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SUMMARY

Task parallelism is a programming technique that has been shown to be applicable in a wide variety of
problem domains. A central parameter that needs to be controlled to ensure efficient execution of task-
parallel programs is the granularity of tasks. When they are too coarse-grained, scalability and load balance
suffer, while very fine-grained tasks introduce execution overheads.
We present a combined compiler and runtime approach that enables automatic granularity control. Starting
from recursive, task parallel programs, our compiler generates multiple versions of each task, increasing
granularity by task unrolling. Subsequently, we apply a parallelism-aware optimizing transformation to
remove superfluous task synchronization primitives in all generated versions. A runtime system then selects
among these task versions of varying granularity by locally tracking task demand.
Benchmarking on a set of task parallel programs using a work-stealing scheduler demonstrates that
our approach is generally effective. For fine-grained tasks, we can achieve reductions in execution time
exceeding a factor of 6, compared to state-of-the-art implementations. Additionally, we evaluate the impact
of two crucial algorithmic parameters, the number of generated code versions and the task queue length, on
the performance of our method. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Task-based parallelism is one of the most fundamental parallel abstractions in common use today
[1]. While relatively easy to implement and use, achieving good efficiency and scalability with
task parallelism can be challenging. A central feature of every task-based parallel program that
significantly affects both efficiency and scalability is task granularity [2]. The granularity of tasks
is defined by the length of the execution time of a single task between interactions with the runtime
system, such as spawning new tasks.

Very fine-grained, short-running tasks lead to a loss in efficiency compared to sequential
execution due to the runtime overhead associated with generating and launching a task, as well
as synchronizing its completion with other tasks in the system. On the other hand, coarse-grained,
long-running tasks minimize overhead, but are hard to schedule effectively and may therefore fail
to scale well on large parallel systems. Previous work in this area has focused mostly on runtime
systems or user-controlled cutoffs to manage granularity (see Section 5). Conversely, we propose an
approach that combines a multiversioning compiler with a runtime system which adaptively selects
from the generated versions. Our goal is to maximize efficiency by increasing task granularity – and
thus decreasing overheads – without negatively affecting load balance or scalability.

We implemented our method for OpenMP [3] tasks within the Insieme compiler and runtime
system [4], but the idea is equally applicable to any other task parallel language. Our concrete
contributions are the following:
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Figure 1. Initial Experiments, N-Queens N = 13.

• A compile-time multiversioning transformation that generates a set of task implementations
of increasing granularity by recursive task unrolling. This transformation is applicable to both
simple recursion and N -ary mutual recursion.

• A compiler transformation removing superfluous synchronization statements in unrolled
recursive task parallel programs.

• A runtime heuristic for the dynamic adaptation of granularity based on the concept of task
demand, which automatically choses the code version to execute at each task spawning point.

• Evaluation and analysis of the performance of our method on a number of well-known
task parallel benchmarks. We compare with other OpenMP implementations, our own
implementation without the multiversioning optimization and Cilk [5] versions which
represent the state of the art in fine-grained task parallelism.

This paper improves upon and extends work previously presented by the authors [6], formalizing
the description of the compiler transformations used and evaluating the impact of various compile-
time and runtime algorithmic parameters on the performance of the presented method. Furthermore,
the behaviour of our runtime task selection heuristic is investigated in detail.

The remainder of this paper is structured as follows. In Section 2 we provide some initial results
that motivated our work. We then describe our method in detail in Section 3 and evaluate its
performance as well as the impact of various compile-time parameters in Section 4, followed by
an overview of related work in Section 5. Finally, Section 6 summarizes and concludes our findings.

2. MOTIVATION

In this section we present some initial benchmark results that motivate our multiversioning method.
Figure 1(a) shows single-threaded execution times measured for the Barcelona OpenMP Tasks Suite
(BOTS) [7] N-Queens benchmark with N = 13. For details on the hardware, compiler versions and
programs used refer to Section 4.

The lowest execution time amongst the OpenMP versions is achieved by our compiler and runtime
system (Insieme), however, this time is still 28% higher than purely sequential execution. Even
the Cilk version, while more efficient than any OpenMP implementation, is 19% slower than the
sequential version. Our multiversioning method is designed to address this inefficiency. Throughout
this paper, when we refer to inefficient execution, we mean execution with a single thread which
takes longer than executing purely sequential code, or, for multiple threads, longer than starting
from the sequential time and assuming perfect scaling (that is a speedup of N with N cores and
threads in hardware).

Note that the OpenMP runtime systems of ICC [8] and GCC [9] perform special case handling
when only a single worker thread is used. This is visible in Figure 1(b), which shows their
performance degrading when switching from one to two threads. Further experiments in Section 4
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confirm this behavior, with scaling starting after some initial performance degradation when
activating multi-threaded execution. The OpenMP version compiled with Insieme and the Cilk
version do not suffer from this issue, however they still induce a relative overhead of about 20%
compared to ideal linear scaling from the sequential version. We identified the following potential
causes for this inefficiency:

1. Task generation overhead. This includes generating a task structure, populating it with values
and enqueuing it. The overhead of this operation depends on the amount of private data each
task requires.

2. Synchronization primitive overhead (e.g. taskwait). At the very least, this involves keeping
track of all the subtasks launched by each task, and signaling when they are complete.

3. Task library calls. The runtime methods required for tasking are generally implemented in
a separate library, and the overhead for their invocation is incurred even if they perform no
actual work.

4. Non-inlineable, indirect program function calls. Since the program function implementing a
given task needs to be called by the tasking library, a pointer to it is usually passed to the
library function. Even if the runtime library decides to directly execute the call, this prevents
the benefits – improved instruction scheduling and a reduction in overhead – associated with
inlining.

Issues 1 and 2 can be mitigated by a pure runtime approach, e.g. the runtime library can
dynamically decide whether to generate a full task structure or directly call the task function. This
method is usually referred to as lazy task creation [10]. However, the basic overhead of library
function calls (issue 3) and the fact that indirectly called functions in the original program can not
be inlined (issue 4) can not be changed at runtime and need to be handled at compile time. This
limitation of pure runtime systems motivates our compiler-aided multiversioning approach.

All four potential causes for inefficient execution identified above are directly related to
and influenced by the granularity of tasks. The more often individual tasks are generated and
synchronized, the higher the impact of the associated overheads on execution time. However, simply
increasing the granularity of all tasks is not a solution: such an approach will lead to load imbalance,
and it increases the probability of workers idling.

Time 
(a) 

(b) 

… task spawn … synchronisation … task execution 

(i) (ii) (iii) 

Figure 2. Timelines for default task execution and execution with variable granularity.

Therefore, our goal, as illustrated in Figure 2, is the generation of different implementations
for each task. The upper timeline (a) shows the default execution of a single worker thread in a
task-parallel program. All tasks have the same granularity and execution time. The lower timeline
(b) depicts our ideal goal, involving dynamic selection from a set of implementations at each task
spawning point. Early on, at point (i), a fine-grained task is generated so that the desired degree of
parallelism is achieved quickly. At later points (ii) and (iii) the system is saturated and therefore the
task granularity is gradually increased, reducing the inherent overhead caused by any interactions
with the runtime library.

3. METHOD

Figure 3 illustrates the major components of our proposed method. Starting from an OpenMP
program with parallel tasks, our compiler generates an application in which multiple different
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implementation versions of each task are encoded. During execution of the program, whenever a
specific task is invoked, our runtime system selects and launches a version of this task. The static
compiler transformations utilized during the multiversioning process are detailed in Section 3.1,
while 3.2 describes the scheduling heuristic employed in the runtime system.

Task 1 

Task 2 

Task 3 

OpenMP  
program 

Insieme compiler 

Unroll 

Simplify 

Each task 

Sequentialize 

Encode versions 

IRT 
program 

Task 1 

Task 2 

Task 3 

Insieme runtime system 

Task invocation 

Check demand 

Check queue length 

Ver.0 Ver.1 Ver.2 

Select version 

Figure 3. Overview of our Method.

3.1. Compile-time Multiversioning

During compilation our goal is to generate multiple versions of each parallel task, with varying
granularity. As depicted in Figure 3 this involves a three step process, which may be applied multiple
times to further increase the task size. The individual steps are as follows:

1. Task unrolling. Replaces each nested task invocation site with a direct call to the task
function, which is subsequently inlined. This can be thought of as a context and parallelism-
aware recursive function inlining step. The name task unrolling is adapted from Rugina’s
usage of recursion unrolling [11].

2. Sequentialization. This step focuses on identifying which synchronization primitives – if any
– were rendered superfluous by the partial elimination of parallel task invocations due to task
unrolling, and removing them. It is described in more detail below.

3. Simplification. Unrolling and sequentialization may have generated redundant or sub-optimal
code, particularly after multiple iterations. In the simplification step, we apply a number of
well known sequential optimizing compiler transformations to ease further processing of the
code and simplify unnecessarily complex structures that may have been introduced during
the previous processing steps. The transformations applied include inlining of very small
function calls, constant folding, copy propagation, algebraic simplification, strength reduction
and unused code elimination [12].

The number of generated versions depends on the granularity of the initial tasks and the largest
granularity desired. The versions are generated and encoded into the output program in the following
order.

1. Original. The original version from the input program.
2. N times unrolled versions. Starting from N = 1. In these versions, only partial

sequentialization is performed. Outer task spawning points are removed, but the innermost
spawning location is kept. This process is illustrated in detail in a code example in Figure 5,
described below.

3. Fully sequentialized version. In this version all task spawning points are removed and
replaced with plain function calls.

Figure 4 illustrates the result of generating 3 versions for a mutually recursive task set consisting
of two functions F1 and F2. The original program (Listing 1) thus has four task spawning locations,
two calling the task spawning wrapper code of F1 (As) and two the corresponding wrapper of F2
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Figure 4. Version Generation and Control Flow.

(Bs). To improve the clarity of the illustration, these task spawning wrappers have been replicated
in the transformed version, however they are still all referring to the same task.

1 f1 ( n ) = {
2 i f ( n == 0) re turn 0 ;
3 a = spawn f1 ( n−1) +1; // A = potentially spawning a call to f1
4 b = spawn f2 ( n−1) +2; // B = potentially spawning a call to f2
5 m e r g e a l l ( ) ;
6 re turn a + b ;
7 }
8 f2 ( n ) = {
9 i f ( n == 0) re turn 0 ;

10 a = spawn f1 ( n−1) +10; // A = potentially spawning a call to f1
11 b = spawn f2 ( n−1) +20; // B = potentially spawning a call to f2
12 m e r g e a l l ( ) ;
13 re turn a + b ;
14 }

Listing 1: Version Generation Example Code.

Version (1) is identical to the original program, except that at each spawning point there is now
a choice between 3 distinct implementations of each function. In version (2), consisting of F1′

and F2′, each recursive task invocation was unrolled once, forming tasks of increased granularity.
Clearly, if this version is used, more work is performed between individual task invocations and
interactions with the runtime library. Finally, version (3), comprising F1′′ and F2′′, is fully
sequentialized. Once this version is invoked, no further parallel tasks will be spawned on this branch
of the recursive descent.

3.1.1. Code Example Figure 5 illustrates the effect of the steps taken during compilation to generate
a task version that has been unrolled once. A pseudo-code formulation is used for reasons of clarity
and size. It is C-like, but without the need for explicit type specification, and with two additional
keywords: spawn implies the generation of a new parallel task (corresponding to #pragma omp
task untied in OpenMP), while merge all waits for the completion of all launched subtasks
(equivalent to #pragma omp taskwait).

In (a), the original input code is shown. Moving on to (b), first-level task invocations are removed
and replaced with in-place calls of the associated functions. Context-sensitive inlining of these
calls results in (c). Finally, redundant applications of the merge all operation are removed and
arithmetic simplification is applied. The final generated code for this version is listed in (d). This
process can be repeated N times to generate increasingly larger task sizes.
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fib(n) = { 
  if(n<2) return n; 
  a = spawn(fib(n-1)); 
  b = spawn(fib(n-2)); 
  merge_all(); 
  return a + b; 
} 

fib(n) = { 
  if(n<2) return n; 
  a = (n’){ 
    if(n’<2) return n’; 
    a = spawn(fib(n’-1)); 
    b = spawn(fib(n’-2)); 
    merge_all(); 
    return a + b; 
  }(n-1); 
  b = […]; 
  merge_all(); 
  return a + b; 
} 

fib(n) = { 
  if(n<2) return n; 
  if(n-1<2) a = n-1; 
  else { 
    a’ = spawn(fib(n-1-1)); 
    b’ = spawn(fib(n-1-2)); 
    merge_all(); 
    a = a’ + b’; 
  } 
  […]; 
  merge_all(); 
  return a + b; 
} 

fib(n) = { 
  if(n<2) return n;  
  if(n<3) a = n-1; 
  else { 
    a’ = spawn(fib(n-2)); 
    b’ = spawn(fib(n-3)); 
    merge_all(); 
    a = a’ + b’; 
  } 
  […];  
  return a + b; 
} 

(a) 
Input code 

(b) 
Unrolled 

(c) 
Inlined 

(d) 
Simplified 

merge_all dropped 

Figure 5. Example task transformation - Fibonacci - Version generation.

fib(n) = { 
  if(n<2) return n; 
  a = spawn( pick( 
    fib(n-1), 
    fib_u1(n-1), 
    fib_seq(n-1) ) ); 
  b = spawn( pick( 
    fib(n-2), 
    fib_u1(n-2), 
    fib_seq(n-2) ) ); 
  merge_all(); 
  return a + b; 
} 

fib_u1(n) = { 
  if(n<2) return n;  
  if(n<3) a = n-1; 
  else { 
    a’ = spawn( pick( 
      fib(n-2), 
      fib_u1(n-2), 
      fib_seq(n-2) ) ); 
    b’ = spawn(pick(…)); 
    merge_all(); 
    a = a’ + b’; 
  } 
  […];  
  return a + b; 
} 

fib_seq(n) = { 
  if(n<2) return n;  
  if(n<3) a = n-1; 
  else { 
    a’ = fib_seq(n-2); 
    b’ = fib_seq(n-3); 
    a = a’ + b’; 
  } 
  […];  
  return a + b; 
} 
 

(a) 
Original 

(b) 
Unrolled Once 

(c) 
Fully Sequentialized 

Figure 6. Example task transformation - Fibonacci - Generated versions.

After all the versions are generated, each version needs to be modified to enable runtime selection.
Figure 6 contains the final code for the original version with task selection (a), the unrolled version
as discussed previously (b) and a fully sequentialized version (c).

The pick keyword in Figure 6 implies a possible choice between semantically equivalent
versions, which is deferred to the runtime system. That is, in terms of program semantics,
spawn(pick(a, b, c)) ≡ spawn(a) ≡ spawn(b) ≡ spawn(c). The intention is for a, b and c to differ
in non-functional parameters, such as execution time, memory usage, or – as in this case – degree of
parallel execution. This choice is included at the spawning points of the original version, as well as
all unrolled versions. In the fully sequentialized version, the spawning point is removed and replaced
with a direct recursive call to the sequentialized function.

3.1.2. Partial Sequentialization In most parallel programs there will be some superfluous
synchronization statements after task unrolling. Since the execution has been partially
sequentialized, instructions that wait for the completion of a task that was unrolled are no longer
necessary and should be removed. The transformation eliminating unnecessary synchronization acts
as detailed in Algorithm 1 on a task version T , effectively removing all merge all operations for
which there is no possibility of any task being spawned between them and a previous merge all.

3.1.3. Synchronization Elimination Example As an example, Algorithm 1 is applied to the task
version generated in Figure 5 (c). The full code for this stage in the version generation is given in
Listing 2, and we will refer to the code statements by their line number, as well as the labels added
for spawn and merge operations. Computing the set M as per the algorithm for this example yields
M = {ma,mb,m1}.
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Algorithm 1 Superfluous Synchronization Elimination Algorithm.
T input/output task version

1: Determine the set M of all merge all invocations in T .
2: for all merge allm ∈M do
3: Compute the set of all static execution paths F

from the entry point of T to m.
4: for all paths f ∈ F do
5: Reverse f and remove the first entry.
6: end for
7: if ∀f ∈ F : f encounters no spawn before a merge all then
8: Remove m from T .
9: end if

10: end for

1 f i b ( n ) = {
2 i f ( n<2) re turn n ;
3 i f ( n−1<2) a = n−1;
4 e l s e {
5 a’ = spawn ( f i b ( n−1−1) ) ; // sa1
6 b’ = spawn ( f i b ( n−1−2) ) ; // sa2
7 m e r g e a l l ( ) ; // ma

8 a = a’ + b’ ;
9 }

10 i f ( n−2<2) b = n−2;
11 e l s e {
12 a’ = spawn ( f i b ( n−2−1) ) ; // sb1
13 b’ = spawn ( f i b ( n−2−2) ) ; // sb2
14 m e r g e a l l ( ) ; // mb
15 b = a’ + b’ ;
16 }
17 m e r g e a l l ( ) ; // m1
18 re turn a + b ;
19 }

Listing 2: Synchronization Elimination Example.

For ma, the set F = {(1, 5, 6, 7)}. Reversing the single included path and removing the first entry
results in F = {(6, 5, 1)}. The statement at line 6 is sa2, a spawn operation, thus ma is kept. For mb

the situation is similar, and a spawn operation is encountered immediately on the reversed paths,
but the paths are slightly more complex.
Finally, consider m1. In this case, the initial set of paths is given by FA below. Reversing each path
and removing the first entry results in FB .

FA = { f ′
0 = (1, 5, 6, 7, 8, 12, 13, 14, 15, 17),
f ′
1 = (1, 3, 12, 13, 14, 15, 17),
f ′
2 = (1, 5, 6, 7, 8, 10, 17),
f ′
3 = (1, 3, 10, 17) }

FB = { f0 = (15, 14, 13, 12, 8, 7, 6, 5, 1),
f1 = (15, 14, 13, 12, 3, 1),
f2 = (10, 8, 7, 6, 5, 1),
f3 = (10, 3, 1) }

On the path f0, the merge all operation mb is encountered at 14, before any spawn. On f1,
the situation is the same. On f2, the merge all operation ma is encountered at 7, again before
any spawn. No spawn operation is contained in f3. Thus, the condition holds for all paths and m1

can safely be eliminated.
Note that in this particular example a much simpler algorithm, such as removing the first

merge all operation postdominating the spawns which have been replaced, would also be
sufficient. However, it is possible to encounter cases where there is no postdominating merge all
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call – e.g. when distinct merges are performed in different execution paths through the task, but
there is at least one merge in each path. These cases are also handled by our method.

3.2. Runtime Version Selection

The previous section outlined how multiple versions with different granularities and trade-offs are
generated in the compiler. This provides the runtime system with an opportunity of making a version
choice every time a task is spawned. Making the wrong choice can result in reduced efficiency, or, at
worst, greatly diminish parallelism – e.g. in case a fully sequentialized version is chosen too early.
We considered the following design goals and observations when developing our version selection
method:

• At the start of the program, the original (most fine-grained) version of the tasks should be used,
since the parallelism available in the system is not yet fully leveraged and load-balancing is a
priority.

• The impact of conservative behavior – i.e. using more fine-grained tasks – causes more gradual
performance degradation than using tasks that are too coarse grained, potentially leading to
some worker threads idling.

• The decision procedure needs to be simple, causing only little overhead, otherwise it could
negate any benefits from multiversioning.

• The decision making process should be distributed – no new synchronization points between
worker threads should be introduced to facilitate version selection.

Taking these points into account led to the development of a distributed version selection heuristic
based on two parameters which are tracked for each individual worker thread. The first parameter is
task demand, which keeps track of other worker’s unfulfilled attempts to steal tasks from the local
worker. The second parameter is the queue length of each worker, which indicates how many tasks
it currently has available for execution or stealing.

Task demand is tracked in a surprisingly simple, but effective, manner. The demand is stored
locally as an integer which starts at a positive value equal to the maximum task queue length.
Whenever a task is generated by a worker thread, it reduces its own task demand value by 1. When
a worker k1 attempts to steal from another worker k2 which has no tasks available, then the task
demand value of k2 is reset to the maximum task queue length.

Algorithm 2 Task Version Selection Algorithm.
queue length current queue length
task demand current task demand
NUM VERSIONS number of versions generated for current task
MAX QUEUE maximum queue length (fixed)
output: 0 ⇔ original task

N = 1 . . . num versions− 2 ⇔ unrolled N times
num versions− 1 ⇔ fully sequentialized

1: version = NUM VERSIONS− d(task demand/MAX QUEUE) ∗ NUM VERSIONSe
2: if version >= NUM VERSIONS− 1 then
3: if queue length == MAX QUEUE then
4: return NUM VERSIONS− 1 . choose sequential
5: end if
6: return NUM VERSIONS− 2 . most coarse grained
7: end if
8: return version . gradually adapt granularity

Our version selection procedure is listed in Algorithm 2. In conjunction with the demand tracking
outlined above, it has the following desirable properties:
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• Evaluating the selection function only takes a few dozen cycles, assuming that all the required
values are cached.

• The way in which task demand is reset to the initial value if any work item stealing operation
fails, but is only reduced gradually during normal execution, mirrors the earlier observation
about the negative performance impact of wrong granularity selection. It makes the expensive
case of idle workers unlikely by reacting very strongly to failed stealing attempts.

• Selecting the fully sequentialized version is a step that should only be taken after careful
consideration, since it will prevent any further parallelism from being generated on this branch
of the recursive descent. Therefore, the heuristic only takes this step if there has been no
demand for additional tasks over a large number of spawn points and the queue is full.

The choice of the fixed MAX QUEUE and NUM VERSIONS parameters has an impact on the
effectiveness of this approach, which is investigated in Section 4.4. For the comparison to other
systems and primary experiments in Section 4, MAX QUEUE was set to 32 and NUM VERSIONS
was set to 4.

3.2.1. Task Version Selection Example Let us assume for this example that 4 code versions were
generated for a given work item corresponding to a task, that is NUM VERSIONS = 4. Given the
mapping in Algorithm 2, this means that version 0 is the original code, in version 1 recursive task
invocations have been unrolled once, in version 2 they have been unrolled twice and version 3 is
fully sequentialized.

Now, assume two workers k1 and k2, and MAX QUEUE = 4 (a very low value chosen for illustrative
purposes). Both workers start with a task demand tdk1

= tdk2
= 4, and will execute the simple

Fibonacci code sample shown previously (Figures 5 and 6), with k1 starting the outermost task
execution. At the start of the program, version = 4− d(4/4) ∗ 4e = 0, which means that the initial
code version (with the smallest granularity) is chosen. This results in the spawning of two new work
items, decrementing tdk1

by 1 each, resulting in tdk1
= 2. At this point, k2 may or may not steal work

items from k1 – it does not change the further execution unless the queue in k1 becomes empty. If
that happens, tdk1

gets reset to 4. We assume for this example that this does not occur.
When k1 selects a follow-up task version, the selection algorithm will evaluate to version =

4− d(2/4) ∗ 4e = 2. Thus, the 2 times unrolled version is selected, which generates 8 new work
items. This will fill up the queue and set tdk1

= 0. At this point, as long as the queue remains full,
version >= num versions− 1 && queue length == MAX QUEUE will evaluate to true, and the
next task will be executed with full sequentialization. As soon as k1’s queue loses an element, either
because it is stolen by k2 or executed by k1 itself, it will fall back to choosing the unrolled but
not fully sequentialized code version 2, immediately refilling the queue. Thus, unless a stealing
attempt fails later on, this particular program will complete using primarily the highly efficient fully
sequential code version, with some interspersed partially unrolled versions.

4. EVALUATION

In this section we will evaluate the performance impact of our optimization. Subsection 4.1 details
our measurement methodology and the experimental setup used. We will perform an in-depth
evaluation of two programs in Subsection 4.2, proceed with an overview of the results of a number
of other codes (4.3), investigate the impact of algorithmic parameters in 4.4 and conclude with an
analysis of the runtime behaviour of our version selection algorithm in 4.5.

4.1. Experimental Setup

For our experiments we used an Intel-based parallel system, incorporating 4 Xeon E7-4870
processors, each comprising 10 physical cores (20 hardware threads) and 3 levels of cache. Table I
summarizes the configuration of this system.
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Table I. Hardware and software platform for experimental evaluation.

Sockets/ Cache Software
Cores L1d/i L2 L3 OS Kernel GCC ICC Insieme

4/40 32K/32K 256K 30M CentOS 6.3 2.6.32 4.6.3 12.1 g4614502

When running experiments using a subset of cores, all involved threads were bound to individual
physical cores such that the resources of one chip are fully utilized before involving an additional
processor. All experimental runs were repeated five times, and the median runtime is reported.

While the most important comparison for our evaluation is between our compiler with and without
our multiversioning method, we also included the results obtained by other platforms to provide a
reference for comparison. Table I includes the exact version number of the compilers used in these
comparisons. ICC was used as the backend compiler for the Insieme source to source infrastructure,
and its built-in Cilk Plus support was employed to compile Cilk programs. The optimization flag
“-O3” was enabled for all calls to GCC and ICC. The source code for Insieme can be obtained from
the authors.

4.2. A Detailed Evaluation

4.2.1. N-Queens The first program we will evaluate is the N-Queens benchmark included in
BOTS [7]. Each task in N-Queens spawns 0 to N child tasks, and the depth of its task invocation
trees varies from 1 to N , while not following any simple pattern. The size of individual tasks is
relatively small.

Figure 7 illustrates the performance of N-Queens using a variety of compilers and
implementations. Four OpenMP versions are shown: GCC, ICC and Insieme with (“taskopt”) and
without (“insieme”) task optimization. Additionally, we included the results of a Cilk version and
a fully sequential version without any parallel language primitives. The execution time is presented
in a log-log plot to improve readability. An efficiency plot is also provided, which compares the
execution times of the parallel versions against ideal scaling from the sequential version.

In terms of OpenMP results, it is clear that the task granularity in this benchmark is too small
to be handled effectively by GCC’s GOMP implementation. ICC shows the same behavior that
was already partially observed in Section 2 – execution time increases when going from a single-
threaded to a multi-threaded setup. However, starting from two threads performance scales relatively
well up to 40. Since both of these OpenMP implementations seem ill-equipped to handle very fine-
grained tasking well, we also included a Cilk version, which has previously been shown to provide
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better scaling for fine-grained tasks [13]. Indeed, this implementation performs better in the single-
threaded case and scales more smoothly to multiple cores than the GCC and ICC OpenMP versions.

Using Insieme to compile the OpenMP input program results in performance that is comparable
to Cilk for up to 16 cores, and scales slightly better beyond this amount. However, a comparison
with the fully sequential version indicates that even the Insieme OpenMP version and the
Cilk version lose around 20% of performance to overheads incurred due to parallelization.
When our task optimization – that is, multiversioning in the compiler and adaptive work item
implementation version selection at runtime, as presented in the previous sections – is activated,
this overhead is effectively avoided. Even more importantly, this significant reduction in overhead
is achieved without negatively affecting the scalability of the program. Performance compared to
our implementation without task optimization is improved by 22% to 28% across all measured core
counts, with a 25% increase at the full 40 cores.

Compared to the fully sequential version, our approach achieves an efficiency above 99% up
to 8 cores, 97% at 16 cores, 85% with 32 cores and 80% at 40 cores. The total runtime of our
implementation at higher core counts goes below 0.3 seconds. Note that the drop-off in efficiency
primarily occurs at 16 cores and above. This is due to the problem size N=13 causing each initial
task to spawn 13 sub-tasks, which means that up to 13 cores can be supplied with work during the
first ”generation” of tasks. When more cores are used, a larger number of second-generation (and
beyond) tasks need to be distributed.

Using the full system (40 cores), our implementation with task optimization improves N-Queens
performance by 56% compared to the best competing implementation (Cilk).

4.2.2. Fibonacci For a second in-depth evaluation, we chose the BOTS Fibonacci program. This is
very similar to the code example provided in Section 3 (Figure 5). As a test case, its most interesting
features compared to N-Queens are a significantly different shape of the task invocation tree and the
extremely small size of individual tasks. In Fibonacci, each task only creates zero to two sub-tasks,
however the maximum depth of the task invocation tree is much larger. Additionally, the depth of
the task chains follows an easily predictable pattern, unlike N-Queens.

Note that this is obviously an inefficient method of generating the Fibonacci numbers which
would not be used in a production code. However, its properties make it an interesting case study
for the overhead of task-parallel systems.

The performance results achieved in Fibonacci by the set of implementations included in our
comparison are illustrated in Figure 8, again adjusted to a log-log scale to make them easier to
interpret.

The issues with small tasks experienced by the OpenMP implementation in GCC are exacerbated
in this case, due to the extremely fine task granularity of the Fibonacci program. We stopped the
execution of this version after 15000 seconds in the case of 5 or more threads, since these results
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have no meaningful impact on the comparison. ICC’s OpenMP implementation acts similarly to
before, with special handling of the single-threaded case and good scaling after the initial parallelism
overhead. Cilk is about twice as fast as ICC’s OpenMP version in the single-threaded case, and
scales well from that point.

As with N-Queens, our Insieme OpenMP implementation without task optimization starts out
similarly to Cilk with one and two cores used. However, with a larger number of cores, our scaling
behavior suffers. This is due to the very fine-grained nature of the tasks, and the fact that generating
a stealable work item induces more overhead in our implementation than it does for Cilk.

However, the most significant result is the performance of the purely sequential version compared
to any other existing implementation. Even the most efficient parallel implementations are slowed
down by a factor of 20 when comparing their single-threaded execution time to the fully sequential
program. The only existing system that manages to improve on the sequential result at all is Cilk,
and it requires 20 cores to do so.

With such small tasks, and therefore relatively large parallelism overheads, it is reasonable to
expect that our multiversioning scheme as introduced in this paper will have a large impact on
performance. As Figure 8 shows, both absolute performance and scalability are greatly improved.
With a single thread, runtime is reduced by a factor of 26 compared to our implementation without
multiversioning and adaptive granularity adjustment. Interestingly, the single-threaded execution
time using our system is even lower than that of the fully sequential program, due to recursion
unrolling, which is not performed by ICC or GCC. This mirrors earlier results in the field of
sequential optimization [11], and shows that for very fine-grained tasks, even sequential function
call overheads have a relevant impact.

When using all 40 cores of the system, our new approach improves upon the best existing solution
(Cilk) by a factor of 23.

4.3. Further Benchmarks

Table II summarizes our benchmark results. It includes measurements for the N-Queens and fib
benchmarks presented above, as well as a number of additional programs.

Sort Is the sort benchmark included in BOTS.

Strassen Also from BOTS, matrix multiplication using the Strassen algorithm.

Table II. Benchmark Results.

cores 1 2 5 10 20 40 cores 1 2 5 10 20 40
Queens, N = 13 - seq: 7.42 Fib, N = 48 - seq: 31.09
gcc 10.23 36.29 148.28 308.16 545.22 725.98 gcc 1960.35 17093.63 >15000 >15000 >15000 >15000
icc 10.49 16.04 6.45 3.81 1.60 0.91 icc 1379.84 2705.65 1135.29 569.15 286.41 157.70
ins 8.69 4.35 1.74 0.87 0.46 0.27 ins 742.40 456.95 247.91 196.59 169.50 155.29
opt 6.79 3.41 1.48 0.69 0.36 0.21 opt 27.06 13.77 6.37 3.30 1.93 1.03
imp 27.92% 27.52% 17.78% 26.64% 25.35% 24.91% imp 26.43× 32.17× 37.90× 58.15× 86.69× 150.36×
Sort, N = 227 - seq: 21.51 Strassen, N = 8192 - seq: 158.15
gcc 21.98 11.80 7.20 17.17 29.43 42.29 gcc 159.74 92.45 39.20 22.10 15.36 19.94
icc 23.87 12.36 5.04 2.80 1.85 1.56 icc 164.43 89.94 39.12 21.81 15.69 19.27
ins 22.94 12.00 4.90 2.71 1.93 1.53 ins 168.84 85.97 37.51 21.98 12.94 8.72
opt 20.81 11.18 4.61 2.52 1.72 1.41 opt 154.27 79.80 35.46 19.81 12.03 8.11
imp 5.61% 5.47% 6.43% 7.47% 7.88% 8.11% imp 3.54% 7.72% 5.77% 10.08% 7.55% 7.52%
Stencil, N = 2048 - seq: 18.90 Floorplan, input.20 - seq: 17.86
gcc 46.82 62.09 138.51 398.05 576.83 840.61 gcc 27.36 31.04 133.30 352.94 514.51 759.20
icc 30.17 24.65 15.63 14.64 13.84 12.04 icc * * * * * *
ins 32.49 18.48 9.27 6.31 7.50 9.67 ins 23.53 12.48 5.05 2.53 1.72 1.58
opt 24.96 13.84 6.66 4.26 5.15 7.54 opt 17.20 9.51 4.12 2.09 1.43 1.24
imp 20.87% 33.49% 39.17% 47.97% 45.50% 28.29% imp 36.76% 31.25% 22.62% 21.06% 20.52% 27.68%
FFT, N = 229 - seq: 184.78 QAP, chr18a - seq: 237.28
gcc 222.27 132.66 95.88 276.81 420.00 482.07 gcc 488.97 931.43 7471.11 >15000 >15000 >15000
icc 189.73 112.13 55.95 37.44 22.64 16.03 icc 785.36 2539.80 823.00 319.87 179.58 114.93
ins 187.36 104.85 51.39 36.46 21.01 16.96 ins 578.57 294.13 112.80 78.65 70.97 60.71
opt 183.97 100.02 49.66 35.08 19.07 12.03 opt 231.62 110.76 40.24 21.88 15.18 9.90
imp 1.84% 4.84% 3.48% 3.93% 10.16% 33.21% imp 2.11× 2.66× 2.80× 3.59× 4.68× 6.13×
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Stencil A task based 2D stencil computation using the cache-oblivious algorithm presented by
Frigo and Strumpen [14]. We included this benchmark to represent an important category of
cache-oblivious divide-and-conquer algorithms.

Floorplan The BOTS floorplan benchmark. For this application, the binary generated by ICC
12.1 repeatably caused a segmentation fault within ICC’s OpenMP library, regardless of the
number of threads used. Therefore we are unable to present ICC results for this benchmark.

FFT A parallel fast fourier transform included in BOTS.

QAP A branch and bound solver for quadratic assignment problems.

For every benchmark, the table contains five rows. The results achieved using the GCC and
ICC OpenMP implementations are listed in the “gcc” and “icc” rows, respectively. The “ins”
row contains the results of our Insieme compiler and runtime without the task multiversioning
optimization presented in this paper, while it is enabled for the measurements listed in the “opt”
row. Finally, the values in the “imp” row represent the relative improvement achieved using adaptive
granularity control, compared to the best result among the other three versions. The columns
labeled 1 to 40 correspond to the number of cores used for the computation. All times are given
in seconds, and the improvement is provided in percent, except in the case of the Fibonacci and
QAP benchmarks where improvement factors are listed instead of very large percentages.

As a frame of reference, the purely sequential time for each benchmark compiled with ICC
is provided in each header (“seq”). Note that this time falls between the Insieme time without
optimization and the optimized version in most cases, except in the stencil test. Here, the
restructuring performed by our compiler prevents some of the low-level sequential optimizations
performed by ICC. However, our optimized version executed with one thread is still closer to the
sequential performance than any other parallel implementation.

A general trend visible throughout all the benchmark results is the relationship between default
task granularity, scaling in GCC and the degree of improvement possible using adaptive task
multiversioning and selection. The Fibonacci and QAP benchmarks have the most fine grained tasks,
and consequently the worst scaling in GCC and the largest improvement with our optimization.
On the other end of the spectrum, the FFT, strassen and sort benchmarks feature built-in cutoff
values that inherently control task granularity by preventing very small tasks from being generated,
resulting in more modest, but still significant, performance improvements with multiversioning.
Floorplan, stencil and N-queens fall in between these extremes.

One interesting behavioral pattern which merits some explanation occurs in FFT. Our
multiversioning implementation does not result in any significant improvement up to 10 cores,
however at 40 cores the measured improvement is 33%. This is due to the FFT benchmark
consisting of two separate phases: coefficient calculation and FFT computation. These phases
exhibit distinct scaling behaviour, and one of them is affected more significantly by adaptive
granularity optimization than the other. Thus, with a larger number of cores, the phase with bad
scaling starts to take up a larger portion of the execution time, and the effect of multiversioning on
overall performance increases.

4.4. Impact of Algorithmic Parameters

The compiler transformations, version generation and runtime version selection which constitute
our proposed method are influenced by two parameters: MAX QUEUE and NUM VERSIONS. As
described in Section 3, the former determines the maximum task queue length – before immediate
execution sets in – of our runtime system, while the latter specifies the number of different code
versions generated by the compiler for each task. As each subsequent task version is unrolled
once more, NUM VERSIONS also implicitly caps the maximum task unrolling depth. Both of these
parameters influence the runtime task selection heuristic, as presented in Algorithm 2.

In the results provided above, NUM VERSIONS was set to 4 and MAX QUEUE was set to 32.
While not optimal in all cases, these values were empirically determined to provide stable results
across a wide range of programs and hardware configurations. To gauge the impact of varying these
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parameters, we evaluated program performance across all plausible settings for both. We will now
demonstrate the results of this investigation on the N-Queens program.
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Figure 9. N-Queens results with varying degree of multiversioning, N = 14.

4.4.1. Number of Code Versions Figure 9 illustrates the performance of the N-Queens benchmark
using a fixed setting of 40 threads and varying number of task code versions, and thus maximum task
unrolling depth. We only show the results for one thread count configuration, as, for this parameter,
the number of threads does not meaningfully affect the result.

Using only a single task version is equivalent to running the original, unmodified input program.
With two task versions, the options for each task are either the original fine-grained task or fully
sequentializing the execution. Even the availability of such a binary choice already improves
performance significantly, reducing execution time by a factor of 3.3. Note that the performance
achieved with this option is quite close to the state-of-the art task-parallel Cilk performance.

Leveraging the unique flexibility of our approach by adding a third code version, the runtime
system has the options of either choosing the original task, a more coarse-grained but still parallel
version of the original task, or fully sequentializing the current branch of the recursion. This
improves performance further, with an additional 32% reduction in execution time compared to
2 code versions. Adding one more intermediate version, for a total of 4, insignificantly improves
the result (by less than 2%), while going beyond 5 versions gradually decreases performance. This
decrease can be attributed to a large number of code versions – all of which are intermittently active
during the program execution – leading to worse utilization of the CPU instruction cache, while not
meaningfully improving the scheduling flexibility of our algorithm.

An additional factor to consider when choosing NUM VERSIONS is the impact of this setting
on compile time, both in our source-to-source compiler as well as the backend compiler. Since the
generated code size for a given task unrolling factor N is exponential in the number of (mutually)
recursive task invocations, compile times may start increasing significantly when going beyond a
maximum unrolling factor of 2 – which is achieved with a total of 4 generated versions. For large
NUM VERSIONS this can be an obstacle – we have observed compile times of 35 minutes for 8
versions, even on our relatively small benchmark codes. However, as the performance results above
indicate, such a large number of versions is not beneficial in practice, so this issue does not occur.

4.4.2. Task Queue Length Unlike the number of code versions, the impact of the choice of
maximum task queue length differs greatly depending on the number of threads used to execute
a program. Therefore, Figure 10 includes the results for 40, 10 and 1 thread(s) of execution, each
normalized to their respective execution time using the default queue length of 32 elements in order
to enable an effective visual comparison.
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Figure 10. N-Queens results with varying task queue length, N = 14.

For the single-threaded case, larger queue sizes gradually increase execution times, reaching a
total slowdown of 8% for a queue length of 256. This is a direct consequence of the runtime version
selection as described in Algorithm 2: a longer queue will lead to fully sequentialized task versions –
which are obviously ideal in the single-threaded case – being chosen later during program execution,
compared to a shorter queue.

In both multi-threaded cases, we observe a significant loss in performance when the queue length
is decreased, particularly if it drops below the number of worker threads. The most extreme impact
can be observed for 40-way parallel execution using a queue length of just 4 tasks, which results in
a slowdown by a factor of 4.36 compared to the default queue length of 32. These results are caused
by load imbalance. If a thread very quickly switches to fully sequential execution of a large branch
of the overall task tree after only filling a short queue, other threads might run out of work and be
unable to acquire any new tasks by stealing after all queues have been emptied. Larger queue length
are more beneficial with many threads, and with 40 threads a queue length of 256 actually performs
best in this benchmark. For 10 threads, ideal performance is reached with a queue length of 128,
after which the same effect observed for a single thread starts to outweigh any improvement in load
balance.

Note that the variance across all test runs is illustrated by whiskers in the plot, and that there is
negligible variance in the single-threaded results. For multi-threaded runs, the variance increases
significantly with short queues, as the exact order and targets of initial task stealing operations
influence the degree of load imbalance during the entire program run.

In conclusion, the task queue length parameter should be adapted per-system to fit the amount of
available hardware parallelism, and choosing a queue size larger than the optimum is generally less
likely to cause abrupt performance degradation. Automatically choosing a suitable queue length for
some input code and hardware setup based on static analysis is a subject of future work.

4.5. Version Selection Analysis

As a final step in investigating the performance properties of our method, we will look at the
behavior of Algorithm 2 during runtime. For this purpose, we instrumented the version selection
procedure in order to collect statistical data characterizing the mixture of selected code versions.
Table III and Figure 11 illustrate the result of this analysis.

The columns in Table III show, in order: the number of Workers used, the Total amount of version
selection events, the average amount of version selection events per worker (PerW), the number of
times each version was chosen (V0s to V3s), and the number of restart events encountered (Rst),
as well as the relative percentage of these 5 values in the total number of events. A restart event
is defined as a point in the execution where previously a version numbered > 0 was selected, and
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Table III. Version Selection in N-Queens.

Workers Total PerW V0s V1s V2s V3s Rst %V0s %V1s %V2s %V3s %Rst

1 1547 1547 2 2 2 1541 0 0.12 0.12 0.12 99.61 0.00
2 3432 1716 14 10 10 3398 11 0.40 0.29 0.29 99.00 0.32
5 6890 1378 64 38 38 6750 58 0.92 0.55 0.55 97.96 0.84

10 12610 1261 438 168 194 11810 427 3.47 1.33 1.53 93.65 3.38
20 39286 1964 4425 1156 1412 32293 4404 11.26 2.94 3.59 82.19 11.21
40 81133 2028 23578 2860 3400 51295 23537 29.06 3.52 4.19 63.22 29.01
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Figure 11. N-Queens version choice with varying number of worker threads, N = 14.

subsequently version 0 (the most fine-grained version) is selected again due to an unsatisfied task
stealing request.

A first observation on this data is that the most coarse-grained version (3) dominates the execution
in all cases except for the ones which feature a high degree of parallelism – i.e. with 20 and 40
worker threads. This is a desirable property, as that code version allows for minimal execution time
overhead, and should be preferred as long as all worker threads in the system have a sufficient supply
of tasks available.

In terms of scalability, we observe that while the total number of selection events grows with the
degree of parallelism, the number of selection events per worker remains relatively constant. As
such, the overhead in execution time for version selection does not grow significantly with a larger
number of active workers.

The number of reset operations is indicative of how the runtime algorithm reacts to failed work
stealing attempts. For execution with one thread, there are no failed stealing events, thus there are
also no resets, and the most coarse-grained code version is always selected after a short initial
warm-up period. This explains why executing the parallel program with a single thread using our
system generally matches (or, in some cases, exceeds) the performance of the unmodified sequential
program. When the number of threads is increased, the system needs to react to the probability of
some of them running out of work, and therefore we see an increasing number of reset events.
This in turn also increases the relative number of times code versions smaller than the most coarse
grained (i.e. versions 0, 1 and 2) are chosen. In this fashion a dynamic balance between generating
sufficient parallel work and executing the program with as little overhead as possible is achieved,
which is directly responsible for the good absolute performance and scalability of our method for
fine-grained task parallel programs, as observed in Section 4.3.
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5. RELATED WORK

Much previous work on parallel tasks has focused on runtime systems [15] or scheduling policies
[16]. As described in section 2, pure runtime modifications are incapable of dealing with all the
causes for inefficiency that our combined compiler and runtime approach covers. Moreover, our
proposed multiversioning scheme is orthogonal to scheduling decisions and can be combined with
any scheduling policy.

A common approach towards dealing with task granularity issues is having the user provide
thresholds or cut-off values [2]. In our work, task granularity is controlled entirely by the compiler
and runtime system, without requiring manual programmer support. Duran et al. [17] describe an
adaptive cut-off method which does not require manual adjustment, but their pure runtime approach
does not offer the performance benefit of full sequentialization in the compiler.

Inlining of recursive functions has been previously performed in sequential program
transformation [18], even with the express purpose of improving performance in divide and conquer
programs by reducing overheads [11]. However, these works do not deal with parallelism, while
our approach focuses primarily on minimizing the overhead incurred by parallel task creation and
synchronization.

Some recent publications have used compiler multiversioning in a parallel setting [19][20], but
they focused exclusively on loop-based data parallelism. Conversely, our multiversioning approach
is designed for task-parallel, recursive programs.

Very recently, Deshpande and Edwards used recursion unrolling to improve opportunities for
parallelism in Haskell programs [21]. Unlike our method, they do not use multiversioning or version
selection at runtime, and their compiler transformations are designed for the Haskell functional
language while we process input programs written in C with OpenMP.

6. CONCLUSION

We have presented a fully automatic, adaptive approach to parallel task granularity control which
goes beyond what can be achieved by improving either just a runtime system or focusing only
on compilation. By combining a compiler which performs task multiversioning with a runtime
system that adaptively selects from these versions, we were able to minimize parallel runtime
overhead even for very fine grained tasks. Our method uses a novel combination of compiler
transformations to build an optimized set of semantically equivalent task versions which differ in
granularity. The availability of this set of implementations in the compiled program in turn enables
our runtime heuristic to adjust the amount of tasks generated, while incurring even less overhead
than a traditional lazy task creation system with cut-offs.

Evaluating our proposed method across a set of benchmarks has shown that our optimization is
widely applicable, and that the magnitude of these improvements is related to the task granularity of
the input program. For programs with relatively coarse-grained tasks, execution times are reduced
by 5% - 10%, while we can achieve improvements of a factor of 6 or more compared to the
best competing implementations in fine-grained test cases. Varying the number of generated code
versions indicates that at least 3 separate task granularities should be generated, while going beyond
4 versions gradually decreases performance due to cache pressure. The ideal task queue length for
our approach grows with the number of independent hardware threads available.

Benchmark results also demonstrate that our runtime selection heuristic successfully ensures
that scalability (up to 40 cores) is not negatively affected by adaptive task granularity adjustment.
Crucially, our adaptive granularity control scheme improves performance in all tested benchmarks
and for any given number of cores.
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