discusses the basics of modeling, the

RFM algorithm, and the regression-based RFM prediction

approach.

Figure 2. Model Development Processes

A. Modeling Basics

In general, a model is a quantifying system that mimics

a real-life situation in terms of mathematical expressions; it

could be used for predicting future events or for understand-

ing the current situations.

The three most important variables used in a modeling

process are i) dependent variable or response variable or

outcome variable, ii) independent variable, and iii) the other

variable. A dependent variable could be realized as a variable

which is required to get an answer after prediction; an

independent variable is a variable that directly influences

the dependent variable during the process of prediction; the

other variables, e.g., coefficient variables or weights, are the

variables which do nothing with real experiments. However,

these variables could heavily influence the modeling out-

come in terms of prediction results or goodness of fit.

A model development process has four step-wise activities

as shown in Figure 2:

1) Understand Real Situation: Understanding a contex-

tual situation where modeling should be applied leads

to questioning the real working scenario. For instance,

what would be an optimal problem size if a matrix

multiplication application should be energy efficient

is an initial step for understanding the real working

scenario.

2) Framing Real Model: In this step, a few statements are

framed and a set of variables that probably drive the

scenario are identified based on the real world contex-

tual situation. This step would remain as a preliminary

stage for developing a mathematical model.

3) Framing Mathematical Model: Considering the state-

ments that are framed in the previous step of the

model development, pseudo-mathematical expressions

are designed by quantifying the statements with the

identified variables. Suitable techniques, such as, prob-

ability, statistics, heuristics, or so forth, could be

adopted in this step. Thus, this step, finally, provides

a set of mathematical expressions which relate the

identified variables and which become solvable.

4) Results and Evaluation: In the final step of the model

development process, results that are emerging out

of the modeling techniques are evaluated with the

original question that were a driving force for under-

standing the real situation in the first step of the model

development process. In fact, the results could be used

to evaluate the modeling techniques or to evaluate the

range of values applied to each variables of the math-

ematical expressions. In addition, the assumptions, if

any, levied while framing mathematical expressions

may also be analyzed at this step.

B. RFM Prediction Approach

RFM is a tree based modeling technique that reduces the

variance of an estimated prediction function; it embodies

an ensemble learning method; it is a modification of a

bagging technique; and, it builds a large collection of de-

correlated trees during the process of prediction by reducing

the correlation between the trees. The success of RFM relies

much on its averaging capability.

1) RFM Algorithm: RFM algorithm, in terms of regres-

sion analysis, is illustrated in Algorithm 1. As shown, the

experimental data having variables and values, the training

dataset, are given as an input dataset to the model. Then,

the model constructs Random Forest trees (RFTrees).

The processes involved in modeling the training data set

could be represented as follows:

1) Bagging Process: During this process, bootstrap sam-

ples of size N are drawn from the available training set.

Later, RFTrees are grown by recursively following the

steps, such as, i) selecting m variables from p available

variables in the training dataset, ii) electing the best

variable which would be used as a split determination

point while constructing the trees, iii) splitting the

nodes into two sibling nodes, and iv) ensuring the

creation of RFTrees.

2) Ensembling process: Ensembling process in RFM is

a sort of creating sense out of the created bags of

RFTrees during the bagging process of RFM.

Algorithm 1 RFM Algorithm

Require: Training Data← on experiments

Require: Bagging Process

For B Bags

1. F rame a bootstrap sample of size N using

training data

2. Grow RFTrees

2.1 Select m variables out of p variables for each

data set

2.2 Elect the best variable ie. a split point in the

node

2.3 Split the node to two sibbling nodes

Ensure: 2.4 Ensure RFTrees are created

Require: Ensembling Process

Output ensemble of trees RFTreesB
1

print Modeling Result

2) RFM Regression-based Prediction Approach: Once

when the model is created based on the training dataset,

prediction of a dependent variable, mostly the expected

question to be solved for a problem f(x), could be achieved

based on a RFM regression mechanism (see Algorithm 2).

The prediction mechanism is applied to the testing dataset,

which can be either a single testing data or a set of testing

data.

The idea behind the RFM prediction mechanism is to

average the noisy RFTrees which consequently could reduce

the variances of bagging.

Algorithm 2 RFM Regression-based Prediction Mechanism

Require: Testing Data

Require: Regression− based Prediction Process

Calculatef(x) = 1

B

∑
bags=1toB RFTreesbags(x)

print Predicted V alues

3) Model Validation Parameters: RFM is validated in

terms of R2 and Mean Square Error (MSE). R2 is a measure

of goodness of fit of RFM regression. Theoretically, the R2

value lies between 0 and 1; it has no units; 1 means the

predicted values are perfectly related to independent vari-

ables - resulting in good prediction; 0 means the predicted

values are not related to independent variables - resulting in

poor prediction. MSE is used to measure the average of the

squares of errors which incorporates the variance of RFM

predictor and its bias.

V. EXPERIMENTAL RESULTS

Experiments were conducted to study the application of

RFM mechanism for predicting the energy consumption of

the variants of OpenMP applications.

A. Experimental Setup

In this study, predicting the energy consumption of ap-

plications, such as, NAS benchmarks, n-body simulations,

stencil computations, and a matrix-multiplication applica-

tion, was revealed when different problem sizes S were con-

sidered. It should be noticed that a similar procedure could

be applied for predicting the other energy optimal solutions

which were discussed in Section III. The performance data,

including energy measurements, were remotely measured

on the Thomson machine of the University of Innsbruck,

Austria, and the RFM-based energy prediction mechanism

was remotely tested from the HPCCLoud Research Labora-

tory [13], India. The target hardware, Thomson, is a shared

memory node equipped with four Intel Xeon E5-4650 Sandy

Bridge EP processors, each offering 8 cores clocked at 2.7

GHz and featuring core-private L1 and L2 caches of 64 KB

and 256 KB, in addition to a CPU-wide shared cache of 20

MB. The system provides 128 GB of main memory and runs

a Linux-based operating system with kernel version 3.5.0.

We rely on Intel RAPL to obtain energy consumption data

since it offers an internal sampling rate of approximately

1 KHz and a value resolution of 15.3 microjoules. Recent

related work has shown RAPL to be accurate enough for our

use case [12], and samples are read at least every 30 seconds

to capture any register overflows. In addition, we measure

time via the rdtsc x86 instruction, and employ PAPI to

count hardware events that are to be used for modeling.

B. Performance Data and Modeling Dataset

The training and testing dataset, which were required for

undergoing RFM modeling and verification process, were

obtained by executing the applications on the Thomson

machine.

The experimentation was carried out for the different

problem sizes S of applications and the performance data

were observed for the corresponding experiments. The prob-

lem sizes (see Table I) of applications were chosen based

on the nature of the applications as given below:

1) In the matrix multiplication application, the problem

size, S=1098, represents 1098 x 1098 matrix multipli-

cations. In n body simulations, the number of particles

’Np’ parameter was considered for representing the

problem size S.

2) In the stencil application, S=1401 represents unique

problem sizes considering two varying parameters of

the application, namely, size of matrices and size of

stencils (SIZE N vs. STENCIL SIZE). The parame-

ters were selected with some specific conditions: i)

both the parameters should have odd numbers and

ii) the STENCIL SIZE parameter should have values

that are less than half the value of SIZE N param-

eter. Thus, experiments were conducted accordingly.

For example, we experimented the application with

parameter values (7,3), (9,3), (11,3), and so forth while

uniquely naming the problem size as S=1, 2, 3, and

so forth.

3) In the NAS-BT benchmark, S=1728 represents

problem sizes which are the combinations of

L PROBLEMSIZE x M PROBLEMSIZE x

N PROBLEMSIZE parameters. These parameter

values are fed to the grid points of the benchmark

via. the npbparam.h file of BT. We modified the

input.bt file of BT to ensure that the problem size

varied from 1x1x1 (S=1) to 12x12x12 (S=1728) -

each combination having one unique problem size.

4) In the NAS-CG benchmark, S=6017 was chosen based

on the parameter ’NA’ of the benchmark. It was

noticed that the ’NA’ parameter was responsible for

varying the problem sizes of the application. However,

the benchmark could not be experimented with a lower

NA values. Thus, the experiments were conducted

with NA=100 to NA=6116. This means that S=1 was

assigned for NA=100 and S=6016 for NA=6116.

5) Similarly, each OpenMP application had various influ-

encing parameters which clouted the problem size S -

NAS-EP had an M variable; NAS-FT had NX, NY, and

NZ variables; NAS-LU had ISIZ1, ISIZ2, and ISIZ3;

NAS-MG had NX DEFAULT, NY DEFAULT, and

NZ DEFAULT; and NAS-SP had a PROBLEM SIZE

parameter. Thus, experiments were conducted for dif-

ferent problem sizes of applications.

At the end of the experiments, performance values

of eight variables, namely, cpu energy, problem size,

PAPI TOT INS, wall time, cpu time, PAPI L1 DCM,

PAPI L3 TCM, and PAPI FP OPS were observed for the

experiments. Throughout the experiments, cpu energy was

kept as dependent variable and the others were considered

as independent variables during the RFM modeling process.

The observed experimental results were fragmented into two

parts, namely, training dataset and testing dataset.

C. RFM Modeling Results

RFM modeling was applied to the training dataset of

observed performance data in order to predict the energy

consumption of the testing dataset of OpenMP applications

under consideration.

RFM modeling was studied in various directions as fol-

lows:

1) Energy prediction of OpenMP Applications’ Testing

Dataset

2) Influence of Number of RFTrees in RFM

3) Influence of Independent variables in RFM

4) Influence of the proportion of training datasets in RFM

1) Energy Prediction and Results: With 50 percent per-

formance data kept as training dataset and the other kept

as testing dataset, RFM was applied to model the energy

consumption of the different problem sizes of OpenMP

Table I
CHOSEN PROBLEM SIZES, TRAINING DATASET, ENERGY VARIATIONS,

AND THE OBTAINED R
2 VALUES FOR OPENMP APPLICATIONS

OpenMP Energy Problem Training vs. R
2

Applications Variation (joules) Size Testing in %

Matrix 0 - 111.397 1000 500 vs. 500 99.92

n-Body 0.4517 - 95.925 1000 500 vs. 500 99.99

stencil 0.39 - 47467 1401 700 vs. 701 99.86

NAS-BT 0.0660 - 3.28 1728 864 vs. 864 98.6

NAS-CG 122.4 - 200.5 6017 3008 vs. 3008 95.62

NAS-FT 1.678 - 2.669 1331 665 vs. 666 81.41

NAS-LU 41.71 - 38098 101 50 vs. 51 98.72

NAS-MG 11.18 - 9767.48 893 446 vs. 447 99.94

NAS-SP 573.4 - 137510 70 35 vs. 35 98.93

applications based on the other seven performance values.

Later, the testing data were used to predict the energy

consumption of the remaining code variants of applications.

RFM modeling for the OpenMP applications were consid-

ered using RFTrees=100 and m = 5. The chosen problem

sizes, numbers of data used in the training and testing

datasets, energy variations of the training dataset which

should be fed to the RFM modeling, and the obtained R2

values are shown in Table I. Similarly, Figure 3 and 4 show

the observed (represented as dots) and predicted (represented

as lines) energy consumption values of the training and

testing datasets. From the figures, it could be observed

that the energy consumption values of matrix, n body,

NAS-LU, NAS-MG, and NAS-SP applications gradually

increased with the increasing problem sizes. In stencil ap-

plication, the STENCIL SIZE parameter of the application

varied from minimal to SIZE N/2 values for each SIZE N

parameter value. Thus, the energy consumption value of

this application jumped from low to high for each prob-

lem size ’S’. In NAS-BT, the energy consumption val-

ues increased from 1x1x1 (S=1) combination to 12x12x12

(S=1728) combination of parameters (L PROBLEMSIZE x

M PROBLEMSIZE x N PROBLEMSIZE). This showed a

stepwise increase in the energy consumption value for each

increase in the L PROBLEMSIZE parameter value.

It could be noticed from the figures (3 and 4) and

Table I that the energy consumptions of the testing data

were predicted almost accurately with R2 as 0.998 for most

of the applications. However, a few applications, such as,

NAS-FT and NAS-SP had lesser R2 value as the training

data had diverse energy consumption values.

2) Influence of Number of RFTrees in RFM: Having the

number of RFTrees in the range of 50 to 100, RFM showed

an abundant convergence of energy modeling results for

applications. However, it was observed that RFM showed

no greater improvements when the number of RFtrees were

increased. In addition, while selecting a larger number

of RFTrees, the computation time increased tremendously

(see Table II for Matrix Multiplication application). Thus,

Table II
INFLUENCE OF THE NUMBER OF RFTREES IN MODELING RESULTS

RFTrees MSE Computation Time

(m=2)

1 7.800 0.3869

5 3.5 0.3992

10 2.47 0.407

15 2.38 0.428

20 1.85 0.4316

25 1.90 0.435

35 1.88 0.456

45 1.69 0.413

55 1.538 0.502

65 1.66 0.52

90 1.715 0.59

100 1.89 0.6

1000 1.705 2.496

10000 1.65 20.13

the number of RFTrees used in RFM modeling heavily

influenced the energy modeling results.

3) Influence of Independent Variables: Independent vari-

ables play a major role during the bagging process of RFM

modeling. As discussed in subsection V-C2, the energy

consumption value, the value of the dependent variable, was

modeled when all other variables were used as independent

variables. The details about the dependent and independent

variables are discussed in section V-B.

It was interesting enough to understand the influence of

independent variables. To do so, the following experiments

were conducted:

1) Varying the number of independent variables that was

used while splitting the nodes in RFM during the

bagging process of RFM, and

2) Removing some specific independent variables

Varying Independent Variables: RFM uses a set of

independent variables, m variables out of p variables, while

splitting the RFTrees (see section IV-B1). Based on the

number of independent variables used while splitting the

RFTrees, the RFM had differences in modeling results. As

shown in Table III, it could be observed that RFM showed

poor results if either a minimal set of independent variables

were chosen or a maximal set of independent variables were

chosen while splitting RFTrees for a matrix multiplication

application. In the experiments, it was noticed that RFM

had revealed better results when m = 5 and p = 7 for the

applications except for NAS-Stencil application, where the

better results were obtained when m = 2 and p = 7 (MSE

was 12.81 for m = 2 and 16.74 for m = 5).

Fixing m = 5 during the RFTree creation process, the

number of trees were increased from 55 to 100, 1000,

and 10000. It was observed that MSE of RFM was grad-

ually improving while challenging the computation time.

For instances, NAS-CG application showed an additional

142.53 seconds of computation time when moved from

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●● ● ●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

●●
●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●
●

●

●

●●

●

●
●

●

●

●

●●

●

● ●●

0 200 400 600 800 1000

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

Problem Size

E
n

e
rg

y
 i
n

 J
o

u
le

s

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

0 200 400 600 800 1000

0
2

0
4

0
6

0
8

0

Problem Size

E
n

e
rg

y
 i
n

 J
o

u
le

s

● ●
● ●

●

●
●

●● ●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●
●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

● ●
●● ●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

● ● ●

●

●

●

● ●

●

● ● ●

●

●

●
●

●

● ●●

●
●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●

●● ●

●

●

● ● ●●

●

● ●● ●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

● ● ●●●●

●

●

●

●●

●
●

●

●

●

● ●

●

● ●

●

●

●

●

●

●●● ● ●

●

●

●

●
● ●

●

●● ●

●
●

●
●

●● ●●

●

●

● ● ●● ●●

●

●●● ●● ● ●●

●

● ●

●

●●● ●

●

● ●

●

●● ●

●

●

●

●

●●

●

● ●
●

●●●●

●

●

●

●
●

●

●

●

●

●

●●
●

● ●
● ●

●

●

●

●
●

● ● ● ●

●

● ●
●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

● ●● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

● ●
● ●●

●

●

●

● ●●
●

●● ●● ●

●

●

●
●

●

●

●● ● ●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●● ●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●●●

0 200 400 600 800 1000 1200 1400

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0

Problem Size

E
n

e
rg

y
 i
n

 J
o

u
le

s

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 500 1000 1500

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Problem Size

E
n

e
rg

y
 i
n

 J
o

u
le

s

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

● ●

●
●● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

0 1000 2000 3000 4000 5000 6000

1
2

0
1

4
0

1
6

0
1

8
0

2
0

0

Problem Size

E
n

e
rg

y
 i
n

 J
o

u
le

s

● ●● ●●●

●

●

● ● ● ●● ●●● ● ● ●

5 10 15 20 25 30 35

0
4

0
0

0
0

8
0

0
0

0
1

2
0

0
0

0

Problem Size

E
n

e
rg

y
 i
n

 J
o

u
le

s

Figure 3. Energy Prediction of OpenMP Applications - Matrix (top left), n body (top right), stencil, NAS BT, NAS CG (bottom left) and NAS EP
(bottom right)

Table III
RFM RESULTS DUE TO NUMBER OF INDEPENDENT VARIABLES TRIED

AT EACH SPLIT OF RFTREES FOR MATRIX MULTIPLICATION

APPLICATION

Number of m variable MSE

(RFTrees=55)

1 4.21

2 0.98

3 0.77

4 0.789

5 0.663

6 0.79

7 0.78

RFTrees=1000 to RFTrees=10000; NAS-FT had an addi-

tional 25.3 seconds of computation time; and the matrix

multiplication application had 0.6096, 0.65, and 0.6739 MSE

values with the corresponding computation times as 0.718,

3.64, and 31.56 seconds when the RFTrees were 100, 1000,

and 10000. Thus, it could be concluded that RFM provided

better results when RFTrees=100 and m=5 while considering

the computation time and MSE values of RFM.

Removing Independent Variables: Diving further down

to understand if any improvements were happened in RFM

results while removing the independent variables and its

corresponding values, it was noticed that removing certain

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●●

● ●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 200 400 600 800 1000 1200

1
.8

2
.0

2
.2

2
.4

2
.6

Problem Size

E
n

e
rg

y
 i
n

 J
o

u
le

s

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20 40 60 80 100

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

Problem Size

E
n

e
rg

y
 i
n

 J
o

u
le

s

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 200 400 600 800

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0
1

0
0

0
0

Problem Size

E
n

e
rg

y
 i
n

 J
o

u
le

s

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50 60 70

0
2

0
0

0
0

6
0

0
0

0
1

0
0

0
0

0
1

4
0

0
0

0

Problem Size

E
n

e
rg

y
 i
n

 J
o

u
le

s

Figure 4. Energy Prediction of OpenMP Applications (contd.)- NAS FT (top left), NAS LU (top right), NAS MG (bottom left), and NAS SP (bottom
right)

independent variables showed reasonably better results -

for instance, removing PAPI TOT INS and wall time when

m = 5 and RFTrees=100 were used in RFM modeling

resulted in MSE=0.607 for the Matrix Multiplication ap-

plication. Table IV shows the most influenced independent

variable for applications while pursuing with RFM model-

ing.

In Figure 5, MSE of RFM and the computation time

are represented in the matrix form - the upper diagonal

represents MSE and the lower diagonal represents the com-

putation time. The first row of the matrix shows the resultant

value when independent variables IV1-IV2, IV1-IV3, and so

forth, were removed: IV1 represents problem size, IV2 rep-

resents PAPI TOT INS, IV3 represents wall time, IV4 rep-

resents cpu time, IV5 represents PAPI L1 DCM, IV6 rep-

resents PAPI L3 TCM, and IV7 represents PAPI FP OPS.

As m=5 and RFTrees=100 showed better RFM results

in our experiments, we fixed the number of independent

variables as 5. Thus, the other two variables were removed

and the RFM modeling tests were conducted.

Figure 5. Influence of Removing Independent Variables

4) Influence of the Proportion of Training Dataset:

Changing the proportion of training dataset while perform-

ing RFM modeling of OpenMP applications varied RFM

Table IV
THE MOST INFLUENCED INDEPENDENT VARIABLE ON APPLICATIONS

OpenMP wall time cpu time PAPI TOT INS PAPI FP OPS PAPI L1 DCM problem size PAPI L3 TCM

Applications

Matrix **

n-Body **

stencil **

NAS-BT **

NAS-CG **

NAS-FT **

NAS-LU **

NAS-MG **

NAS-SP **

Figure 6. Computation Time for Different Proportion of Training vs.
Testing DataSet

modeling results for OpenMP applications. To illustrate the

case, the training and testing datasets of Matrix Multiplica-

tion application were partitioned from the total number of

performance dataset (1096) into 10 different cases - ie., 548

vs 548, 365 vs 731, and so forth (see Figure 7).

It was observed on experiments that the computation time

of RFM modeling was minimal when the number of obser-

vations in the training dataset was less. However, it increased

vice-versa in addition to having contradictory results in MSE

of RFM. For instance, see Figure 7 - the value of MSE

increased abruptly in latter cases. In the experiments, it

was identified that the MSE value was minimal when 50

percentage of training and 50 percentage of testing data are

used (ie., the first case of our experiments produced better

results) from the available performance dataset.

In addition, it was observed that increasing the number of

RFTrees would become an advantage to MSE calculations,

especially when the number of observations of the training

dataset is minimal. This could be noticed in the latter test

cases (see Figure 7) although there were no remarkably

higher reduction in the MSE value.

Figure 7. MSE for Different Proportion of Training vs. Testing DataSet

VI. CONCLUSION

This paper described the energy prediction mechanism

of OpenMP applications using Random Forest Modeling

approach for compilers. The proposed approach was vali-

dated using applications, such as, NAS benchmarks, matrix

multiplication, stencil codes, and n body simulations. In ad-

dition, the proposed RFM approach was studied by varying

RFTrees, independent variables, and varying proportion of

training datasets. From the experiments, it was observed that

RFM predicted the applications almost accurately with R2

as 0.998 for most of the applications.

ACKNOWLEDGMENT

This project was funded by the Indo-Austrian project

- DST No:INT/AUA/FWF/P-02/2013 and FWF Austrian

Science Fund No:I1523.

REFERENCES

[1] P. Alonso, M. F. Dolz, F. D. Igual, R. Mayo and E. S.
Quintana-Orti, ”Saving Energy in the LU Factorization with
Partial Pivoting on Multi-core Processors,” in Int. Conf. on
Parallel, Distributed and Network-based Processing, Garch-
ing, 2012.

[2] D. A. Bacigalupo, S. A. Jarvis, L. He, D. P. Spooner, D.
N. Dillenberger and G. R. Nudd, ”An Investigation into the
Application of Different Performance Prediction Methods to
Distributed Enterprise Applications,” JoS, vol. 34, no. 2, 2005.

[3] Barbara Chapman Gabriele Jost, Ruud Van De Pas, Using
OpenMP - Portable Shared Memory Parallel Programming
(Scientific and Engineering Computation), MIT Press, 2007.

[4] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. de
Supinski and M. Schulz, ”A regression- based approach to
scalability prediction,” in 22nd ICS08, 2008.

[5] R. Basmadjian, N. Ali, F. Niedermeier, H. de Meer and G.
Giuliani, ”A Methodology to Predict the Power Consumption
of Servers in Data Centres,” 2nd International Conference on
Energy-Efficient Computing and Networking, pp. 1-10, 2011.

[6] J. Brehm and P. Worley, ”Performance Prediction for Com-
plex Parallel Applications,” in 11th International Symposium
on Parallel Processing, 1997.

[7] J. Cao, S. A. Jarvis, D. P. Spoon, J. D. Turner, D. J. Kerbyson
and G. R. Nudd, ”Performance Prediction Technology for
Agent-Based Resource Management in Grid Environments,”
in 16th International Parallel and Distributed Processing Sym-
posium, Washington, DC, USA, 2002.

[8] L. Carrington, A. Snavely and N. Wolter, ”A performance
prediction framework for scientific applications,” Future Gen-
eration Computer Systems, vol. 22, no. 3, February 2006.

[9] M. Castillo, J. C. Fernandes, R. Mayo, E. S. Quintana-
Orti and V. Roca, ”Analysis of strategies to save energy for
message-passing linear algebra kernels,” in 20th International
Euromicro Conference on Parallel, Distributed and Network-
based Processing, Garching, 2012.

[10] C. Dubach, J. Cavazos, B. Franke, G. Fursin and M. F. P.
O’Boyle, ”Fast compiler optimisation evaluation using code-
feature based performance prediction,” in 4th International
Conference on Computing Frontiers, 2007.

[11] A. Gandhi, M. Harchol-Balter, R. Das and C. Lefurgy, ”Op-
timal power allocation in server farms,” 11th International
Joint Conference on Measurement and Modeling of Computer
Systems, pp. 157- 168, 2009.

[12] M. Hähnel, B. Döbel, M. Völp, and H. Härtig, ”Measuring
energy consumption for short code paths using RAPL,” ACM
SIGMETRICS Performance Evaluation Review, vol. 40, no.
3, pp. 13–17, 2012.

[13] HPCCLoud Research Laboratory, http://www.sxcce.edu.in/
hpccloud/, accessed in 2014.

[14] K.-H. Kim and C. A. Ellis, ”Performance Analytic Models
and Analyses for Workflow Architectures,” Information Sys-
tems Fronteers, vol. 3, no. 3, pp. 339-355, 2001.

[15] J. Kim, M. Ruggiero and D. Atienza, ”Free Cooling-aware
Dynamic Power Management for Green Datacenters,” 2012
International Conference on High Performance Computing
and Simulation, pp. 140-146, 2012.

[16] H. Li, D. Groep, J. Templon and L. Wolters, ”Predicting
Job Start Times on Clusters,” in International Symposium on
Cluster Comp. and the Grid, 2004.

[17] J. Li, Y. Fan and M. Zhou, ”Performance modeling and
analysis of workflow,” IEEE Transactions on Systems, Man
and Cybernetics, Part A: Systems and Humans, vol. 34, no.
2, pp. 229-242, March 2004.

[18] Patrick Thibodeau, Exascale Computing Seen in
this Decade, http://www.itworldcanada.com/article/
exascale-computing-seen-in-this-decade/45058, accessed
in Dec 2014.

[19] Philipp Gschwandtner, Juan J. Durillo, Thomas Fahringer,
Multi-Objective Auto-Tuning with Insieme: Optimization and
Trade-Off Analysis for Time, Energy and Resource Usage,
EuroPar 2014, pp. 87-98, 2014.

[20] Shajulin Benedict, Application of Energy Reduction
Techniques using Niched Pareto GA of EnergyAnalzyer
for HPC Applications’, in 7th IEEE IC3 2014,
http://dx.doi.org/10.1109/IC3.2014.6897234, 2014.

[21] W. Smith, I. Foster and V. Taylor, ”Predicting application run
times with historical information,” JPDC, vol. 64, no. 9, pp.
1007-1016, September 2004.

[22] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia and
A. Purkayastha, ”A framework for performance modeling and
prediction,” in Supercomputing Conference, 2002.

[23] S. Sodhi, J. Subhlok and Q. Xu, ”Performance prediction with
skeletons,” Cluster Comp., vol. 11, no. 2, pp. 151-165, 2008.

[24] R. Susukita, H. Ando, M. Aoyagi, H. Honda, Y. Inadomi, K.
Inoue, S. Ishizuki, Y. Kimura, H. Komatsu, M. Kurokawa,
K. J. Murakami, H. Shibamura, S. Yamamura and Y. Yu,
”Performance prediction of large-scale parallell system and
application using macro-level simulation,” in Supercomputing
Conference, 2008.

[25] V. Taylor, X. Wu, J. Geisler and R. Stevens, ”Using Kernel
Couplings to Predict Parallel Application Performance,” in
11th IEEE International Symposium on High Performance
Distributed Computing, Washington, DC, USA, 2002.

[26] G. Wen, J. Hong, C. Z. Xu, P. Balaji, S. Feng and P. Jiang,
”Energy-aware Hierarchical Scheduling of applications in
Large Scale Data Centers,” International Conference on Cloud
and Service Computing, pp. 158-165, 2011.

[27] Y. Wu, L. Liu, J. Mao, G. Yang and W. Zheng, ”An analytical
model for performance evaluation in a computational grid,”
in 3rd workshop on High performance computing in China,
2007.

[28] L. T. Yang, X. Ma and F. Mueller, ”Cross-Platform Per-
formance Prediction of Parallel Applications Using Partial
Execution,” in Supercomputing, 2005.

[29] E. J. H. Yero and M. A. A. Henriques, ”Contention-sensitive
static performance prediction for parallel distributed applica-
tions,” Performance Evaluation, vol. 63, no. 4, pp. 265-277,
May 2006.

