
University of Innsbruck

Doctoral Thesis

On Simplifying and Optimizing Message
Passing Programs: A Compiler and

Runtime-Based Approach

Author:

Simone Pellegrini

Advisor:

Prof. Dr. Thomas Fahringer

submitted to the faculty of Mathematics, Computer

Science and Physics of the University of Innsbruck

in partial fulfilment of the requirements

for the degree of doctor of science

in the

Institut für Informatik

November 2011

http://uibk.ac.at
http://dps.uibk.ac.at/~spellegrini
http://dps.uibk.ac.at/~tf
http://informatik.uibk.ac.at

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt durch meine eigenhändige Unterschrift, dass ich die

vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen

und Hilfsmittel verwendet habe. Alle Stellen, die wórtlich oder inhaltlich den angegebe-

nen Quellen entnommen wurden, sind als solche kenntlich gemacht. Die vorliegende

Arbeit wurde bisher in gleicher oder ähnlicher Form noch nicht als Magister-/Master-

/Diplomarbeit/Dissertation eingereicht.

Datum Unterschrift

ii

“Die schlechtesten Leser sind die, welche wie plündernde Soldaten verfahren: Sie nehmen

sich einiges, was sie brauchen können, heraus, beschmutzen und verwirren das übrige

und lästern auf das Ganze.”

“The worst readers are those who behave like plundering troops: they take away a few

things they can use, dirty and confound the remainder, and revile the whole.”

Friedrich Wilhelm Nietzsche

UNIVERSITY OF INNSBRUCK

Abstract

Doctor of Philosophy

On Simplifying and Optimizing Message Passing Programs: A Compiler

and Runtime-Based Approach

by Simone Pellegrini

In High-Performance Computing (HPC), the high demand for computational power is

satisfied only by large distributed memory systems. In order to fully harvest the po-

tentials of such super-computers, programmers resort to low-level programming models

such as message passing. However, writing portable and scalable distributed applications

is known to be difficult, error-prone, and time consuming.

This thesis explores static and dynamic techniques to automatically improve the perfor-

mance behaviour of existing distributed memory programs. Moreover, it discusses novel

ideas aiming at both simplifying the programming effort and improving code scalabil-

ity. Throughout this thesis, the Message Passing Interface (MPI) is considered as an

implementation of the message passing model.

Among others, the thesis presents a distributed runtime system, called libWater, aimed

at heterogeneous systems. It combines the message passing and the Open Computing

Language (OpenCL) programming model to realize a simple, but yet powerful, Applica-

tion Programming Interface (API) which hides the distributed nature of the underlying

system to the programmer. High scalability is made possible by various optimizations

within the runtime system which dynamically detect and rewrite communication pat-

terns in a more efficient way.

This thesis also examines ways to improve the performance of a message passing ap-

plications without the need of recompiling it. We propose a technique which aims at

the customization of an instantiation of the MPI library, by tuning available runtime

parameters, to suite the target architecture and input program.

Among the static approaches we present a novel analysis which uses elements of the

Polyhedral Model (PM) to match communication statements. By using heuristics, our

method can analyze rather complex codes which cannot be handled by any of the pre-

vious approaches. This analysis represents an important pre-requisite for any static

compiler transformation which can be leveraged for future work.

http://uibk.ac.at

Acknowledgements

When looking back throughout my years of study, I clearly see few people who showed

me the direction and shaped me into the individual I am today; and many other who

supported me during though periods. First of all, I would like to express my gratitude

to my supervisor Prof. Thomas Fahringer for the useful comments, remarks and en-

gagement through the learning process of this doctorate thesis. Without his direction

this achievement would not be possible. Similar gratitude goes to Prof. Torsten Hoefler

who constantly challenged me to be the best researcher I could be. It has been an honor

working so closely together. Among the mentoring figures I would also like to thank

Hans Moritsch, Biagio Cosenza and John Thomson for the interesting and constructive

discussions.

I also had the fortune to meet several great people who helped me to keep my mental

sanity during these long years. A special thank goes to some of my closest friends, Simon

Ostermann, Kassian Plankensteiner and Ivan Grasso. Peter Thoman who, beside his

preferences of using STL’s lists instead of vectors, I highly esteem. Ferdinando Alessi,

Timo Schneider and the Insieme compiler team members (current and past) which put

great efforts in making this project a success.

Finally, my biggest thank goes to my family and my wife Lia. Without their support

and love this achievement would be meaningless. I dedicate this thesis to them.

v

Contents

Eidesstattliche Erklärung ii

Abstract iv

Acknowledgements v

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Motivation . 2

1.2 State of the Art . 3

1.3 Thesis Goals . 4

1.4 Thesis Organization . 5

2 Model 9

2.1 Hardware Model . 9

2.2 The Message Passing Model . 14

2.2.1 Point-to-Point Primitives . 16

2.2.2 Collective Primitives . 21

2.3 The Program Model . 25

2.3.1 The Program Abstract Syntax Tree (AST) 27

2.3.2 The Polyhedral Model (PM) . 28

2.3.3 Data Dependencies . 32

2.3.4 Control Flow Graph (CFG) . 33

3 Simplification of Distributed Memory Programming 37

3.1 Introduction . 38

3.1.1 A Lightweight Programming Interface 38

3.1.2 Towards a Simplified Message Passing Programming Model for C++ 38

3.1.3 A Uniform Approach for Heterogeneous Distributed Memory Pro-
gramming . 39

3.2 A Lightweight Interface for MPI . 40

3.2.1 Background and Motivation . 40

3.2.2 MPP: C++ Interface to MPI . 42

vii

Contents viii

3.2.3 Performance Evaluation . 46

3.3 Towards a Simplified Message Passing Programming Model for C++ . . . 51

3.3.1 Motivation . 51

3.3.2 The PGAS Programming Model 52

3.3.3 Overview . 53

3.3.4 The mem wrap Object . 55

3.3.5 Jacobi Relaxation . 58

3.4 LibWater: A Uniform Approach for Heterogeneous Distributed Memory
Programming . 60

3.4.1 The OpenCL Programming Model 60

3.4.2 Related Work . 62

3.4.3 The LibWater Programming Interface 63

3.4.4 The LibWater Distributed Runtime System 64

3.4.5 Experimental Evaluation . 73

3.5 Summary . 81

4 Runtime Parameter Tuning of Message Passing Programs 83

4.1 Introduction . 84

4.2 The Modular Component Architecture . 86

4.3 Motivation . 87

4.3.1 Experimental Setup . 87

4.3.2 Performance-Oriented Runtime Parameters 89

4.3.3 Random Space Exploration . 90

4.4 Related Work . 94

4.5 Auto-Tuning with Evolutionary Techniques 96

4.5.1 Tournament Selection . 97

4.5.2 Crossover and Mutation Operators 98

4.5.3 Experimental Evaluation . 99

4.6 Auto-Tuning with Machine Learning . 99

4.6.1 Parameter Selection and Experimental Setup 101

4.6.2 The Prediction Model . 101

4.6.3 Feature Extraction . 102

4.6.4 Training Prediction Models with Machine Learning Techniques . . 104

4.6.5 Experimental Evaluation . 105

4.7 Auto-Tuning with ANOVA . 108

4.7.1 Parameter Selection . 109

4.7.2 Parameter Optimization . 110

4.7.3 Experimental Evaluation . 113

4.8 Summary . 115

5 Message Passing-Aware Compiler Analyses and Transformations 119

5.1 Introduction . 120

5.1.1 Message- and Cache-Aware Compiler Optimizations 120

5.1.2 Exact Dependence Analysis for Increased Communication Overlap 121

5.1.3 Static Matching of Communication Statements 121

5.2 Message- and Cache-Aware Compiler Optimizations 122

5.2.1 Analyzing MPI Cache Behaviour 122

Contents ix

5.2.2 Benchmark results . 130

5.2.3 Considerations and Optimization Guidelines 133

5.2.4 Beyond the Last Level Cache Size 135

5.2.5 A Case Study: 3-point Stencil . 135

5.3 Exact Dependence Analysis for Increased Communication Overlap 139

5.3.1 Motivation and State of the Art 139

5.3.2 MPI Semantics in the PM . 141

5.3.3 Implementation and Evaluation . 151

5.3.4 Evaluation . 154

5.4 Static Matching of Communication Statements with Affine Domains . . . 154

5.4.1 Background and Related Work . 155

5.4.2 Preconditions and the Compiler Framework 157

5.4.3 The Message Matching Algorithm 158

5.4.4 Experimental Evaluation . 172

5.5 Summary . 174

6 Conclusion and Future Work 175

6.1 Contributions . 176

6.1.1 Chapter 3 . 176

6.1.2 Chapter 4 . 177

6.1.3 Chapter 5 . 177

6.1.4 Other Contributions . 177

6.2 Future Work . 178

Appendices 179

A The Message Passing Interface 181

A.1 Structure . 182

A.2 Concepts . 182

A.2.1 Communicator . 182

A.2.2 Point-to-Point routines . 183

A.2.3 Collective Routines . 184

A.2.4 Derived Datatypes . 186

B Open MPI’s Runtime Parameters 189

C The Insieme Compiler Toolset 193

C.1 Compiler Infrastructure . 194

C.2 INSPIRE Overview . 194

C.2.1 MPI Semantics in INSPIRE . 195

D The Iterative Dataflow Analysis Framework 199

E Acronyms 203

List of Figures

2.1 Example of a concrete cluster composed of 2 compute nodes, 3 CPUs and
2 GPUs and several memory modules. 14

2.2 Communication protocol used for coordinating sender and receiver for
point-to-point blocking communications. 18

2.3 Sequence diagram for non-blocking operations. 20

2.4 Sequence diagram for barrier primitive given |P| = 4. 21

2.5 Sequence diagram for bcast primitive with p0 being the root process; more-
over |P| = 3 and size = 3. 22

2.6 Sequence diagram for scatter primitive with p0 being the root process;
moreover |P| = 3 and size = 1. 23

2.7 Sequence diagram for gather primitive with p0 being the root process;
moreover |P| = 3 and size = 1. 24

2.8 Sequence diagram for reduce primitive with p0 being the root process;
moreover |P| = 3 and size = 3. 25

2.9 Partial Abstract Syntax Tree (AST) of the program code in Listing 2.1 . . 27

2.10 Complete Control Flow Graph (CFG) of the program code in Listing 2.1 . 35

3.1 MPI CPP Interface (MPP) performance evaluation results. 47

3.2 QUAD MPI performance evaluation of the three code versions. 51

3.3 libWater ’s distributed runtime system architecture. 65

3.4 Directed Acyclic Graph (DAG) of wtr commands generated during the
execution of the code snippet in Listing 3.18. 69

3.5 Dynamic collective communication pattern replacement (Dynamic Col-
lective Replacement (DCR)) optimization. 71

3.6 Strong scaling of libWater on the Vienna Supercomputing Cluster 2 (VSC2)
(1 of 2) . 76

3.7 Strong scaling of libWater on the VSC2 (2 of 2) 77

3.8 Strong scaling of NBody on the Barcelona Supercomputing Center (BSC)’s
MinoTauro Graphics Processing Unit (GPU) Cluster 79

4.1 Performance variance with respect to Open MPI’s default setting regis-
tered for 1000 parameter configurations when used to run the NAS Paral-
lel Benchmarkss (NPBs) on our target architectures with the small node
setting. 91

4.2 Performance variance with respect to Open MPI’s default setting regis-
tered for 1000 parameter configurations when used to run the NPBs on
our target architectures with the large node setting. 92

4.3 Performance gain when using the “best” configuration of an NPB on
LEO2 for running the other three NPBs. 94

xi

List of Figures xii

4.4 Average performance gains of the configurations with best fitness in the
population related to a generation number. 100

4.5 Overview of the Machine Learning (ML)-based method. 102

4.6 Classification of the 19 program features used to characterise MPI programs103

4.7 Performance gain, relative to the Observed Performance Upper-Bound
(OPUB), for the 8 NPBs using parameter settings estimated with random
selection (RAND), k-NN and Artificial Neural Networks (ANNs). 107

4.8 Parameter tuning and application optimization design. 108

4.9 Mean performance gain for btl openib eager limit parameter levels. . . 112

4.10 Performance relative to OPUB for the NPB kernels executed with the
parameters tuned by RAND, BEST and Analysis of Variance (ANOVA). . 115

5.1 LEO3 Inter-node – SCN1 – Send/Receive 128

5.2 LEO3 Intra-node – SCN1 – Send/Receive 129

5.3 LEO3 Inter-node – SCN2 – Cache Pollution 131

5.4 LEO3 Intra-node – SCN2 – Cache Pollution 132

5.5 LEO3 – Evaluation of tuned 3-point stencil application code 137

5.6 VSC2 – Evaluation of tuned 3-point stencil application code 138

5.7 Data Dependence Graph (DDG) for 5-points stencil code in Listing 5.6 . 140

5.8 CFG of Listing 5.8 with annotated, at each CFG block’s exit point, the
values of the dataflow variables generated by the channel analysis. 147

5.9 CFG and dataflow variables generated by the rank propagation analysis
of Listing 5.12. 163

5.10 Preliminary matches for the MPI code in Listing 5.12 determined on the
basis of polyhedral relations. 167

5.11 Maximum network flow for the example of Listing 5.12 for np = 6. 171

List of Tables

3.1 Compiler generated codes for process rank 0 and 1. 54

3.2 Execution time for each process of the program in Listing 3.13 using
Single Program Multiple Data (SPMD) and Multiple Program Multiple
Data (MPMD) models. 55

3.3 Performance counter values for the Intel architecture. 55

3.4 Jacobi relaxation execution time (in seconds) and speedup comparison. . . 60

3.5 The complete libWater API. 63

3.6 The VSC2 and BSC experimental target architecture. 74

3.7 Application codes used for libWater evaluation. 75

3.8 The architecture of mc1, mc2 and mc3 heterogeneous compute nodes. . . . 80

3.9 Performance of MatrixMul and Floyd on the heterogeneous cluster for
different combination of GPUs. 81

4.1 Experimental target architectures. 88

4.2 List of 27 performance runtime parameters meaningful for our target ar-
chitectures. 90

4.3 “Best” parameters values derived by ANOVA and BEST for both target
architectures. 111

4.4 ANOVA results on a selected subset of tuning data for both target archi-
tectures. 114

4.5 Performance gain for the SPEC MPI 2007 [1] applications executed using
the parameter settings estimated by RAND, BEST and ANOVA on the
two target architectures. 116

5.1 Experimental target architectures. 126

5.2 Definition of meet operator, i.e., u, for channel analysis. 143

5.3 Evaluation of the transformed code on the VSC2 and LEO3 cluster, fixed
problem size of 4Kx4K and NUM ITERS=10 154

5.4 Evaluation of the static matching algorithm for real MPI codes. 172

xiii

Chapter 1

Introduction

The needs of many scientific applications often cannot be satisfied by a single comput-

ing system. Typically, the limited amount of memory that can be fitted in a single

system bounds the input problem size used to run an application. Additionally, these

algorithms are usually computational intensive (or computational-bound) and they can

be significantly improved if parallelized. That means that a sequential algorithm is split

into many parallel flows which collaborate together to produce a final result. Symmetric

Multiprocessor System (SMP) machine allows for multiple flows of execution within a

single machine. However, there is a constraint on the number of computational units

due to physical and energy factors making scaling the computational power of a single

computing system expensive and not practical.

The problem of assigning many computing resources to an application has been ad-

dressed by connecting many homogeneous systems together to form a so called distributed

memory system. A generic definition for a distributed memory system was introduced

by [2]:

A distributed memory system is a collection of independent computers that

appears to its users as a single coherent system.

One class of distributed memory systems which are of particular importance for us, and

the field of HPC in general, are Clusters. Clusters are characterized by the underlying

hardware consisting of a collection of similar homogeneous workstations, running the

same operating system, closely connected by means of high-speed local-area networks.

Effectively programming such distributed memory systems poses several challenges which

will be the focus of this thesis. In this work we look at one of the prevalent paradigms

used to program applications for a cluster system, i.e., message-passing. It provides a

1

2

minimal abstraction layer leaving the full control over communication and synchroniza-

tion to the developer. MPI [3] is on one implementation of the message passing paradigm

which is a de-facto standard in HPC systems.

1.1 Motivation

The message passing paradigm offers few basic primitives. This allows for a very low

learning curve; however writing efficient and error-free message passing programs is

known to be a difficult task. Moreover, the interfaces are designed with the goal of

making distributed memory programs agnostic to the underlying architecture. However,

features of the target platform, or the implementing library may prefer a particular style

to another.

The effort of the MPI forum is to standardize a generic message passing interface for

HPC, not its implementation. As of today, several production-quality implementations

exist, e.g., Open MPI, MPICH, and MPIVACH. Internally, these implementations em-

ploy various kind of optimizations making it strenuous for developers to achieve the same

level of performance across them. For example, MPI libraries often use buffering to re-

duce latency. This means that for a program written to rely on a particular buffering

amount will be difficult, if not impractical, to be ported to a different implementation.

Usually a program needs tuning to best fit a specific target platforms. This work is

conducted by experts which can achieve that by matchmaking the characteristics of the

algorithm, the features of the underlying platform and message passing library. Tuning

of a parallel distributed memory program can be very challenging and expensive. Tracing

and post-analysis tools are often employed wasting precious cycles of production clusters.

The huge efforts required to write efficient and error-free message passing programs could

be dramatically reduced by relying on automatic tools. A significant similar problem is

the translation of high-level programming language constructs to assembler instructions

the physical processing unit understands. In particular application areas is not uncom-

mon, for specialists, to tune the code to address specific architectures. However, most of

the applications rely on compilers which, beside mapping complex constructs into basic

operations, they try to optimize the process leveraging unique features of the underlying

processor to fully exploit its capabilities. Compilers are often coupled with runtime sys-

tems which can deliver further optimizations during the execution of a program. These

are two major areas where the HPC community has been focusing its efforts for several

decades. The object of these thesis is to contribute with new approaches and improve

3

upon existing techniques with particular regard to distributed memory programs based

on the message passing paradigm.

1.2 State of the Art

Supporting the development and deployment of distributed memory programs has been

a research topic for decades. In particular we intent to contribute upon three particular

areas:

Simplification: As stated previously, the message passing paradigm has a very low

learning curve since it involves very few concepts (i.e. processes, communication

channels and messages) for a programmer to grasp. However, writing an error-free

and performance efficient program can be challenging since the compiler often does

not understand the structure of the parallel algorithm. For this reason efforts has

been done in order to simplify its usage. Some of the approaches presented in

literature focus on the API of the message passing paradigm [4]. The idea is to

design the interfaces in a way that errors can be avoided, or enable the compiler –

by means of annotations – to capture them. Alternative interfaces for MPI have

been presented over the years, and example is represented by Boost.MPI [5] and

the Object-Oriented MPI (OOMPI) [6].

A more elaborated effort is instead the definition of new programming models

for distributed memory introducing higher level abstractions which are easier to

manage with in a program. For example the Partitioned Global Address Space

(PGAS) model [7] belongs to this category. PGAS-based languages introduce few

extensions which make distributed memory programming easier (since most of the

effort of producing low-level communications is offloaded to a compiler), however

they did not reach the level of adaptation expected due to the poor scalability of

the generated code. One of the latest advancement in this area is the definition

of the OpenCL programming model OpenCL. OpenCL targets non-distributed

heterogeneous architectures, in this thesis we realize a distributed runtime system

which enables OpenCL programs to target heterogeneous clusters.

Runtime: In HPC, implementations of the message passing paradigm try to adapt to

the underlying cluster architecture in a way which is transparent to the program.

Many efforts exist in literature which target this aspect of message passing libraries.

For example, coalescing of many short messages, is employed to reduce latency and

network injection rate [8]. Detection of communication patterns is also another

interesting research area which replaces single point-to-point communications into

4

more complex collective patterns (e.g. broadcast, gather or scatter) which can

be natively supported by an advanced message passing library like MPI [9, 10].

These runtime systems also offer several dozens tunable parameters which can be

customized to improve the performance of a given application on a selected target

architecture. The advantage of this solution is that the performance of a program

can be improved without the need to change or recompile the input program.

Work in literature use rudimentary techniques to address this problem [11]. Thus

several hundred evaluations of the input program are needed to find a satisfying

setting of the input parameters. In this thesis we set to explore more sophisticated

techniques, based on evolutionary algorithms, ML and statistical analysis [12–14],

with the aim to reduce the search costs.

Compiler: Several work exist which approach the problem of optimizing message pass-

ing programs using compiler technology. In runtime based approaches, analysis

has to be conducted during the execution in order to determine when a certain op-

timization can be carried out. It is important that any of the overhead introduced

by this dynamic analysis is neutralized by the optimization. Static approaches do

not suffer from this problem since the cost of the analysis is transfered at com-

pilation time with no impact on the execution. Several work exist in literature

using compiler technology for hoisting and coalesce communications [15, 16]. Also

detection of communication patterns and their replacement has been the subject

of many work in literature [17, 18]. However, compiler based approached did not

find large application in mainstream compilers due to their complexity and scarce

maturity.

1.3 Thesis Goals

Writing a deadlock-free distributed memory program is often cumbersome and the com-

piler provides very little help in spotting parallelization errors. Furthermore, programs

often use the SPMD paradigm, leveraging control-flow statements to assign work to

each processor thereby affecting performance. In this thesis we use features of the C++

programming language, such as template meta-programming and Object-Oriented Pro-

gramming (OOP), to introduce new abstractions with the purpose of transforming

the message passing programming model from an imperative to a declarative

style offloading generation of optimized message passing code to the C++ compiler.

The OpenCL programming model emphasizes a programming style which relies on a

runtime system to dispatch commands asynchronously to devices. Although OpenCL

was thought with a single heterogeneous computing system in mind, its extension to

5

distributed memory systems can be achieved with an enhanced runtime system with-

out the need of altering the programming interface. This thesis presents an OpenCL

distributed runtime system which aims at latency hiding and low resource

utilization.

The performance of message passing programs is very sensitive in terms of the values

settings for its runtime parameters. Tuning these parameters manually is infeasible as

there are hundreds of them and it requires weeks and months to determine efficient pa-

rameter values. In this thesis we describe a novel method for auto-tuning of message

passing runtime parameters that deals with this problem.

Placing of communication statements within a program can be not trivial if caching

effects are taken into account. However, one of the generalizations of this problem states

that send operations should be issued as soon as possible and receives right before the

utilization of the received value. In this thesis we explore the effects of message passing on

caches and we elaborate communication statement placement strategies that

improve cache behaviour. Furthermore, we present a mechanism to maximize,

automatically at compile time, communication over computation overlap for

any message passing program based on point-to-point communications.

One of the main challenges for the analysis of message passing programs is to statically

determine, given a communication statement S, the set of statements that match with S.

This information is important in order to understand how data is exchanged among pro-

cesses, i.e., the communication graph. Since the evolution of a message passing program

is non-deterministic, this problem presents serious challenges if addressed in a static ap-

proach. In this thesis we present a novel algorithm based on a heuristic capable

of determining matching information eliminating some of the limits imposed by

previous work.

1.4 Thesis Organization

This thesis is divided into four additional chapters. Chapter 2 introduces the concepts

and the formalism which will be used throughout this work. In Section 2.1, the elements

of a distributed memory system are introduced and formalized. Section 2.2 introduces

the abstractions and the basic routines utilized to write parallel programs based on the

message passing paradigm. The chapter concludes with Section 2.3 which introduce the

concept of program and its representation within a compiler.

Chapter 3 focuses on simplification of distributed memory programming, three separate

works are presented. First, in Section 3.2, some of the pitfalls common in the usage

6

of MPI are discussed and an alternative interface called MPP, based on C++, is pre-

sented. MPP’s design goals are on minimal overhead, native support to user datatypes

and simplicity of use. Section 3.3 deals with the message passing programming model,

some of the typical performance problems caused by the use of message passing and

the SPMD programming model are shown. A library approach, which leverages tem-

plate meta-programming capabilities of the C++ compiler, is presented. This allows

generation of optimized communication code from a declarative specification provided

by the programmer. The last work, presented in Section 3.4 borrows concepts from

the OpenCL programming model and it combines them with message passing to real-

izes a framework called libWater. libWater consists of a minimal API and a powerful

distributed runtime system which embodies a technology that automatically recognizes

inefficient communication patterns and transparently optimizes them at runtime.

Chapter 4 investigates optimization capabilities of the MPI library through the tuning

of available runtime parameters. A motivational study is presented showing the impact

that these parameters have on performance. Moreover, it is shown that best parameter

settings usually depend on the application code, the target architecture and the input

data. Three approaches are proposes in this chapter which aim to MPI runtime pa-

rameter tuning, each better suited for a different use case scenario. The first method,

presented in Section 4.5, is based on evolutionary techniques. The given application

code is executed against randomly generated parameter settings. Combinations with

fastest execution times are recombined, by means of the crossover and mutation op-

erators, to form new settings. In Section 4.6, the second technique is discussed which

drastically reduces the number of executions of the given input code to one by employing

advanced machine learning techniques to build a prediction model from training data.

Last approach, in Section 4.7, moves the focus from single application codes to a class of

applications with similar workload. With this method, based on statistical techniques,

a single parameter setting, which is an optimal trade-off among a class of applications,

is derived. Applications with similar workload automatically take advantage of this

parameter setting, no additional runs are required.

In Chapter 5 focuses on static approaches leveraging compiler technology. Several anal-

yses and transformations are presented. At first, in Section 5.2, the effects of point-to-

point communications on the processor cache are analyzed and a series of optimization

guidelines are derived, from benchmark data, that can be incorporated into a compiler

to place communication statements in a way that cache reuse is maximized. In a second

work, presented in Section 5.3, the advanced analysis capabilities of the PM are uti-

lized to analyze point-to-point message passing statements within computation loops.

By computing the instance-based data dependencies within the loop, the earlies and

7

latest possible placement of communication statements is detected. This method im-

proves over previous techniques which use a more coarse-grained analysis result. Code

is transformed so that the computation/communication overlap ratio is maximized and

thus communication overhead is minimized. Section 5.4 discusses the last work of this

thesis: a novel analysis for static matching of point-to-point communication statements.

This approach uses elements of dataflow analysis and the polyhedral model to divide

the input code into independent regions. Within those regions it discovers all possi-

ble matchings between communication statements through the use of the network flow

algorithm. Compared to the state-of-the-art, this work is the first that can deal with

non-blocking routines and wildcards.

Chapter 6 concludes this thesis providing the list of peer-reviewed publications which

support the findings in this thesis and discussing future work.

Chapter 2

Model

In this chapter we present a formal model that defines the main concepts used throughout

the whole thesis. Three separate models are presented: the hardware, the message passing

and the program model. In Section 2.1, we formally describe the structure of a Cluster

computing system, an important class of distributed memory systems employed in HPC.

This represents the machine architecture targeted by the analyses and optimizations pre-

sented in this thesis. The message passing model, presented in Section 2.2, formally

provides the paradigm used to program such distributed memory architectures. At last,

in Section 2.3, the program model introduces the data structure typically employed by

compilers to represent and manipulate programs.

2.1 Hardware Model

In this section, the elements composing a generic cluster computing system are defined

using a bottom-up fashion. We thereby introduce the terminology which will be used

throughout the rest of this thesis.

Definition 1 – Computing Unit

Let a computing unit, cu, be part of a computer system that carries out arithmetic,

logical, and decision-making operations. Physically, such entity is implemented

by a single core of a Central Processing Unit (CPU) or an accelerator core of a

GPU. Typical a cu contains a number of registers and redundant functional units to

achieve an increased Instruction Level Parallelism (ILP) which is typical of super-

scalar architectures. The set of all computing units is denoted by CU . A cu is

mapped to a physical location within a topology, represented by an integer tuple,

through the bijective function map : CU → N×N× . . .×N. The function is generic

to allow the representation of arbitrary topologies.

9

10

A cu is usually characterized by the peek amount of performed instructions per second

(IPS). In HPC, the capabilities of a cu is better defined by the number of FLoating-

point Operations Per Second (FLOPS). Scientific applications heavily rely on single-

and double-precision floating point values. FLOPS is an important unit which is used

to rank world’s fastest supercomputers [19].

Definition 2 – Chip

Let a chip, c, be an integrated circuit packaging multiple instances of the same cu.

Examples of such entity are multi-core CPUs and GPUs. The set of chips within

a computing system is denoted by C. Within a chip, a cu is identified by a unique

identifier. For such purpose we can define the bijective function mapcu : CU →
C×N. Since multiple chips can be hosted in a computing system, addressing is done

through the function mapc : C → N function. Hence, within a computing system,

mapping of a cu is obtained by combining the functions map = mapcu◦mapc : CU →
N×N. In the produced tuple (i, j) the first dimension, i, refers to the chip identifier

whereas the second dimension, j, is the position of the mapped cu within the chip.

For example a computing system composed of two dual-core CPU chips (i.e., 4 cus) and

one GPU with a single computing unit (i.e., gu1) is represented as follows:

map :

cu1 → (0, 0)

cu2 → (0, 1)

cu3 → (1, 0)

cu4 → (1, 1)

gu1 → (2, 0)

As a convention, the GPU chips are always listed after the CPUs.

In this thesis we solely address homogeneous chips, this means that within a chip the

computing units are all of the same type, e.g., multi-core CPUs such as AMD Opteron,

Intel Xeon and IBM Power. It is worth noting that, the architecture and programma-

bility aspects of homogeneous chips are different from heterogeneous ones, also known in

literature as System on Chips (SoCs). In such systems, different cu types are combined

into a single package. SoCs represent an important development of micro-processor

technology which is being driven by embedded systems.

Definition 3 – Memory Unit

Let a memory unit, mu, be the part of a computer system where information and

instructions are fetched and stored. The set of all memory units in a system is

denoted by MU . A mu can be private to a cu or shared among several of them.

11

A mu is mapped to the set of entities (i.e., computing or memory units) which can

access its content. Hence, mapmu :MU → {(CU ∪MU)}.

For example, a system which contains a single memory, mm, shared among all computing

units, i.e., cu1, cu2, cu3, has a mapping function defined as follows: mapmu : {mm} →
{cu1, cu2, cu3}. We identify with the term main memory, mm, an instance of mu which

is directly or indirectly accessible by every chip of a computing system.

Memory units can be organized into hierarchies such that small, fast memories (i.e.,

registers and caches) nearby a cu act as staging areas for a subset of the data and

instructions stored in the relatively slow main memory. Coherency between such hi-

erarchies is maintained by means of hardware cache coherency protocols (e.g., MESI,

MOESI) [20].

Definition 4 – Cache

We denote with the term cache a generic memory unit whose coherence with the

main memory is automatically managed via hardware protocols and thus not con-

trolled by the programmer. Caches are usually structured into hierarchies. Cache

levels are identified with the abbreviation Li, i ∈ N. Each mu is mapped to

a cache level via mapcl : MU → N. We identify with MULi the set of mus

mapped to cache level i. Cache hierarchies are structured in a way such that the

content of memory units at level i, i.e., cnt(MULi) have the following property:

cnt(MUL1) ⊆ cnt(MUL2) ⊆ . . . ⊆ cnt(MULN).

For example, in a system with three computing units, CU = {cu1, cu2, cu3}, where each

core has a private L1 cache,MUL1 = {mu1,mu2,mu3 }, the mapping function is defined

as follows:

mapmu :

{mui} → {cui} ∀ i ∈ [1, 3]

{mm} → {mu1,mu2,mu3}

Lower cache levels are usually small and private to a single cu while higher level ones

are significantly larger and shared among all computing units in a chip. In a hierarchy,

memory modules in a cache level Li are directly interfaced with level Li+1, mus at the

higher cache level are interfaced with the main memory. This type of memory structure

has the characteristic that a processor can access its own local memory faster than

non-local memory (i.e., memory local to another processor or memory shared between

processors). This is known in literature as Non-Uniform Memory Access (NUMA). In

particular, the class of coherent memory systems are known as Cache coherent NUMA

(ccNUMA). The number of levels and their private/shared nature may change between

12

chips, therefore throughout the rest of the thesis such details will be provided for the

different architectures used in the experimental sections.

Definition 5 – Non-coherent memory unit

A scratchpad memory or local store is a non-coherent memory unit which must be

managed by the programmer and it is directly interfaced with the main memory.

Scratchpad memories are usually utilized within accelerator devices to mitigate for

the slow rate at which data can be transfered to and from a device. In such context,

local store is referred to as device memory.

The principal purpose behind the use of caches and local stores is to address the so

called memory wall problem. The growing disparity of speed between chips and main

memory makes memory latency an overwhelming bottleneck in computer performance.

An important reason for this disparity is the limited communication bandwidth beyond

chip boundaries. By interposing several buffering stages between chips and mm, the

time for which a cu is waiting for instructions and data is optimized. It is therefore

the duty of the programmer (and the compiler) to take into account the memory layout

(even in the presence of cache-coherency) of the target machine in order to produce

performance efficient code.

Definition 6 – Computing Node

Let a computing node, cn, be a computer system (e.g., a workstation or a server)

containing a number of chips, ⊆ C, and memory units, ⊆ MU , which share in-

formation through access to the main memory. The set of all computing nodes

is denoted by CN . Additionally, a Network interface Controller (NiC) allows a

cu to physically interface to a network which interconnects the set of CN . As for

computing units, computing nodes are identified by a unique number by the func-

tion mapcn : CN → N. Throughout this thesis we also refer to the subset of CN
represented by homogeneous multi-chip systems with the term SMPs.

As part of this thesis we consider the network as a transparent link which enables the

exchange of information between the main memory modules of two, or more, distinct

computing nodes. In practise, network interconnects reflects an active field of research;

these aspects are orthogonal to the techniques presented in this thesis. The arrange-

ment of the various elements (e.g., computing nodes, links and cables) of a cluster is

called a network topology. Examples of topologies for HPC systems are: fat-trees, multi-

dimensional meshes and toroids, and hyper-cubes [21]. Beside the topology, another

important characteristic of a network is the interconnecting medium.

Definition 7 – Bandwidth

A medium defines the rate at which information can travel from one computing node

13

to another and the allowed maximum possible distance a signal can travel without

being compromised. Such transmission rate is also called network bandwidth, which

is measured in bits per second (bps).

Definition 8 – Latency

Another important characteristic of the interconnection medium is the delay occur-

ring between the transmission of a packet of data and its arrival to the destination

node. This is also called network latency, which is measured in seconds. Latency is

not only a function of the medium but also of the topology, NiC and software stack.

High-speed interconnects, like InfiniBand QDR, have a bandwidth of around 96Gbps

and a latency of 140 ns. Cheaper network medium, such as Ethernet, currently has a

bandwidth of 10Gbps and a latency of 2 to 4 µs.

The building blocks of a generic distributed memory system have been presented. Within

this thesis we solely focus on a class of distributed memory systems called clusters.

Definition 9 – Cluster

Let us define a cluster computer that consists of a set of locally connected homo-

geneous computing nodes each of them running its own instance of an operating

system (OS). Data, d ,between two nodes, a and b, is exchanged by sending a mes-

sage containing a copy of data d from node a to node b through the network. Within

a cluster, computing units are topologically mapped to a unique location through

function map : CU → N×N×N function. Elements of the triplet (i, j, k) represent,

respectively, the node identifier, i, the chip identifier within a computing node, j,

and the relative position of a cu within the chip, k. Since we are not interested in

modeling network topologies, the three-dimensional space defined by our mapping

function suffices to describe physical cluster systems that we will be utilized in this

thesis.

In Figure 2.1 an example of an heterogeneous cluster is shown. The cluster is composed

of 2 compute nodes, cni and cnj . The first node has 2 CPUs and one GPU. Each CPU is

composed of 4 compute units which have identical architectures. Each cu has a private

L1 cache (i.e., mu0−3 and mu5−8) and the 4 cus in one chip share an L2 cache (i.e.,

mu4 and mu9). mu11 is the main memory of the first compute node and it connects

to the gpu0 using a scratchpad memory, mu10. The GPU is composed of 8 compute

units. The second node of the cluster, cn1 has a slightly different architecture. A much

smaller GPU with no scratchpad memory is present and only a single quad-core CPU

called cpu3. Every compute unit in the diagram is annotated with a triplet representing

the mapping onto this topology. It can be seen that every element can be addressed

univocally.

14

cu0 cu1

cu2 cu3

mu0 mu1

mu3mu2

cpu0

mu4

cu4 cu5

cu6 cu7

mu5 mu6

mu8mu7

cpu1

mu9

mu11 (main memory)

gu0 gu1 gu2 gu3

gu4 gu5 gu6 gu7

gpu0

mu10 (scratchpad memory)

cni

N
iC

cu0 cu1

cu2 cu3

mu12 mu13

mu15mu14

cpu3

mu16 (mm)

gu8 gu9

gu10 gu11

gpu1

cnj

N
iC

(0,0,0) (0,0,1)

(0,0,2) (0,0,3)

(0,1,0) (0,1,1)

(0,1,2) (0,1,3)

(0,2,0) (0,2,1) (0,2,2) (0,2,3)

(0,2,4) (0,2,5) (0,2,6) (0,2,7)

(1,0,0) (1,0,1)

(1,0,2) (1,0,3)

(1,1,0) (1,1,1)

(1,1,2) (1,1,3)

Figure 2.1: Example of a concrete cluster composed of 2 compute nodes, 3 CPUs and
2 GPUs and several memory modules.

2.2 The Message Passing Model

Programmability of distributed memory systems often relies on the message passing

paradigm. A basic assumption is that the OS running in each computing node provides

the means to access and manage node resources. The set of resources within a node is

defined by the subset of CU ∪MU which are mapped to the same node identifier. Since

programming models do not directly address hardware entities, abstractions, usually

provided by an OS, need to be defined.

Definition 10 – Process

Let a process, p, be an entity (or object) that models the execution context of a

program. A program is composed of a sequence of instructions which are loaded into

the main memory, see Section 2.3. A program becomes a process once moved into

main memory by the OS scheduler. A process instance is created when a program is

executed and terminated when the execution is complete. The OS allocates various

resources to the process as the program execution evolves, e.g., memory units, file

descriptors and compute units. The execution context of the process consists of this

15

resource allocation information, the current state of the program execution (e.g.,

the register values of the cu executing that program), the instruction that is to be

executed next, and other information related to the program execution. The set of

all processes is denoted by P. A process is identified by a number, pid or rank,

which is unique. With np we express the number of processes in P, its cardinality

|P|, such as 0 ≤ p < np.

A process needs a cu to execute assigned instructions. In general, a process may use

multiple threads of execution; however in this thesis we only focus on processes which are

single threaded. Since a cu is an exclusive resource (because it cannot be used by more

the one process at the time), the OS takes care of allocating these resources to processes

in a fair and effective manner. This is also known as resource scheduling. Multiple

cus in a computing node allow for many processes to execute simultaneously. However,

normally the number of processes in a system is larger than the number of cus hence

resources need to be shared or multiplexed. There are two ways to share or multiplex a

resource: (i) time-multiplexing, where processes take turns in using the resource (e.g.,

processor), and (ii) space-multiplexing, where processes occupy different parts of the

resource simultaneously (e.g., main memory).

In the context of cluster systems, we assume that there are always as many computing

units as processes available. Practically, this means that a process is scheduled to a cu

and owns that resource until completion. Instantiating more processes than available

resources is a practice called node over-subscription. It is particularly useful for work-

loads which are I/O bound, HPC workload tend to be more CPU bound and therefore

this practise is highly discouraged.

Definition 11 – Processor Affinity

The mapping of processes to a cu, which is done by the OS resource scheduler, can

be customized by means of user policies. Processor affinity forces a process to be

bound to a specific cu or a set of cus. This allows the implementation of scheduling

strategies which are aware of the application semantics.

Beside modeling processes, an OS also abstracts the storage area allocated to a process

where information (such as code and data) are kept during execution.

Definition 12 – Address Space

Let an address, addrp with p ∈ P, be a name or a number which uniquely identifies

an entity in the main memory such as a constant, a variable or an instruction of

process p. Let the set of entities used by a program p be Ap, or address space,

an area of the main memory for which the following property holds ∀p1, p2 ∈ P if

p1 6= p2 ⇒ Ap1

⋂Ap2 = ∅.

16

Definition 13 – Sequential/Parallel Program

A program which uses a single process with a single flow of execution is also called

a sequential program. On the contrary, an application which requires multiple pro-

cesses working together (referred to as cooperating processes) is a parallel program.

In our model, cooperating processes are loosely connected in the sense that they

have independent private address spaces and may run at different speeds.

We distinguish two main categories of parallel programs:

SPMD: A single program is executed by multiple process instances. Control statements

select different parts to execute.

MPMD: Potentially separate programs which are executed by separate processes.

In both cases, processes interact among themselves by exchanging information. In shared

memory programs this is done through writing and reading data onto a location shared

among interacting processes. In distributed memory programs this information is pack-

aged into messages which are exchanged through an interconnect medium (the comput-

ing network or the computing node bus). The producer of a message is called sender,

and the consumer the receiver. A process may act both as a producer and a consumer

during its lifetime.

Definition 14 – Message

Let us define a message, msg, as the tuple (envelope, data). The envelope (or

header) is the part of a message that contains information necessary for the correct

delivery of the message from the sender to the receiver. This includes the sender

and receiver process ranks, or its unique identifier, and the communication context.

In our context we often assume there is always one communication context and it

is represented by the set of all processes P. The data (or payload) is instead the

actual transmitted information. This part consists of a sequence of elements (which

may be empty), each of them carrying information on its data type.

2.2.1 Point-to-Point Primitives

As stated before, messages travel thought a network, if the processes are not located in

the same computing node. Since the programming model abstracts from such low-level

hardware details we introduce the concept of communication channel which models the

medium interconnecting two process instances. Practically, a channel is said to be intra-

node if it logically connects two processes in the same computing node; an inter-node

channel connects instead processes belonging to different computing nodes.

17

Definition 15 – Channel

Let us define a channel, ch(pi, pj) with 0 ≤ i, j < np, as a bidirectional virtual

connection between two endpoints, pi and pj ∈ P. An endpoint is always a process,

hence px is a process identifier. The purpose of a channel is to deliver a message

from one endpoint to the other. Moreover, the channel abstraction provides two

important properties on which the message passing programming model relies: (i)

guaranteed delivery of a message, and (ii) non-overtaking of messages. Therefore a

channel guarantees that messages arrive with the same order of dispatch in a First

In, First Out (FIFO) fashion. Many channels can exist between the same pair of

processes, we call this set CH(pi, pj). The commutative property holds, such that

CH(pi, pj) = CH(pj , pi). The set of all channels within a parallel application is

denoted with CH.

A channel provides five fundamental primitives:

Definition 16 – send

Let us define the routine

send(addrp, size, pdest, ch)

When invoked by a generic process p ∈ P, the semantics of the communication

primitive is the following. p transfers size bytes from the address addrp ∈ Ap

towards destination process pdest through the channel chc. This assumes that there

exists a channel ch(p, pdest) ∈ CH(p, pdest). If not, the channel is created. The

semantics of the send primitive can be formally represented as follows:

∀i ∈ [0, size)⇒ addrpdest [i] := addrp[i]

Where the := symbol denotes the assignment operator.

If pdest is not ready for receiving the data then p blocks (within the send routine) until

pdest has posted a receive operation (i.e., recv) on the same communication channel.

Definition 17 – recv

Let us define the routine

recv(addrp, size, psrc, ch)

When invoked by a generic process p ∈ P, the semantics of the communication

primitive is the following. p receives size bytes from source process psrc and stores

them starting from the address addrp ∈ Ap. The transfer happens through the

18

P
0

P
1

send(buff,5,1,0)

recv(buff,5,0,0)

Request to Send (RTS)

Clear to Send (CTS)

data transfer

w
ai
t

w
ait

send(buff,5,1,0)

recv(buff,5,0,0)

Request to Send (RTS)

Clear to Send (CTS)

data transfer

w
ai
t

w
ait

Figure 2.2: Communication protocol used for coordinating sender and receiver for
point-to-point blocking communications.

channel ch(psrc, p) ∈ CH(psrc, p). A wildcard, any (or ∗) is used to allow a receive

operation to match a message which may be delivered from an unknown source

process or channel. Hence both psrc and the channel can be set to the wildcard

any. For example, with a recv(a1, size1, pdest, ∗) operation, process p accepts mes-

sages issued by process rank 2 incoming from the subset of channels of CH(pdest, p).

Similarly, the operation recv(a2, size2, ∗, c) accepts messages from any process dis-

patched by the set of channels {ch(x, p) |x ∈ P} ⊆ CH. The semantics of the recv

primitive can be formally represented as follows:

∀i ∈ [0, size)⇒ addrp[i] := addrpsrc [i]

send and recv are blocking primitives. This means that the control is given back to

the caller when the data transfer between the two processes is completed. Since the

sender cannot start the transfer before the receiver is ready to store the data, a network

protocol is necessary. The rendezvous protocol is often used in message passing libraries,

it is schematically depicted in Figure 2.2. The protocol dictates that the sender process

sends a message to the receiver requesting the permission to send data (i.e., RTS message).

When the receiver is ready (i.e., the recv primitive has been issued), it sends back an

acknowledgment, the CTS message, and prepares itself to receive the message data which

is transfered immediately after.

19

One of the major drawbacks of the rendezvous protocol is its costs in terms of latency,

since several messages are exchanged during the initial negotiation process, or hand-

shaking. As explained in Appendix A message passing libraries for HPC use several

strategies and buffering to reduce communication latency.

Similar to the send routine, a recv blocks if psrc has not issued a send operation. Because

of the blocking semantics, the improper use of the send and recv routines may lead to

a situation in which two processes are both waiting for the other to issue a receive

operation before proceeding. The result is that both processes wait indefinitely. This

condition is called deadlock. It is the responsibility of the programmer to prevent such

situation from happening.

send and recv also have a non-blocking (or asynchronous) version called isend and irecv,

respectively.

Definition 18 – isend

Let us define the routine

isend(addrp, size, pdest, ch, h)

The difference with the send primitive, in Definition 16, is the additional h argu-

ment which represents a handle, returned by the function, used for checking the

completion of the data transfer. The semantics is similar to the one described

in Definition 16, however the isend immediately completes without waiting for a

matching receive operation.

Definition 19 – irecv

Let us define the routine

irecv(addrp, size, psrc, ch, h)

As described in Definitions 17 and 18 the difference is the presence of the h han-

dle which is used to check whether the data has been received. Also in this case

the semantics is non-blocking, which means that the irecv routines immediately

completes.

The advantage of using non-blocking routines is that a program can do some useful com-

putation while the data transfer is being performed in the background. This optimization

technique is also known in literature as the communication/computation overlap. It is

however important that the area of memory [addrp, addrp + size) ⊆ Ap is not accessed

during the transfer. In particular, in the case of a isend, the memory can be read but not

written; during an asynchronous irecv the memory area being transfered should neither

20

P
0

P
1

isend(buff,5,1,0,h)
irecv(buff,5,0,0,h)

RTS

CTS

data transfer

w
ai

t

w
ait

wait(h)

w
ai

t

overlap with work

wait(h)

overlap with work

w
ait

Figure 2.3: Sequence diagram for non-blocking operations.

be read nor written. This is because the data transfer is offloaded to an auxiliary process

(or a specialized hardware such as a Direct Memory Access (DMA) processor) which

executes in parallel to process which has issued the communication. If the input buffer

is changed before the auxiliary process performs the data transfer, then the receiver

obtains the updated value and not the one at the moment the operation was issued.

Access to the buffer data is allowed only after checking for its completion, this is done

through the wait routine.

Definition 20 – wait

Let us define the routine

wait(h)

This operation, given an handle from a non-blocking routine, checks whether the

transfer is completed. If not, the routine blocks and waits until the data has been

effectively sent or received. Otherwise it simply returns.

In Figure 2.3 a sequence diagram which explains the semantics of non-blocking opera-

tions. When a non-blocking operation is issued the control is immediately returned to

the caller and the burden of executing the handshake protocol is delegated to a second

flow of execution which is either a newly spawned process, or a specialized hardware

(e.g., DMA). This allows the worker to overlap computational work while in the back-

ground the message is being transferred. The wait primitive allows the programmer to

check for completion of a communication routine.

The programming model introduced until here allows exchange of messages whose size

is already known a priori. In order to overcome this limitation, a routine is utilized to

probe a channel for incoming messages.

Definition 21 – probe

Let us define the routine

probe(psrc, c)

21

Figure 2.4: Sequence diagram for barrier primitive given |P| = 4.

Given the channel chi(psrc, p), this routine says whether there is a pending message.

If found it returns the identifier of the sender process, the amount of data and the

corresponding type. Similarly to the recv routine, wildcards can be used to match

any sender and any available channel (see Definition 17).

It is worth noting that the probe does not receive the message, in order to retrieve the

content of the pending message the recv or irecv routines must be utilized.

2.2.2 Collective Primitives

On top of point-to-point communication routines, we can define more complex abstrac-

tions which involve the entire group (or a subset) of the available processes. Such

operations are called collective primitives. We define 4 primitive operations which must

be invoked by all processes, collective routines are always blocking and all processes

need to contribute in order for the routine to complete. We assume in our model that

such operations always require all processes in a parallel program to take part in the

computation.

Definition 22 – barrier

Let us define the primitive

barrier()

The first routine is a synchronization primitive which is utilized to make sure that

all processes reached a program point. The routine is blocking and it returns the

control only when all processes reached the barrier.

It is worth noting that a synchronization point is not given by the statement itself but

instead multiple barrier operations, in different program points, must contribute to the

same logic barrier instance. A sequence diagram of the barrier operations is depicted in

Figure 2.4. It is interesting to note that the barrier is a pure synchronization routine.

22

bcast(b0,3,0)

P
0

P
1

P
2

b0 0 1 2 b1 # & 0 b2 # @ %

b1 0 1 2 b2 0 1 2

bcast(b1,3,0) bcast(b2,3,0)

b0 0 1 2

w
ai
t

Figure 2.5: Sequence diagram for bcast primitive with p0 being the root process;
moreover |P| = 3 and size = 3.

This means that no program data is exchanged and the time spent inside the routine is

pure overhead. Therefore it is considered a good practice to avoid its usage.

Definition 23 – bcast

Let us define the primitive

bcast(addr, size, proot)

This operation copies size bytes, starting from local memory address addr of process

proot, i.e., [addrproot , addrproot + size) ⊂ Aproot , to processes, P − proot, address

memory spaces, i.e., ∀ p ∈ P−proot : [addrp, addrp +size) ⊂ Ap. It therefore results

in the following operation across memory address spaces:

∀i ∈ [0, size), ∀ p ∈ P − proot ⇒ addrp[i] := addrproot [i]

While for the root process the operation is a read operation of the provided memory

segment, it is a write for the remaining processes. In Figure 2.5 a diagram depicts the

semantics of the bcast operation. The content of the buffer of the root process p0, i.e.,

b0, is copied to buffer locations provided by the remaining processes p1 and p2.

Definition 24 – scatter

Let us define the primitive

scatter(addr, size, proot)

Similar to a bcast, this routine allows a root process, i.e., proot, to distributed local

data to processes P−proot. In particular, the scatter takes the [addrproot , addrproot +

size) bytes and distribute the content to remaining processes as described by the

23

scatter(b0,1,0)

P
0

P
1

P
2

b0 1 2 b1 # b2 $

b1 1 b2 2

scatter(b1,1,0) scatter(b2,1,0)

b0 1 2

w
ai
t

0

0

Figure 2.6: Sequence diagram for scatter primitive with p0 being the root process;
moreover |P| = 3 and size = 1.

following formula:

∀ p ∈ P−proot ⇒ [addrp, addrp+size/np) := [addrproot+size/np∗p, addrproot+size/np∗(p+1))

The sequence diagram in Figure 2.6 depicts an example of a scatter operation performed

by 3 processes, p0, p1 and p2. All processes in P invokes the collective routine providing

a buffer. The root process, i.e., p0, provides a buffer, b0, with (|P|) ∗ size elements

while the other processes buffers with size elements. As a consequence of the scatter

operation of Figure 2.6, having size = 1, the content of b0 at position i is copied to the

first element of buffer bi belonging to process pi.

Definition 25 – gather

Let us define the primitive

gather(addr, size, proot)

This is the inverse of the scatter operation. It gathers size/np chunks of data

coming from the memory address spaces of np distinct processes into the memory

space of the root process, i.e., proot. Formally we can describe the operation as

follows:

∀ p ∈ P−proot : [addrproot+size/np∗p, addrproot+size/np∗(p+1)) := [addrp, addrp+size/np)

Figure 2.7 shows the sequence diagram of the gather operation. The way and the order

data is gathered towards the root node p0 is not necessary the one depicted in Figure 2.7.

Several strategies are often employed by concrete implementations which takes care of

various aspects, e.g., the network topology.

24

gather(b0,1,0)

P
0

P
1

P
2

b0 # $ b1 1 b2 2

b1 1 b2 2

gather(b1,1,0) gather(b2,1,0)

b0 1 2

w
ai
t

0

0

Figure 2.7: Sequence diagram for gather primitive with p0 being the root process;
moreover |P| = 3 and size = 1.

In our model scatter and gather operations assume that all processes contribute with the

same amount of data and the root process with none. However, in concrete implementa-

tion of the message passing paradigm, e.g., MPI, the semantics is slightly different since

processes can contribute with different chunk sizes to the collective call and moreover,

the root process must also contribute. Differences and analogies between our formal

model and the concrete API provided my the MPI library are discussed in Appendix A.

Last primitive of our formal model combines data transfer and computation.

Definition 26 – reduce

Let us define the primitive

reduce(addr, size, func, proot)

This routine combines data from all the processes (except from proot) using func

and stores the combined value in the buffer provided by proot. Each process can

provide one element, or a sequence of elements, in which case the func operation is

executed element-wise on each entry of the sequence. The formal semantics is the

following:

∀i ∈ [0, size),∀ p ∈ P : addrproot [i] := func(addrp[i], . . .)

We assume the arity of func to be np−1 however, to simplify its concrete definition,

a binary function is allowed so that the final value of the reduction can be computed

by composing the results of the reductions at intermediate steps. In order for the

result to be correct the provided func must be associative. Additionally, since

the implementation can decide the order on which preliminary results are reduced

together, func must also be commutative.

25

reduce(b0,3,+,0)

P
0

P
1

P
2

b0 0 0

reduce(b1,3,+,0) reduce(b2,3,+,0)

w
ai
t

0

b0 3 3 3

b1 1 1 1 b2 2 2 2

b1 1 1 1 b2 2 2 2

Figure 2.8: Sequence diagram for reduce primitive with p0 being the root process;
moreover |P| = 3 and size = 3.

A sequence diagram of the reduce operation between |P| = 3 processes is shown in

Figure 2.8. The root process is p0 and the reduction operator, i.e., func, is the binary

plus operator. In this specific case the reduction is done by summing up, element-wise,

the elements of array b1 and b2. The result is then sent to the root process and combined

with the local array b0 which is also utilized to store the final result. As previously stated,

an implementation of this model may use a different strategy, therefore the reduction

operator needs to be associative and commutative.

2.3 The Program Model

In Section 2.2, we described a program as a sequence of basic machine instructions (such

as load, store, move) which are executed by a process. Programs are encoded in a way

that are directly executable by a designated cu, i.e., machine code. Depending on the

cu architecture a different version of the machine code must be provided.

In order to allow portability, programs are usually written using a higher-level, human-

readable representation, a source code, that a separate program, known as the compiler,

converts into machine code. During the conversion, the compiler analyses the source

code and transforms it in order to improve its performance.

Computer programs can be categorized by the programming language paradigm used to

produce them [22]. Two of the main paradigms are imperative and declarative:

Imperative: Programs written using an imperative language specify an algorithm using

declarations, expressions and statements. These entities are used to define the data-

and control-flow of a program.

26

Declarative: Programs written using a declarative language specify the properties that

have to be met by the output. They do not specify details expressed in terms of the

control flow of the executing machine but of the mathematical relations between

the declared objects and their properties.

In this thesis we pose our focus on imperative paradigms only. However, in Section 3.3,

we propose an extension of the message passing programming model which uses a declar-

ative paradigm to hide low level generation of communication routines.

Definition 27 – Variable

Let us define a variable, var, as a storage location (∈ A) and an associated symbolic

name (an identifier) which contains some quantity or information, a value. The

variable name can be used to reference the stored value, the binding between the

variable name and its location within the address space is done by the compiler

when machine code is generated. The identifier in source code can be bound to

a value during run-time or at compile-time. In both cases this value may change

during the program execution.

A variable storage location can be referenced by multiple identifier simultaneously. Such

situation is known as aliasing, i.e., alias(a, b) ⇒ vari{id = a, addr = a0} ∧ varj{id =

b, addr = a0}. Assigning a new value through one of the identifier will change the value

accessed through the other identifiers.

Definition 28 – Function

Let a function f(v0, . . . , vN){ body } be a sequence of program instructions that

performs a specific task, packaged as a unit. The content of a function is called

body. A function may expect to obtain one or more data values from the calling

program which are intercepted by variables, called formal parameters v0, . . . , vN .

A function call may also return a computed value to its caller (called the return

value). Throughout this thesis we use the terms: function, procedure, routine and

method with the same semantics.

A special function, called the main function, represents the entry (or starting) point of

every program. Therefore it must always be present.

Definition 29 – Declaration

A declaration d announces the existence of a variable or a function to the compiler.

A declaration also binds the variable identifier to a type which represents the storage

size associated with that variable. Discussion of datatypes and more general the type

system of a language is beyond the scope of this thesis.

27

ForStmt

DeclStmt

Var: i IntLit: 1

BinExpr: <

Var: i Var: n

init cond

var init lhs rhs

UnExpr: ++

incr

Var: i

CompStmt

AssignStmt ForStmt

body

child0 child1

Figure 2.9: Partial AST of the program code in Listing 2.1

Definition 30 – Statement

A statement is the smallest standalone element of an imperative programming lan-

guage. A program is formed by a sequence of one of more statements. Statements

are used to describe both the data-flow (e.g., by means of assignment operation,

i.e., v := 0) and the control-flow (e.g., by means of IF, SWITCH, FOR, WHILE, BREAK

and CONTINUE statements) of a program.

We expect the reader of this thesis to be familiar with the semantics of control-flow

statements commonly used in imperative programming languages.

2.3.1 The Program Abstract Syntax Tree (AST)

The syntactic structure of a program is often represented within the compiler on the

basis of a syntax tree. Each node denotes a construct occurring in the source code.

Since not every detail is represented, e.g., braces, semicolons and parentheses, this is

an abstract representation. This data structure is widely used in source-to-source com-

pilers due to their property of representing the structure of a program code in a way

that syntactically equivalent source code can be reproduced. ASTs often serve as an

Intermediate Representation (IR) of the program through several stages that a compiler

requires. The structure of the IR can have strong impact on the final output of the

compiler.

An example of the structure of an AST is depicted in Figure 2.9. This tree represents

the program source code in Listing 2.1. The program root node is a ForStmt which is

composed of 4 children nodes. The first child of the Fortmt, the initialization of the loop

28

contains the declaration of the variable i (the loop iterator) which is set to be 0 (the type

information is omitted from the ForStmt). The second child of the ForStmt is the exit

condition of the loop, this is a binary expression (i.e., BinExpr) comparing the values of

variables i and n. Then follows the body of the statement which contains the statements

which are executed in each loop iteration. In this case the body is a compound statement

(i.e., { }, CompStmt) which contains two statements: an assignment (line 4) and a second

for loop with iterator variable j.

The AST is an important representation on top of which many semantic program anal-

yses can be realized. Additionally, a tree is a data structure which is easy to manipulate

and which is commonly used as a base structure for program transformations. A concrete

implementation of an AST is provided in Appendix C which gives an overview of the

Insieme compiler project. However, while ASTs are a mean to represent the structure

of a program, they lack the capability to represent program execution. For example, in

the AST of Figure 2.9 the loop body is represented by a single tree node. When the

program is executed, the loop body is likely to be executed more than once, therefore

multiple dynamic instances of that AST node may exist. The AST gives no means to

distinguish between dynamic instances associated with a single statement. This poses

a limit on the accuracy of the analysis results and the transformation capabilities since

transforming a statement in the AST affects all dynamic instances of it.

Over the last decade, alternative ways of representing programs have been proposed

with the goal to overcome the limitations of ASTs.

2.3.2 The Polyhedral Model (PM)

The PM represents the execution of a program in an algebraic way. It captures both the

control-flow and data-flow behaviour using three compact algebraic structures, described

in the following subsections. The main idea is to define, for a statement S, a space in

Zn where each point corresponds to an execution, or instance, of S. The value of the

coordinates of a point within this space represents the value of the n nested loop iterators

spawning statement S. We call this space polytope.

Definition 31 – Polytope

The set of all vectors ~x ∈ Zn such that A~x +~b ≥ 0, where A is an integer matrix,

defines a convex integer polyhedron. A bounded polyhedron is also called polytope.

The polytope associated with a program statement is also called its Iteration Domain.

29

1 for (unsigned i=0; i<n; ++i) {

2 A[i][i] = 0; S0

3 for (unsigned j=i; j<n-1; ++j) {

4 A[i][j+1] = i+j; S1

5 if ((i+j)%2) { A[n-j][n-i] = j-i; } S2

6 }

Listing 2.1: A simple sequential code example

Definition 32 – Iteration Domain

Let use define an Iteration Domain, DS , as the polytope (in Zn) in which a state-

ment S is defined.

For example let us consider the code in Listing 2.1. This loop nest contains 3 assignments

which are referred to as S0, S1, and S2. Control-flow statements (e.g., IF, FOR, SWITCH)

are used to define the surrounding domain. For example the iteration domain for S0,

S1, and S2 is defined as follows:

DS0 :={ i | 0 ≤ i < n }
DS1 :={ i, j | 0 ≤ i < n ∧ i ≤ j < n− 1 }
DS2 :={ i, j | 0 ≤ i < n ∧ i ≤ j < n− 1 ∧ ∃ e ∈ Z | i+ j − 2e = 1 }

As in Definition 31, iteration domains are represented by the integer matrix A multiplied

by a so called Iteration Vector ~x. The iteration vector determines the dimensionality

of the iteration space for a statement and therefore it is composed of the loop iterators

enclosing that statement and parameters (also known in literature as free variables),

which are unknown integer values constant within the loop nest. For example iteration

vector for statements S1 and S2 in Listing 2.1 is defined by the vector ~xS1 := (i, j, n)ᵀ.

Where i and j are the loop iterators of the enclosing loop nest and n is a parameter

(existentially quantified variables have been projected out). Conventionally the matrix

A is represented using a so-called homogeneous coordinates so that vector ~b is added

as its last column. The iteration domain for statement S1 is therefore represented as

follows:

DS1 =

(
i

j

)
∈ Z2,

1 0 0 0

−1 0 1 −1

−1 1 0 0

0 −1 1 −2

 ·

i

j

n

1

 ≥ ~0

The second piece of information which is required to describe the semantics of a program

is the so-called scheduling (or scattering) function. Intuitively, statements belonging to

30

a loop body, and subject to the same control flow, will share identical iteration domains.

However, the information of the order on which statement instances are executed is not

represented.

Definition 33 – Schedule

Let us define a schedule, θ(~x), as a function which associates a logical execution time

to each instance of a statement. This allows the ordering of the instances defined by

the iteration domain and an ordering for instances belonging to different domains.

A schedule θ(~x) has the following shape: θS(~x) = TS~x+ ~tS where ~x is the iteration

vector, TS is an integer transformation matrix and ~tS is a constant vector. TS and

~tS can be merged together into a matrix S if the system is represented on the basis

of homogeneous coordinates.

It is worth noting that two or more statement instances that have the same execution

time can be executed in parallel. For example, the scheduling functions for statements

S0, S1, and S2 of the code in Listing 2.1 can be defined as follows:

θS0 = { i, 0, 0 } θS1 = { i, 1, j, 0 } θS2 = { i, 1, j, 1 }

TS and ~tS can be easily extracted by factorizing the iteration vector (i, j, n, 1)ᵀ. We call

T , the matrix representation of the schedule in the homogeneous form:

TS0 =

1 0 0 0

0 0 0 0

0 0 0 0

i

j

n

1

 TS1 =

1 0 0 0

0 0 0 1

0 1 0 0

0 0 0 0

i

j

n

1

 TS2 =

1 0 0 0

0 0 0 1

0 1 0 0

0 0 0 1

i

j

n

1

Many strategies can be utilized to derive scheduling functions based on the structure of

an input program. A widely used one is presented in [23], it uses the AST representation

of a program. Multiplication of the scheduling function with the corresponding iteration

domain produces a sequence of tuples, or logic dates, representing the execution order

of each statement instance. By lexicographically ordering the set we can derive the exact

sequence of statement instances executed by the program. The precedence relation-

ship, ≺, is used to chronologically order statement instances regarding their execution

times. The formal definition follows: (a1, . . . , an) ≺ (b1, . . . , bm) iff ∃ i ∈ Z | 1 ≤ i ≤
min(n,m)∧ (a1, . . . , ai−1) = (b1, . . . , bi−1)∧ai < bi. The precedence relationship applied

to the statement instances of Listing 2.1 generated by the scheduling functions defined

31

above, produces the following sequence:

S0 : (0, 0, 0) ≺ S1 : (0, 1, 0, 0) ≺ S2 : (0, 1, 0, 1) ≺ . . . ≺ S2 : (0, 1, n− 2, 1) ≺
S0 : (1, 0, 0) ≺ S1 : (1, 1, 0, 0) ≺ S2 : (1, 1, 0, 1) ≺ . . . ≺ S2 : (1, 1, n− 2, 1) ≺ . . .

One last function is also required to capture the data locations on which a statement

operates.

Definition 34 – Access Function

The access (or subscript) function describes the index expression utilized to access

arrays, and therefore memory locations, within a statement. Representation of

access functions is similar to what has been described for scheduling functions.

Each dimension of a multi-dimensional access is represented by an affine expression

which can be put into matrix form. Scalars, e.g., s, are supported by treating them

as one-dimensional arrays with 1 single element (therefore accessed as s[0]),

For example array access in statement S1, A[i][j+1], can be represented in a matrix

form with one row for each dimension being accessed:

AUSEA
=

[
1 0 0 0

0 1 0 1

]
i

j

n

1

Access functions also store the information whether a particular memory location is

being read (i.e., USE) or written (i.e., DEF). This kind of information is utilized by the

polyhedral model to compute exact dataflow and dependence analysis for a given code

region, see Section 2.3.3.

2.3.2.1 Limits of the Polyhedral Model

Because of the affine linear nature of constraints utilized to describe control- and data-

flow, not every program can be represented in the polyhedral model. The PM is limited

to so called Static Control Parts (SCoPs) of a program which are defined to be maximal

sets of consecutive instructions such that: for-loop bounds, conditionals and subscript

expression are all affine functions of the surrounding loop iterators and global variables

(or parameters); for-loop iterators and parameters cannot be modified [24] (apart from

the implicit update of iterators within for-loops). Although this represent the main

critic to the PM, SCoPs have been found to capture a large portion of the computation

32

time in scientific application [25]. Furthermore, in many cases, the input code can be

rewritten to fit such constraints.

Compiler transformations implemented in many mainstream compilers (such as constant

propagation, function inlining and loop-invariant code motion) can be applied to increase

the applicability of the PM.

2.3.2.2 Counting integer points in a polytope

One feature of the theory behind the PM is the possibility to efficiently count, in a

symbolic way, the number of integer points inside a polytope [26]. Since every statement

in a program has an iteration domain associated (deriving from the structure of the

control flow), this gives us the capability to know, statically, the number of dynamic

instances for that statement. We refer to the number of integer points within an iteration

domain as its cardinality. With | DS1 |, we refer to the cardinality of statement S1.

Within the rest of the paper we refer to an instance of a communication statements as

a communication operation.

2.3.3 Data Dependencies

Assignment statements within a program define the data-flow. Two or more statements

accessing the same variable are said to be dependent. If a dependency is broken, the

outcome of a program, or its semantics, may differ. Dependence information are useful

at several levels. Compilers often reorder execution of statements, or their schedule, to

reduce the number of cycles a CPU spends waiting for certain type of costly instructions

(e.g., fetching of data from the main memory). Additionally, super-scalar CPUs allow

out-of-order execution of instructions, meaning that the processor executes instructions

in an order governed by the availability of input data, rather than by their original order

in a program.

Three types of dependencies may occur in a program:

Read-After-Write (RAW) : Also called true-dependence, it is identified by the sym-

bol δ. A RAW dependence occurs when a statement S1 depends on the result of

a previous statement S0, i.e., S0 δ S1.

Write-After-Read (WAR) : Also called anti-dependence, it is identified by the sym-

bol δ−1. A statement S1 is anti-dependent on S0 (written S0 δ−1 S1) if and only

if S1 modifies a resource that S0 reads and S0 ≺ S1.

33

Write-After-Write (WAW) : Also called output-dependence, it is identified by the

symbol δo. It occurs when two statements S0 and S1 both modify the same

resource and S0 ≺ S1.

Formally we can state that a statement Sj depends on a statement Si if there exists an

operation Si(~xi), an operation Sj(~xj), and a memory location m such that:

• Si(~xi) and Sj(~xj) refer to the same memory location m, and at least one of them

writes to that location;

• ~xi and ~xj respectively belong to the iteration domain of S and R;

• Si(~xi) ≺ Sj(~xj).

Depending on the nature of the memory operation in S and R (either a read or a write

operation) one of the dependencies defined above can be identified. Due to the properties

of the PM representation, it is possible to build a polytope which contains a point for

each dependence between two array accesses. A formal description of how the so called

dependence polyhedron is built, is presented in [23]. Intuitively a system of inequalities

is built where an equality of all the access functions to the same array is imposed,

i.e., Aarr(~xi) = Aarr(~xj) to enforce that the same memory location is read or written.

Then using the scheduling functions we project those accesses in a new space where

lexicographically ordering the accesses yields the set of all dependencies instances and

their type (i.e., RAW, WAR or WAW). In this thesis we utilize the complex capability

to perform data dependence analysis on SCoPs, however it is not the focus of this work

to provide details on such method which is illustrated in [23, 27].

Dependencies are particularly important for array accesses since they are often used

within for-loops (which account for most of the execution time in a program). For exam-

ple a loop may write or read different memory locations during its execution. Depending

on the expressions used to access the array, data dependencies between iterations, also

called loop-carried dependencies, may or may not exist. Checking for dependencies be-

tween two statements requires to check for the existence of integer solutions to a set of

linear constraints. This is known to be an NP-complete problem. Traditionally, approx-

imate and/or incomplete methods with fast worst-case performance have been used for

dependence analysis [28, 29].

2.3.4 Control Flow Graph (CFG)

Compilers usually complement the structural representation of a program given by the

AST with an additional graph representing the control-flow of the program. This data

34

structure, called the CFG, can be directly be generated from the AST and it represents

all paths that might be traversed through a program during its execution. The CFG is

essential to many compiler optimizations and static analysis tools.

Definition 35 – CFG

Let us define a generic CFG = (V, E) where V is the set of vertices and E is the set

of edges. An edge e is defined as a tuple (vi, vj) ∈ E with vi, vj ∈ V and e is directed

from vertex vi to vj . In a CFG two special designated vertices entry and exit exist.

The control of a program enters through the entry vertex and exits through the

exit vertex.

In a CFG vertices and edges are different from the ones used in the construction of an

AST. In the AST the vertices of the tree represent concepts related to the structure

of a programs such as: statements, declarations, expressions and variables. Edges put

those components into a relationship container/contained object. In the CFG, the focus

is on the control-flow therefore vertices and edges have different semantics. The CFG

generated from the source code in Listing 2.1 is depicted in Figure 2.10.

Definition 36 – Basic Block

Vertices of a CFG are also called basic blocks. A basic block is a maximal group of

consecutive statements that are always executed together with a strictly sequential

control flow between them. Multiple flows can either enter or exit from a basic

block.

In Figure 2.10, the CFG is composed of eight basic blocks (i.e., B0, . . . , B7). It can be

noted that some of the basic blocks may generate multiple exit flows. These blocks (i.e.,

B1, B3, B4) correspond to the control flow statements, i.e., FOR and IF, used within the

code in Listing 2.1. These nodes have a special statement (the last) called terminator,

identified by a T, which contains the expression used in the program to decide which of

the exit branches should be taken. Edges of a CFG represent the flow of the control,

thus they are directed.

Definition 37 – Path

Let us define a path(vi, vj) in a CFG as a sequence of vertices (or basic blocks)

which connect vertex vi to vj , i.e., path(vi, vj) := (vi, v0, v1, . . . , vk, vj). A path is

characterized by its length which is represented by the number of vertices being

traversed. Let us also define path(vi) as a shortcut for path(entry, vi). path(vi)

identifies a path in the CFG whose root is always the entry vertex.

For each vertex of a CFG, two additional sets can be defined representing the predeces-

sors and successors:

35

ENTRY

B0:
i:=0

B1:
T:i<n

B2:
A[i][i]:=0
j:=i

true

EXIT

false

B3:
T:j<n-1

B4:
A[i][j+1]:=i+j
T:(i+j)%2

true

B7:
++i

false

B5:
A[n-j][n-i]:=j-i

true

B6:
++j

false

Figure 2.10: Complete CFG of the program code in Listing 2.1

Pred(vi): This is the set of all vertices preceding vi, the set is formally defined as follows:

Pred(vi) := {∀vj ∈ V | (vj , vi) ∈ E }.

Succ(vi): This is the set of all vertices successive to vi. The set is formally defined as

follows: Succ(viu) := {∀vj ∈ V | (vi, vj) ∈ E }.

The CFG represent a powerful instrument for program analysis. Unlike the AST which is

composed of many different node types, analysis built on top of the CFG only deals with

36

basic blocks. An example is represented by the iterative dataflow analysis framework

which is formally described in Appendix D.

Chapter 3

Simplification of Distributed

Memory Programming

The message passing programming model has a low level of abstraction, for this reason

it is also referred to as the assembly language of distributed memory programming. The

model, as presented in Section 2.2 puts the burden on the developer to achieve correctness

(e.g., lack of deadlocks) and performance.

In this chapter we consider the programmability issues of the message passing paradigm

from three different angles. At first, (i) we analyze the API offered by a popular message

passing interface like MPI [3]. We show how the low level of the provided routines is

inadequate for modern object-oriented languages such as C++ and propose an interface

which improves programmability while keeping performance mostly unchanged. Secondly,

(ii) we propose an object oriented programming model for distributed memory systems

which raises the abstraction level for message passing languages. We achieve this by

relying on meta-programming capabilities of the C++ language which enables the pro-

duction of distributed memory code as part of the compilation process. At last, (iii) we

propose a combined approach which relies on an minimal API and a powerful distributed

runtime system which hides the distributed nature of the underlying computing system

to the programmer. The library interface adopts and extends concepts of the OpenCL

programming model making this approach suitable for coarse-grained parallel programs.

37

38

3.1 Introduction

3.1.1 A Lightweight Programming Interface

MPI is the defacto standard for writing parallel programs for distributed memory sys-

tems. An overview of MPI’s principal routines and their relation with the generic mes-

sage passing model presented in Section 2.2 is presented in Appendix A. As its focus is

on HPC, MPI offers an API for C, C++ and Fortran; the most widely used languages

for HPC. Unfortunately, since the definition of the first standard in 1994 [30], MPI

did not keep the pace with the evolution of the underlying languages, such as OOP in

Fortran 2000 and templates in C++.

Nowadays, this problem is mostly perceived in C++ which, unlike Fortran and C, pro-

vides much higher-level abstractions which are not reflected in the design of the MPI

interface [4]. MPI is poorly integrated into the C++ environment thus many program-

mers prefer to use, even in C++ programs, the C interface. Furthermore, to map

common C++ constructs onto MPI, programmers are forced to weaken the language

type safety. As a consequence, errors that could be easily detected by the compiler are

no longer captured leading to runtime failures. These issues led the MPI committee

to the decision of deprecating C++ bindings in the version 2.2 of the MPI standard.

However, because of the growing interest and use of C++ in HPC, several third-party

wrappers to MPI have been proposed [31], the most important being Boost.MPI [5] and

OOMPI [6].

In Section 3.2, we combine some of the concepts presented in Boost.MPI and OOMPI

and propose an advanced lightweight interface called MPP that aims at transparently

integrating the message passing paradigm into the C++ programming language with-

out sacrificing performance. Our approach focuses on point-to-point communications

and integration of user data types which, unlike Boost.MPI, relies entirely on native

MPI Datatypes for better performance. Our interface also utilizes advanced concepts

from other parallel programming languages, e.g., future objects [32], which simplifies the

use of MPI asynchronous routines.

3.1.2 Towards a Simplified Message Passing Programming Model for

C++

Compared to other existing parallel programming models such as Open Multi-Processing

(OpenMP), message passing offers two basic primitives: send (Definition 16) and recv (Def-

inition 17). The burden of managing almost every aspect of the program execution

39

including data partitioning, communication, and synchronization between processes is

left to the programmer. A low-level of abstraction is helpful in writing highly opti-

mised programs, however, it makes distributed memory programming very complex,

time-consuming and error-prone.

Recently, new programming models are increasingly being used aiming at simplifying

distributed programming. An example is the PGAS model, which provides the program-

mer with a logically global memory address space where variables may be directly read

and written by any process. Below the logical view, each variable is physically associ-

ated with a single process. Any attempt to read or write memory locations physically

allocated on a different process results in a communication operation generated either by

a runtime environment (e.g., in the Global Array library [33]) or during the compilation

process in the Co-array Fortran and Unified Parallel C (UPC) [34, 35].

In Section 3.3, we show how a similar approach can be realized only relying on features

of the C++ programming language. We employ techniques from OOP to provide an

abstraction to homogeneously access the memory address space of a distributed applica-

tion, A. The proposed abstraction allows a process p to access the entire address space

A in a transparent way. The C++ compiler then takes care of rewriting the access to

memory address a in terms of local read/write operations, if a ∈ Ap; or using an explicit

data exchange over the network, if a 6∈ Ap. We use meta-programming techniques, im-

plemented with C++ templates, for the generation of such code for two reasons. Firstly,

to spot parallelization errors at compile time. Secondly, to make the generated code ef-

ficient by rewriting the SPMD input code to an MPMD program which is specialized

for each process identifier.

3.1.3 A Uniform Approach for Heterogeneous Distributed Memory

Programming

The last contribution of this chapter is towards simplification of distributed memory

programming focuses on the realization of a runtime system. With libWater, Grasso [36]

proposes an alternative interface for programming distributed heterogeneous systems

based on the OpenCL programming model. The novel interface allowed a powerful

runtime system to be built achieving two design goals: (i) transparent abstraction of

the underlying distributed architecture, such that compute units belonging to a remote

node are accessible like local devices; (ii) enables the access to performance-related

details since it supports the OpenCL kernel logic.

In Section 3.4 the libWater runtime system is discussed. An overview of Grasso’s in-

terface concepts will be briefly discussed in Section 3.4.3 to justify some of the design

40

1 if (rank ==0) {

2 MPI_Send ((const int [1]) { 2 }, 1, MPI_INT , 1, 1, MPI_COMM_WORLD);

3 std::array <float ,2> val {3.14f, 2.95f};

4 MPI_Send (&val.front(), val.size(), MPI_FLOAT , 1, 0, MPI_COMM_WORLD);

5 } else if (rank ==1) {

6 int n;

7 MPI_Recv (&n, 1, MPI_INT , 0, 1, MPI_COMM_WORLD , MPI_STATUS_IGNORE);

8 std::vector <float > values(n);

9 MPI_Recv (& values.front(), n, MPI_FLOAT , 0,0,MPI_COMM_WORLD ,MPI_STATUS_IGNORE);

10 }

Listing 3.1: Simple MPI program using C bindings

principles adopted within the runtime system. The rest of Section 3.4 focuses on the

runtime system being one of the contributions of this thesis. Calls to the library rou-

tines are internally represented as command descriptors which are being enqueued to a

command queue. Dependencies between commands are expressed by the programmer

through event objects. This enables the runtime system to structure such commands

into a DAG which is used for scheduling and optimization purposes. An example is the

realization of a novel hierarchical scheduling strategy which avoids the bottleneck caused

by a centralized scheduling by delegating synchronization of commands targeting a re-

mote node to that node’s local scheduler. Additionally analysis of the DAG allows the

recognition of communication patterns such as broadcast, gather and scatter and their

replacement with a more efficient implementation. We demonstrate the scalability of

our approach on homogeneous and heterogeneous clusters up to 32 nodes.

3.2 A Lightweight Interface for MPI

3.2.1 Background and Motivation

Listing 3.1 shows a simple MPI program sending two floating point values from process

rank 0 to rank 1. A problem of this code snippet is that the programmer is forced

to unnecessarily declare a temporary variable val to store the values being sent by

MPI Send (line 4). Although the C99 standard [37] introduced compound literals to

avoid such unnecessary memory allocations (line 2), they are not widely used because

of the decreased code readability. Because the compiler is not aware of the semantics of

MPI Send, which guarantees that the val’s value is not modified, no memory optimiza-

tions can be performed. A second problem is that the signatures of all MPI routines

require the programmer to provide the size and the type (i.e., one MPI FLOAT) of the

data being sent, which is error-prone and can be avoided in C++ by inferring them at

compile-time.

41

1 if (world.rank()==0) {

2 world.send(1, 1, 2);

3 world.send(1, 0, std::array <float ,2 >{3.14f, 2.95f});

4 } else if (world.rank()==1) {

5 int n;

6 world.recv(0, 1, n);

7 std::vector <float > values(n);

8 world.recv(0, 0, values);

9 }

Listing 3.2: Boost.MPI version of the program from Listing 3.1

Boost.MPI [5] tries to simplify the MPI interface by deducing several of those parameters

at compile-time through C++ template techniques. For example, the size of the data

sent and its associated MPI Datatype is strictly related to the type of the object being

sent and, therefore, deducible at compile-time from the C++ typing system. The send

and recv routines in Boost.MPI require only three parameters, as shown in Listing 3.2

(lines 2, 3, 6, and 8): the source/destination rank, the message tag, and the message

content. This not only simplifies the usage of the routines, but also improves their type

safety. Although Boost.MPI is a consistent improvement over the standard MPI C++

bindings, it is not widely accepted within the MPI community because of two reasons:

(i) the dependency on the Boost C++ library and accompanying licensing issues; (ii)

the use of a serialization library [38] to handle transmission of user-defined data types

(i.e., merging of objects with a sparse memory representation into a continuous data

chunk) that negatively impacts the performance.

An object-oriented approach to improve the C++ MPI interface is OOMPI [6] which

specifies send and receive operations in a more user friendly way by overloading the

insertion << and extraction >> C++ operators. In OOMPI, a Port towards a process

rank is obtained by using the array subscript operator, i.e., [], (on a communicator

object (see line 2 in Listing 3.3). A further advantage is the convenience to combine

these operators in one C++ instruction when inserting or extracting data to/from the

same stream. A drawback of OOMPI is the poor integration of arrays and user data

types in general. For example, sending an array instance requires the programmer to

explicitly instantiate an object of class OOMPI Array message, which requires the size

and type of the data to be manually specified as in the current MPI specification (line

4). The support for generic user data types requires the objects being sent to inherit

from the OOMPI User type interface. This is a rather severe limitation as it does not

allow any legacy class (e.g., the Standard Template Library (STL)’s containers) to be

directly supported.

In this Section we propose an alternative interface for MPI which overcomes many of

the previous mentioned problems. We introduce MPP [39], an header-only interface,

42

1 if (OOMPI_COMM_WORLD.rank()==0) {

2 OOMPI_COMM_WORLD [1] << 2;

3 std::array <float ,2> val {3.14f, 2.95f};

4 OOMPI_COMM_WORLD [1] << OOMPI_Array_message (&val.front (), val.size());

5 } else if (OOMPI_COMM_WORLD.rank()==1) {

6 int n;

7 OOMPI_COMM_WORLD [0] >> n;

8 std::vector <float > values(n);

9 OOMPI_COMM_WORLD [0] >> OOMPI_Array_message(values , 2);

10 }

Listing 3.3: OOMPI version of the program from Listing 3.1

therefore lightweight and easy to use, which aims at a better integration with the C++

language. Overall, MPP is designed with a specific focus on performance. As we tar-

get HPC systems, we understand how critical performance is and several efforts have

been spent in reducing the interface overhead. We compare the performance of MPP

with Boost.MPI and show that, for a simple ping-pong application, MPP achieves a

throughput (in terms of messages per seconds) which is 4 times larger than Boost.MPI.

Compared to the pure C bindings, MPP has an increased latency of only 9%. As far

as the handling of user data types is concerned, MPP is shown to reduce transfer time

of a linked list (i.e., list<T> from C++ STL) up to 20 times compared to Boost.MPI.

In order to determine the benefit of using MPP for real applications, we rewrote the

computational kernel of QUAD MPI [40] to use Boost.MPI and MPP. Results show a

performance improvement of around 12% with respect to Boost.MPI.

3.2.2 MPP: C++ Interface to MPI

We use object-oriented programming concepts and C++ templates to design a lightweight

wrapper for MPI routines that simplifies the way in which MPI programs are written.

Similar to Boost.MPI, we achieve this goal by reducing the amount of information re-

quired by MPI routines and by inferring as much as possible at compile-time. By

reducing the amount of code written by the users, we expect less programming errors.

Furthermore, by making type checking safer, common programming mistakes can be

captured at compile-time. In this work, we focus on point-to-point operators, as the

specialised semantics of collective operations has no counterpart in C++’s STL. We

also present a generic mechanism of handling C++ user data types which allows for

easy transfer of C++ objects to any existing MPI routine (including collective opera-

tions).

43

1 namespace mpi {

2 struct comm {

3 mpi:: endpoint operator ()(int) const;

4 };

5 } // end mpi namespace

6

7 template <class InStream , class T>

8 void read_from(InStream& in , T& val) { in >> val; }

9

10 int val [2];

11 // reads the first element of the val array from std :: cin

12 read_from(std::cin , val [0]);

13

14 // receives 2nd element of val array from rank 1

15 read_from(mpi::comm::world (1), val [1]);

Listing 3.4: Example of usage of endpoints in a generic function.

3.2.2.1 Point-to-Point Communication

While Boost.MPI maintains in its API design the style of the traditional send/receive

MPI routines, our approach is more similar to OOMPI aiming at a better C++ integra-

tion by defining these basic operations using streams. A stream is an abstraction that

represents a device on which input and output operations are performed. Therefore,

sending or receiving a message through an MPI channel can be seen as a stream opera-

tion. We introduce an mpi::endpoint class which has the semantics of a bidirectional

stream from which data can be read (received) or written (sent) using the << and >>

operators respectively. The concept of endpoints is similar to the Port abstraction of

OOMPI, however, because our mechanism is based on generic programming, user-defined

data types can be transparently handled. In contrast, OOMPI is based on inheritance

which forces the programmer to instantiate an OOMPI Message class containing the data

type and size required by the MPI routines underneath [31] (see line 4 in Listing 3.3).

Because an MPI send/receive operation offers more capabilities than C++ streams (e.g.,

tags for messages, non-blocking semantics), endpoints cannot be directly modelled using

an “is-a” relationship. Fortunately, STL’s utilities (e.g., algorithms) are mostly based on

templates and endpoints can be passed to any generic function which relies on the << or

>> stream operations. Listing 3.4 shows an example that uses an endpoint as argument

to a generic read from function. An endpoint is generated from a communicator using

the procedure call operator, i.e.,(), to which the process rank is passed (line 3). The

mpi::comm class is a simple wrapper for an MPI Communicator with the capability of

creating endpoints, retrieving the current process rank and the communicator size. The

mpi::world refers to an instance of the comm class which wraps the MPI COMM WORLD

communicator.

44

1 using namespace mpi;

2 if (comm::world.rank()==0) {

3 comm:: world (1) << std::array <float ,2 >{3.14f, 2.95f};

4 comm:: world (1) << msg(2, 1);

5 } else if (mpi:: world.rank()==1) {

6 int n;

7 comm:: world (0) << msg(n, 1);

8 std::vector <float > values(n);

9 comm:: world (0) >> values;

10 }

Listing 3.5: MPP version of the program from Listing 3.1.

1 float real;

2 mpi::request <float > req = mpi::comm:: world(mpi::any) > real;

3 // ... do something else ...

4 use(req.get());

Listing 3.6: Non-blocking MPP endpoints.

Listing 3.5 shows how the program in Listing 3.1 can be rewritten with MPP. First of

all, objects are either sent or received using stream operations which allows for a more

compact code compared to C MPI bindings (half in size) or to Boost.MPI. Secondly,

objects are automatically wrapped by a generic mpi::msg<T> object, which does not

need to be specified by the user (as opposed to OOMPI). Adding this level of indirection

allows MPP to handle both primitive and user data types in a way transparent to the

user. R-values (i.e., values with no address such as constants) are handled similar to any

regular L-value (e.g., variables) using C++ constant references via the msg class, which

avoids unnecessary memory allocation. The interface also allows specifying message tags

by manually allocating the message wrapper (example in line 3).

MPP also supports non-blocking semantics for the send and receive operations through

the overloaded < and > operators. Unlike blocking send/receives, asynchronous opera-

tions return a future object [32] of class mpi::request<T> which can be polled to test

whether the pending operation has completed or not. An example of non-blocking oper-

ations in MPP is shown in Listing 3.6. For non-blocking receives, the method T& get()

waits for the underlying operation to complete (line 2) and, upon completion, it returns

a reference to the received value. The mpi::request<T> class also provides a void

wait() and a bool test() method implementing the semantics of MPI Wait, respec-

tively MPI Test. The example also shows MPP’s support for receive operations which

listens for messages coming from an unknown process using the mpi::any constant rank

when creating an endpoint (line 3).

Errors, which in MPI are returned by every routine as an error code, are handled in MPP

via C++ exceptions. Any call to MPP routines can potentially throw an exception which

45

1 template <class T>

2 struct mpi_type_traits <std::vector <T>> {

3 static inline const T* get_addr(const std::vector <T>& vec) {

4 return mpi_type_trait <T>:: get_addr(vec.front ());

5 }

6 static inline const size_t get_size(const std::vector <T>& vec) {

7 return vec.size();

8 }

9 static inline MPI_Datatype get_type(const std::vector <T>&) {

10 return mpi_type_trait <T>:: get_type(T());

11 }

12 };

13 ...

14 typedef mpi_type_traits <vector <int >> vect_traits;

15 vector <int > v = { 2, 3, 5, 7, 11, 13, 17, 19 };

16 MPI_Ssend(vect_traits :: get_addr(v), vect_traits :: get_size(v),

17 vect_traits :: get_type(v), ...);

Listing 3.7: Example of using mpi type traits to handle STL vectors.

is a sub class of mpi::exception. The method get error code() of this class allows

the retrieval of the native error code.

3.2.2.2 User Data Types

OOMPI is one of the first APIs trying to introduce support for user data types through

inheritance from an OOMPI User type class. Unfortunately, this mechanism is relatively

weak because, by relying on inheritance, it does not allow the handling of class instances

provided by third-party libraries (e.g., STL containers). Another attempt is the use of

serialization in Boost.MPI which, although elegant, introduces a high runtime overhead.

The objective of MPP is to reach the same level of integration with user data types as

Boost.MPI without performance loss, which we achieve by relying on the existing MPI

support for user data types, i.e., MPI Datatype. See Appendix A.2.4 for an overview

of MPI datatypes and their implementation within the standard. The definition of

an MPI Datatype is rather cumbersome and therefore not commonly used. Defining

an MPI Datatype requires the programmer to specify several information related to its

memory layout which often leads to programming errors that are very difficult to debug.

However, because operations on data types are mapped to DMA transfers by the MPI

library, the use of an MPI Datatype outperforms any other techniques based on software

serialization.

The integration of user data types is achieved by using a design pattern called type

traits [41]. An example is illustrated in Figure 3.7 for C++ STL’s vector<T> class.

We let the user specialise a class which statically provides the compiler three pieces of

information required to map a user data type to MPI Datatypes: (i) the memory address

46

from which the data type instance begins; (ii) the type of each element; and (iii) the

number of elements. Because a C++ vector is contiguously allocated in memory, the

starting address of the first element has to be recursively computed for handling generic

regular nested types (e.g., vector<array<float,10>> in lines 3− 5). The length is the

number of elements present in the vector (line 9) and the type is the data type of a

vector element (line 9 − 11). Because our mechanism is not based on inheritance (like

in OOMPI), it is open for integration and use with third party class libraries. Lines

14− 17 show how the introduced type traits can be used with the MPI C binding. This

can also be used for collective operations or for one of the several flavors of MPI Send

for which an appropriate operator cannot be defined. MPP provides several type traits

for some of the STL containers (i.e., vector, array and lists).

3.2.3 Performance Evaluation

In this section we compare the performance of MPP against Boost.MPI and the stan-

dard C binding of MPI. Open MPI version 1.4.2 runtime has been used to execute the

experiments. We did not consider OOMPI for performance evaluation since its devel-

opment has been stopped since several years. We compare the MPI bindings firstly by

using micro-benchmarks, successively with a real MPI application called QUAD MPI.

QUAD MPI is a C++ program which approximates an integral using a quadrature

rule [40].

3.2.3.1 Micro Benchmarks

The purpose of the first experiment is to measure the latency overhead introduced by

MPP over the standard C interface to MPI. Boost.MPI and MPP are both implemented

on top of MPI C bindings. We implemented a simple ping-pong application which

we executed on a shared memory machine with a single AMD Phenom II X2 555,

3.5 GHz dual-core processors, 1MB of L2 cache, and 6MB of L3 cache. This way,

any data transmission overhead is minimized and the focus is solely on the interface

overhead. Figure 3.1(a) displays the number of ping-pong operations per second for

varying message sizes. MPP has approximately 9% larger latency for small messages

compared to the native MPI routines. This overhead is due to the creation of a temporary

status object corresponding to the MPI Status returned by the MPI receive routine

containing the message source, size, tag, and error (if any). Compared to Boost.MPI,

MPP shows nevertheless a consistent performance improvement of around 75% for small

message sizes. Because both implementations use plain vectors to store the exchanged

message, no serialization is involved to explain the overhead difference. We believe that

47

4 40 20
0

40
0

12
00

20
00

40
00

80
00

10
00

0

0

200

400

600

800

1000

1200
MPI MPP Boos.MPI

Message size (in bytes)

T
hr

ou
gh

pu
t

(in
 t

ho
ud

an
d

pi
ng

/p
on

gs
 p

er
 s

ec
.)

(a) Number of ping/pong operations per second.

10
0

20
0

40
0

80
0

16
00

32
00

64
00

12
80

0
25

60
0

51
20

0
75

00
0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0

2

4

6

8

10

12

14

16

18

20

22
Speedup Boost.MPI MPP

std::list<double> size (number of elements)

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

S
pe

ed
up

(b) Comparison of Boost.MPI and MPP for STL’s
linked list (list<T>).

Figure 3.1: MPP performance evaluation results.

the main reason for this overhead comes from the fact that Boost.MPI is implemented

as a library and every call to MPI routines pays the overhead of an additional function

call. We solved the problem in MPP by designing a pure header-based implementation,

this allows all MPP routines to be inlined by the compiler and therefore eliminating any

overhead. The graph also illustrates that, as expected, the overhead decreases for larger

messages as the communication time becomes predominant.

In the second experiment, we compared MPP with Boost.MPI for the support of user-

defined data types. We used a list<double> type of varying size exchanged between

two processes in a loop repeated one thousand times. The code of the type trait defined

to support any generic linked list is showed in Listing 3.8. We executed the experiment

on an IBM blade cluster with a quad-core Intel Xeon X5570 processors interconnected

through Infiniband network. We allocated the two MPI processes on different blades

in order to simulate a real use case scenario. Figure 3.1(b) shows the time necessary

to perform this micro-benchmark for different list sizes and the speedup achieved by

MPP over Boost.MPI. For small lists of 100 elements, the speedup is approximately

20, however, the performance gap closes by increasing the list size. The reason is the

list implementation in MPP using MPI Type struct, which requires enumerating all

memory addresses that compose the object being sent. To create an MPI Datatype for

a linked list, three arrays have to be provided: (i) the displacement of each list element

relative to the starting address; (ii) the size of each element; and (iii) the data type

of each element (i.e., O(3 ·N) of memory overhead). We observe in Figure 3.1(b) that

building such a data type becomes more expensive as the list size increases, so that for

large linked lists of over 50,000 elements, the software serialization outperforms the MPI

48

1 template <class T>

2 struct mpi_type_traits <std::list <T>> {

3

4 static inline size_t get_size(const std::list <T>& vec) { return 1; }

5

6 static MPI_Datatype get_type(const std::list <T>& l) {

7 std::vector <MPI_Aint > address(l.size());

8 std::vector <int > dimension(l.size());

9 std::vector <MPI_Datatype > types(l.size());

10

11 auto dim_it = dimension.begin();

12 auto address_it = address.begin();

13 auto type_it = types.begin();

14

15 MPI_Aint base_address;

16 MPI_Address(const_cast <T*>(&l.front()), &base_address);

17

18 *(type_it ++) = mpi_type_traits <T>:: get_type(l.front ());

19 *(dim_it ++) = static_cast <int >(mpi_type_traits <T>:: get_size(l.front()));

20 *(address_it ++) = 0;

21

22 typename std::list <T>:: const_iterator begin = l.begin();

23 ++begin;

24 std:: for_each(begin , l.cend(), [&](const T& curr) {

25 assert(address_it != address.end() &&

26 type_it != types.end() &&

27 dim_it != dimension.end());

28

29 MPI_Address(const_cast <T*>(&curr), &* address_it);

30 *(address_it ++) -= base_address;

31 *(type_it ++) = mpi_type_traits <T>:: get_type(curr);

32 *(dim_it ++) = static_cast <int >(mpi_type_traits <T>:: get_size(curr));

33

34 }

35);

36 MPI_Datatype list_dt;

37 MPI_Type_create_struct(static_cast <int >(l.size()), &dimension.front(),

38 &address.front (), &types.front(), &list_dt);

39 MPI_Type_commit (& list_dt);

40 return list_dt;

41 }

42

43 static inline const T* get_addr(const std::list <T>& list) {

44 return mpi_type_traits <T>:: get_addr(list.front());

45 }

46 };

Listing 3.8: Type trait for a generic std::list<T>.

data typing mechanism. Future optimization could improve the support of large data

structures integrating in MPP a mechanism that switches from the use of MPI Datatype

to serialization starting from a critical size.

49

1 double my_a , my_b;

2 my_total = 0.0;

3 if (rank == 0) {

4 for (unsigned q = 1; q < p; ++q) {

5 my_a = ((p - q) * a + (q - 1) * b) / (p - 1);

6 MPI_Send (&my_a , 1, MPI_DOUBLE , q, 0);

7

8 my_b = ((p - q - 1) * a + q * b) / (p - 1);

9 MPI_Send (&my_b , 1, MPI_DOUBLE , q, 0);

10 }

11 } else {

12 MPI_Recv (&my_a , 1, MPI_DOUBLE , 0, 0, status);

13 MPI_Recv (&my_b , 1, MPI_DOUBLE , 0, 0, status);

14

15 for (unsigned i = 1; i <= my_n; ++i) {

16 x = ((my_n - i) * my_a + (i - 1) * my_b) / (my_n - 1);

17 my_total = my_total + f(x);

18 }

19 my_total = (my_b - my_a) * my_total / (double) my_n;

20 }

Listing 3.9: Computational kernel of QUAD MPI.

3.2.3.2 QUAD MPI Application Code

The micro-benchmarks highlighted the low latency of the MPP bindings. However this

does not say much about the benefits of using MPP for real application codes. For this

purpose we took a simple MPI application kernel called QUAD MPI and rewritten using

Boost.MPI and MPP. QUAD MPI is a C program which approximates an integral using

a quadrature rule [40]. The computation is done in parallel by using MPI. The original

code can be found in [40], the computational kernel has been extracted and depicted in

Figure 3.9. Process rank 0 assigns to each other process a sub-interval of [A,B]. The

bounds are then communicated using message passing. The number of communication

statement in the code is limited, i.e., 2(P − 1), where P is the number of processes.

Therefore this code represents a good balance between communication and computation

making it ideal to determine the benefits of MPP bindings.

This code can be easily rewritten to use Boost.MPI and MPP. The manually rewritten

code is shown respectively in Listings 3.10 and 3.11. In both cases we removed the

necessity of assigning the value being sent to the my a and my b variables. This is

because both Boost.MPI and MPP support sending R-values, the computed value is

directly send to destination (lines 4 and 5). The code at the receiver side is similar, the

only difference is that now we can restrict the scope of my a and my b variables to the

else body only. This allows for a faster machine code as the compiler can utilize CPU

registers in a more efficient way. Additionally, MPP allows for a further reduction of the

code as shown in Listing 3.11. The two sends can be combined together into a single

50

1 my_total = 0.0;

2 if (rank == 0) {

3 for (unsigned q = 1; q < p ; ++q) {

4 world.send(q, 0, ((p - q) * a + (q - 1) * b) / (p - 1));

5 world.send(q, 0, ((p - q - 1) * a + q * b) / (p - 1));

6 }

7 } else {

8 double my_a , my_b;

9 world.recv(0, 1, my_a);

10 world.recv(0, 2, my_b);

11

12 for (unsigned i = 1; i <= my_n; ++i) {

13 x = ((my_n - i) * my_a + (i - 1) * my_b) / (my_n - 1);

14 my_total = my_total + f(x);

15 }

16 my_total = (my_b - my_a) * my_total / (double) my_n;

17 }

Listing 3.10: Computational kernel of QUAD MPI rewritten using Boost.MPI.

1 my_total = 0.0;

2 if (rank == 0) {

3 for (unsigned q = 1; q < p; ++q) {

4 comm:: world(q) << ((p - q) * a + (q - 1) * b) / (p - 1)

5 << ((p - q - 1) * a + q * b) / (p - 1);

6 }

7 } else {

8 double my_a , my_b;

9 comm:: world (0) >> my_a >> my_b;

10

11 for (unsigned i = 1; i <= my_n; ++i) {

12 x = ((my_n - i) * my_a + (i - 1) * my_b) / (my_n - 1);

13 my_total = my_total + f(x);

14 }

15 my_total = (my_b - my_a) * my_total / (double) my_n;

16 }

Listing 3.11: Computational kernel of QUAD MPI rewritten using MPP.

statement (line 4), as well as the receives (line 9). MPP also relieves the programmer

from the burden of specifying a message tag, the tag 0 is always utilized by default. With

MPP we are able to shrink the input code by 30% (in terms of number of characters)

and less code means less errors and overall more productivity.

We ran the three versions of the QUAD MPI program on a machine with 16 cores (a

dual socket Intel Xeon CPU). We utilized shared memory communication in order to

minimize communications costs and therefore highlight the library overhead. The input

programs have been compiled with optimizations enabled (i.e., -O3). In Figure 3.2 the

average execution time and standard deviation obtained out of 10 runs of the three codes

are depicted. Because of the optimization we were able to perform on the input code

(i.e., removing the superfluous, assignment to the my a and my b variables), the MPP

51

C Bindings Boost.MPI MPP
0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

QUAD_MPI

E
xe

cu
tio

n
tim

e
(i

n
se

cs
.)

Figure 3.2: QUAD MPI performance evaluation of the three code versions.

version performs slightly faster than the original code. It is worth noting that the same

optimization has been applied to the Boost.MPI version. However, the large overhead of

the Boost.MPI library cancels any of the benefits making the resulting code the slowest.

Compared to Boost.MPI the application written with MPP bindings has a performance

improvement of around 12%.

3.3 Towards a Simplified Message Passing Programming

Model for C++

Simplifications to the programming interface makes message passing programs easier

to read and write. However, some of the main issues which make programs difficult

to analyze, and errors to detect, from a compiler point of view remain unchanged. In

this section, we propose the use of a declarative programming model which enables a

programmer to specify the type data movement he wants to achieve and offload to a

compiler the burden of generating low-level intra- or inter-node data transfers.

3.3.1 Motivation

The motivation for the research presented in this section is based on the observation

that sending a message from two processes is semantically equivalent to an assignment

operation. Consider a matching send/recv operation between two processes pi (the

sender) and pj (the receiver of the message). The content of the memory cells owned by

process pj is overwritten with data residing on process pi’s memory space as described in

Section 2.2. In a programming language this is the semantics of the assignment operator.

Since C++ allows the redefinition of operators, we use the C++ operator overloading

mechanism and template meta-programming techniques [42] to enable the automatic

52

generation of low-level communication primitives by the standard C++ compiler. For

example, whenever an assignment operator involving memory cells residing on different

processes’ address spaces is encountered, the compiler generates the required communi-

cation statements. Additionally, we generate for each process rank a separate executable

containing only those operations involving the assigned memory cells, which eliminates

the control flow overhead incurred by the SPMD nature of the input program. The main

advantage of our approach is the fact that it achieves a level of abstraction similar to

PGAS-based languages by only exploiting features of the standard C++ language and

compiler. Furthermore, because the underlying programming model is based on message

passing, the programmer still retains full control over the resulting performance.

3.3.2 The PGAS Programming Model

One of the major efforts in improving and simplifying the message passing programming

model was the definition of the PGAS programming model [35]. PGAS attempts to

combine the advantages of an SPMD programming style for distributed memory systems

with the data referencing semantics of shared memory systems. It assumes a global

memory address space which is logically partitioned and a portion of it is local to each

process. Each process has private memory for local data items and shared memory

for globally shared data values. While the shared-memory is partitioned among the

cooperating processes (each process will contribute memory to to the shared global

memory), a process can directly access any data item within the global address space

with a single address. Communication between processes is introduced, when needed,

by the compiler. The PGAS model is the basis of UPC [35], Coarray Fortran [43],

Chapel [44], X10 [45] and Global Arrays [33].

One of the main critic against PGAS-based languages is their low scalability when

compared to highly optimized message passing programs. One advantage is however

the low latency associated with the communication statements used by PGAS. This is

due to the fact that PGAS-based languages often rely on a communication layer which

is based on one-sided communications called GASNet [46]. The main difference with

standard message passing libraries is that each process can update or interrogate the

memory of another process without any intervention from the destination process. This

is also known as Remote Direct Memory Access (RDMA). While this mechanism is

usually faster (with lower latency) when a limited number of processes is used, it has

been shown to have serious scalability issues. Moreover, the model offers no support for

collective-like communications making those collaborative patterns highly inefficient.

53

1 float pi;

2 if (rank == 0) {

3 pi = calc_pi ();

4 MPI_Send (&pi, 1, MPI_FLOAT , 1, 0, MPI_COMM_WORLD);

5 } else if (rank == 1)

6 MPI_Recv (&pi, 1, MPI_FLOAT , 0, 0, MPI_COMM_WORLD , MPI_STATUS_IGNORE);

7 use(pi);

Listing 3.12: Simple message passing program in MPI

3.3.3 Overview

This section gives a brief overview of our technique while further details will be given in

Section 3.3.4 and 3.3.5. Let us consider in Listing 3.12 a simple message passing program

written in MPI [3]. Two processes are involved in this example: process rank 0 computes

the value of the π constant (pi) and sends it to process rank 1. The computed value

is then used by both processes for further computation. One of the first characteristics

of the program is the use of the SPMD technique, which generates a single executable

that is spawned on multiple processors. To customize the program behaviour for a

specific process rank, the programmer needs to continuously use control statements to

guide the specific process flow of execution (lines 2 and 5). The use of control flow

statements is in general the source of many inefficiencies and limits compiler analysis

and optimizations. Additionally, miss-predicted branches cause significant performance

penalties on modern pipelined CPU architectures [20]. Because the generated executable

contains code which is never executed on a particular process rank, the L1 instruction

cache may be not optimally used too.

A second observation is that message passing programs are often complex to read and,

more importantly, to analyse. Because the programmer is forced by the programming

model to describe the low-level operations (i.e., the “how”), the semantics of the program

(i.e., the “what”) is mostly hidden. For example, although a connection between the

send and receive operations in lines 4 and 6 exists, it is implicitly in the mind of the

programmer and not made explicit in the code. We will focus on the matching problem

of communication statements in Chapter 5 of this thesis. This hidden knowledge could

be used by the compiler to improve error checking and program performance, but it is

unfortunately very complex to be captured by static analysis [18, 47]. For example, the

compiler could enforce the amount of received data to be not less than the amount of

data sent, or use constant propagation to remove communication statements in case the

transmitted value is constant (detected by compiler dataflow analysis).

We propose a different approach which lets the programmer focus on the program se-

mantics (the “what”) and lets the compiler deal with the generation of the required

54

1 mem_wrap <float > pi; // manages memory allocation in the distributed env.

2 pi[r0] = calc_pi (); // Rank 0 executes calc_pi () and writes the returned value

3 // into its own copy of pi

4 pi[r1] = pi[r0]; // Copies the value of pi owned by process rank 0 onto the

5 // memory cell owned by process rank 1 (by using send/recv)

6 use(*pi);

Listing 3.13: Overload of assignment operator in C++

Rank 0 Rank 1

1 float pi;

2 pi = calc_pi ();

3 MPI_Send (&pi ,1,MPI_FLOAT ,1,0,...);

4 use(pi);

1 float pi;

2 MPI_Recv (&pi ,1,MPI_FLOAT ,0,0,...);

3 use(pi);

Table 3.1: Compiler generated codes for process rank 0 and 1.

communication operations. The idea is not entirely new [35], however, instead of in-

troducing a new programming model (e.g., PGAS) and an underlying language support

(e.g., UPC), we exploit the capabilities of the standard C++ language and compiler.

Listing 3.13 shows a simple C++ program semantically equivalent to the previous ex-

ample. The first aspect is the lack of any control flow statements, which is achieved by

offloading all memory operations to a new data type, i.e., mem wrap, acting as a memory

wrapper for distributed memory environments. The input program is compiled multiple

times, each time for a different process rank. Keeping the value of the process rank con-

stant at compile-time allows meta-programming techniques to be used for specializing

the semantics of operations involving mem wrap instances. For example, the initialisa-

tion of a memory cell owned by the process rank 0 results in a no-operation (NOP) when

the program is compiled for process rank 1 (line 2). Assignment operations involving

memory cells residing on different address spaces are replaced by communication state-

ments (line 4). Table 3.1 shows the codes generated at compile-time by our approach for

the processes with rank 0 and 1 from program code in Listing 3.13. The SPMD input

program is compiled into multiple executables (as many as the number of processes) and

successively executed using the MPMD paradigm.

MPI can be used to run both SPMD and MPMD programs through the mpirun com-

mand. In order to support the MPMD model, the MPI standard defines the ‘:’ command

line separator used to specify multiple executables [3]. Running the MPMD program

generated by our technique produces very promising results. We executed both the

SPMD and MPMD executables on an Intel Xeon X5570 CPU and an AMD Opteron

2435, both compiled with GCC 4.5.3 and optimization enabled (-O3). We repeated the

55

SPMD MPMD
Exec. time
[milisec.]

Standard
deviation

Exec. time
[milisec.]

Standard
deviation

Speedup

Intel Xeon 8180 440 6162 129 1.32

AMD Opteron 9638 166 9296 177 1.04

Table 3.2: Execution time for each process of the program in Listing 3.13 using SPMD
and MPMD models.

Hardware counter SPMD MPMD

L1 Instruction Cache misses 4253718 4246317

L2 Instruction Cache misses 681689158 681689158

Conditional branch instructions 4260166 4254384

Table 3.3: Performance counter values for the Intel architecture.

code snippet one thousand million times and used shared memory communication, in-

stead of the network, to reduce the communication overhead. The main program loop

has been executed 10 times, the average value of execution time and standard deviation

are depicted in Table 3.2. A considerable performance improvement, of around 30%, is

observed for the Intel architecture, while on the AMD CPU, the improvement was of

around 5%.

In order to explain the performance improvement we executed the code snippet enabling

performance counters on the Intel CPU by using the PAPI library [48]. The measured

values for three performance counters are depicted in Table 3.3. We measured the

instruction cache misses for both level 1 and 2 and the total amount of conditional

branch instructions. The code snippet is small to easily fit into L2 cache, therefore no

differences in terms of L2 cache misses are visible. However, the utilization of the L1

cache is improved for the MPMD code as we were able to reduce the amount of cache

misses by a 0.5%. This is because, by removing unreachable branches, code locality is

improved. Additionally, also the amount of conditional branch instructions is reduced

by the same amount. This alone cannot however explain the 32% speedup which we

believe to be the result of optimizations (e.g., loop unrolling and constant propagation)

performed by the compiler on the MPMD code. As a matter of fact, thanks to the

simplification to the control flow obtained with our meta-programming technique, we

enable the compiler analysis to perform more aggressive optimizations which are not

forseable on the SPMD version.

3.3.4 The mem wrap Object

Meta-programming is the practice of writing a computer program that manipulates other

programs (or themselves) as their data. Meta-programming can be used to perform part

56

1 template <class T, template <class > class Sel , class R>

2 struct mem_wrap {

3 T& operator *(); // Access to managed memory

4

5 mem_wrap <T,Sel ,R>& operator =(const T&);

6 template <template <class > class Sel2 , class R2 >

7 mem_wrap <T,Sel ,R>& operator =(const mem_wrap <T,Sel2 ,R2 >&);

8

9 template <class R2> mem_wrap <T,Sel ,R2 > operator[](const R2&);

10 };

Listing 3.14: mem wrap object interface.

of the computation at compile-time instead of runtime. By combining templates and

meta-programming, it is possible in C++ to specialize the implementation of generic

functions based on particular properties of the input parameters. For example, a generic

function can have two implementations depending on whether the input parameter is

a pointer or a value type. Because these checks are conducted at compile-time, it

is necessary that the expressions used to select a particular implementation involve

compile-time constants only.

Our approach is based on a similar mechanism. The objective is to introduce an en-

hanced assignment operator which, depending on the type of the left and right hand

side expressions, is specialized to implement different semantics. We introduce a new

data type called mem wrap illustrated in Listing 3.14 that manages the allocation and

accesses to memory locations in the distributed memory environment. The first tem-

plate parameter T represents the wrapped type which allows the management of single

elements (e.g., mem wrap<float>) or of more complex data types such as arrays (e.g.,

mem wrap<vector<float>>). The second parameter Sel is the selector, which decides

whether the wrapped object (of type T) has to be allocated on the particular process

rank for which the input program is being compiled. For example, by using the expres-

sion Rank%2==0 as a selector, we enforce only even process ranks to allocate the memory

to host the object of type T. This means that when the program will be compiled for an

even rank process, the generated code for the mem wrap class will contain an initialization

of an object of type T. We refer to these instances of mem wrap as active. Odd ranks, for

which the selector is not satisfied, allocate an empty wrapper instance called shadow.

A shadow wrapper acts as a pointer to a memory location on a different machine and

can be used to read data from it. To note that mem wrap does not perform any data

partitioning, the programmer is still responsible to divide the memory space among the

processes. Because a mem wrap instance can refer to memory locations on multiple ad-

dress spaces, the R parameter is used to address the copy owned by that specific (i.e.,

R) process rank. The mem wrap also provides three basic methods among several others:

a dereferencing operator, i.e., *, used to directly access the memory managed by the

57

1 template <class RR = mpl::int_ <MY_RANK >>

2 struct even {

3 template <class Rank >

4 struct apply : public mpl::bool_ <Rank::value %2==0> { };

5 };

6 mem_wrap <std::vector <float >, even > vect (100);

7 for (unsigned int i=0; i<100; ++i) { vect(i) = MY_RANK; }

8 vect[r0] = vect[r2];

Listing 3.15: Example of using selectors.

wrapper (line 3), an assignment operator, i.e., =, overloaded to work with data type

instances of type T (line 5) or mem wrap instances (line 7), and a subscript operator,

i.e., [], used to select a copy of the wrapped data which belongs to a particular address

space.

There are two specializations of the mem wrap class: one for active and the other for

shadow wrapper instances. We define a pre-processor directive called MY RANK as the

rank of the process for which code is being generated. During the compilation process,

for every instantiation of a mem wrap, the selector is applied to the value of MY RANK.

Depending on the result, one of the two specializations is used. Furthermore, methods

of the mem wrap class have multiple specializations depending on the type of the input

parameters.

To better understand how selectors work, we illustrate in Listing 3.15 a slightly more

complex example of a program that allocates a vector (vect) of 100 floating point

numbers on every even process rank, initialises it, and then copies its value from rank

2 to rank 0. We define the class even as a selector for even rank values. For simplicity,

we use utilities (i.e., types and meta-functions) from the Boost Meta-Programming

Library (MPL) [49], on which also the implementation of mem wrap heavily relies. The

selector is applied to a rank value using the apply generic inner class defined in line 2.

We follow the naming convention used in MPL which enables us using existing meta-

programming utilities from the MPL library. In line 6, the allocation of the variable

vect is managed by our memory wrapper which enables the compiler to select the type

of wrapper to instantiate (i.e., active or shadow) depending on the rank for which the

code is being compiled.

Accessing array elements from a wrapper instance is allowed using the () operator

which, instead of returning directly the indexed value, instantiates the target wrapper

referring to the addressed memory cell. For shadow wrappers, an assignment operator

of a value of type T resolves to a NOP (e.g., loop iteration in line 7 compiled for odd

processors) that the compiler optimizations can easily detect and safely remove as dead

code. Therefore, line 7 will be preserved for even processes but it will be removed for

58

1 template <class RR = mpl::int_ <MY_RANK >>

2 struct top_neigh {

3 template <class Rank >

4 struct apply : mpl::bool_ <RR:: value+1 == Rank::value > { };

5 };

6 const size_t size = N/NUM_PROCS +2;

7 mem_wrap <carray <float >> u(size ,N), tmp(size -2,N); // Active wrapper

8 mem_wrap <carray <float >, top_neigh > top(u); // Shadow wraper

9 mem_wrap <carray <float >, bottom_neigh > bottom(u); // Shadow wrapper

10 // Initialize matrix u...

11 for(unsigned int it=0; it <MAX_ITER; ++it) {

12 u[slice(size -1, size , 0, N)] = top[slice(1, 2, 0, N)];

13 u[slice(0, 1, 0, N)] = bottom[slice(size -2, size -1, 0, N)];

14 for (unsigned int i=1; i<size -1; ++i)

15 for (unsigned int j=1; j < N-1; ++j)

16 tmp(i-1,j-1) = 1/4 * (*u(i-1,j) + *u(i,j+1) + *u(i,j-1) + *u(i+1,j));

17 }

Listing 3.16: C++ Jacobi relaxation

odd ranks. Finally, the assignment operator in line 8, involving the two wrappers, is

rewritten as send/receive. For odd ranks, the operation results again in a NOP. The rn

constants, where n is an integer value representing the rank, are defined to easily refer

to a process rank. The [] operator is used to specialize a generic wrapper to refer to

a particular memory address space, method signature is shown in line 9 of Listing 3.13.

Since 0 is within the set of processes selected by the even selector, code will be generated

for this process. Because the wrapper object for this process is in the left-hand-side of

an assignment, a receive operation is generated, the source of the receive is given by

the wrapper on the right-hand-side of the assignment operator, i.e., r2. When code

is generated for rank 2, a similar mechanism is used that generates a send operation

towards the process rank 0.

3.3.5 Jacobi Relaxation

In this section we show how an important class of HPC stencil operations can be ex-

pressed in our framework. We use as example the Jacobi relaxation method based on

the nearest neighbour communication. A two-dimensional matrix is distributed among

the processes, each process having a dependency to the memory cells owned by its direct

neighbours. When the data is distributed in a row-wise manner, each process needs to

access the memory allocated in the top MY RANK+1 and bottom MY RANK-1 neighbours.

Every process allocates an equal portion of N/NPROCS+2 matrix rows, where N is the

matrix size. The two additional rows are used to store the first and last row received

from the top and the bottom neighbors.

59

1 shared [N*N/THREADS] float u[N][N];

2 shared [N*N/THREADS] float tmp[N][N];

3 // Initialize matrix u...

4 for(unsigned int it=0; it < MAX_ITER; ++it)

5 upc_forall(unsigned int i=1; i<N-1; i++; &tmp[i][0]) {

6 for (unsigned int j=1; j < N-1; ++j)

7 tmp[i][j] = 1/4 * (u[i-1][j] + u[i][j+1] + u[i][j-1] + u[i+1][j]);

8 }

Listing 3.17: UPC based Jacobi relaxation method

Listing 3.16 shows the Jacobi relaxation algorithm expressed using our method. In lines

8 and 9, two shadow wrappers are generated referring to the top and bottom neigh-

bours. The top processor selector top neigh is defined in lines 2-5. The selector for

the bottom processor bottom neigh is similar with the difference that the expression

RR::value-1 == Rank::value is used as a selector. Both top and bottom are instan-

tiated as shadow wrappers on every processor rank because the selector expressions

always evaluate to false when applied to the current rank (MY RANK). Lines 12 and 13

implement the neighbor communication. In line 12, a receive operation is generated for

the incoming data from the top neighbor process. Unlike previous examples, the rank

is not statically specified and the source rank of the message is automatically computed

at compile-time in order to avoid any runtime overhead. This is done with the following

procedure. The selector of the right hand side expression top neigh is applied to a

list of process ranks PL generated at compile-time as follows PL: {0,1,...,MY RANK-1,

MY RANK+1,..., NUM PROCS-1}, where NUM PROCS is the total number of processes de-

fined via a pre-processor directive, and RR (i.e., RefRank) is set to be MY RANK. The

selector is invoked several times as follows: top neigh<MY RANK>::apply<R>, ∀R ∈ PL.

The receive operation is generated using, as a source rank, the value R which satisfies

the selector, (i.e., MY RANK+1). Speculatively, a send operation is generated towards the

bottom neighbor. This requires to invert the top neigh selector previously used to gen-

erate the receive operation. We achieve this by invoking the selector in the following

way: top neigh<R>::apply<MY RANK>, ∀R ∈ PL. The semantics is the following, find

the processes for which the top neigh selector is satisfied when applied to the current

rank value (i.e., MY RANK). For rank values which satisfy the selector, a send operation

is generated using as target rank the value of R (i.e., MY RANK-1). The communication

statements for line 13 are generated similarly but using bottom neigh as selector. The

slice function indicates the start and end rows and columns of a matrix partition which

has to be either transmitted or overwritten by the incoming data.

We compared our Jacoby relaxation implementation with an UPC-based version on a

shared memory machine with 10 AMD Opteron cores. The UPC implementation of

Jacobi (from [50]) utilized in our experiments is depicted in Listing 3.17. The code uses

60

Matrix size MPMD UPC Speedup

10x10 0.0129 0.0022 0.14

100x100 0.018 0.023 1.28

500x500 0.098 0.205 1.84

1000x1000 0.20 0.74 3.7

2000x2000 0.61 2.98 4.9

Table 3.4: Jacobi relaxation execution time (in seconds) and speedup comparison.

a memory layout specifier (i.e., [...]) which allows the UPC runtime to distribute the

u and tmp matrices assigning an equal amount of rows to each UPC process (similar to

the MPMD code). For a fair comparison, we forced UPC to use MPI as the underlying

communication library (-network=mpi). Furthermore, we utilized the -T flag which

enables the UPC compiler to create an executable which runs with a fixed number

of threads (i.e., -T=10). The Berkley UPC compiler version 2.12.2 with experimental

optimization enabled (-opt) was utilized. GCC version 4.5.3, with optimization flag

-O3, was used to compile the MPMD version of the Jacobi in Listing 3.16.

Table 3.4 shows that UPC performs slightly better for very small matrix sizes but, as

the problem size increases, the MPMD version significantly outperforms UPC. Unfortu-

nately we could not compile the UPC code for larger matrix sizes as the UPC compiler

does not support, in the layout specifier, a block size which is greater than 1MB. We

believe that the main source of inefficiency in UPC is the fact that the compiler is not

able to vectorize the accesses to neighbor memory cells. Therefore every access to remote

memory locations results in a separate communication operation. It is also worth not-

ing that compared to an SPMD-based MPI implementation of the Jacobi, the MPMD

version presented here only marginally improve performance. The main advantage is in

the simplified programming model which, as the experiments show, does not cause any

performance penalty.

3.4 LibWater: A Uniform Approach for Heterogeneous

Distributed Memory Programming

3.4.1 The OpenCL Programming Model

OpenCL is an open industry standard for programming heterogeneous systems. The

language is designed to support devices with different capabilities such as CPUs, GPUs

and accelerators. The platform model comprises a host connected to one or more com-

pute devices. Each device logically consists of one or more compute units which are

further divided into processing elements (PEs). Within a program, the computation is

61

expressed through the use of special functions called kernels that are, for portability rea-

son, compiled at runtime by an OpenCL driver. Interaction with the devices is possible

by means of command-queues which are defined within a particular OpenCL context.

Once enqueued, commands – such as the execution of a kernel or the movement of data

between host and device memory – are managed by the OpenCL driver which schedules

them on the actual physical device.

When a kernel is submitted for execution by the host, an index space is defined and an in-

stance of the kernel (i.e., work-item) is executed for each point in that space. Work-items

are also organized into work-groups, which provide a more coarse-grained decomposition

of the index space. The work-items in a given work-group execute concurrently on the

processing elements of a single compute unit and therefore, the size of a work-group

can have a significant effect on the runtime performance. Moreover, work-groups share

memory therefore synchronization is allowed.

Commands can be enqueued in blocking or non-blocking mode. A non-blocking call

places a command on a command-queue and returns immediately to the host, while a

blocking-mode call does not return to the host until the command has been executed

on the device. This is similar to non-blocking semantics of communication statements

explained in 2.2. For synchronization purpose, within a context, event objects are gen-

erated when kernel and memory commands are submitted to a queue. These objects are

used to coordinate execution between commands and enable decoupling between host

and devices control flows.

Despite being a well designed language that unleashes the compute power of heteroge-

neous devices from a single, multi-platform source code base, OpenCL has some draw-

backs and limitations. One of the major drawback is that, because being created as a

low-level API, a significant amount of boilerplate code is required even for the execution

of simple programs. Developers have to be familiar with numerous concepts (i.e., plat-

form, device, context, queue, buffer and kernel) which make the language less attractive

to novice programmers. Another important limitation is that, although it was designed

to address heterogeneous systems, in case of devices from different vendors, objects be-

longing to the context of one vendor are not valid for other vendors. This limitation

clearly becomes a problem when synchronization of command queues across different

contexts is needed.

Moreover OpenCL applications can only take advantage of the local devices present on

a single node of a heterogeneous cluster. To exploit devices on different nodes another

appropriate programming paradigm is needed. Different paradigms, however, do not

have a common memory model. That leaves to the programmer the responsibility to

maintain the memory consistency when switching from one model to another.

62

3.4.2 Related Work

Several projects have been recently proposed to facilitate the programming of clusters

with heterogeneous nodes [51–54].

Kim et al. [51] proposed the SnuCL framework that extends the original OpenCL

semantics to heterogeneous cluster environments. Their work is closely related to ours.

SnuCL relies on the OpenCL language with few extensions to directly support collective

patterns of MPI. In SnuCL is the programmer responsibility to take care of the efficient

data transfers between nodes. In that sense, end users of the SnuCL platform need

to have an understanding of MPI collective calls semantics in order to be able to write

scalable programs. SnuCL poses a limit to the number of devices which can be addressed

by their runtime system, i.e., NVidia accelerators and CPUs.

Also other works have investigated the problem of extending the OpenCL semantics to

access a cluster of nodes. The Many GPUs Package (MGP) [52] is a library and runtime

system that using the MOSIX VCL layer enables unmodified OpenCL applications to

be executed on clusters. Hybrid OpenCL [53] is based on the FOXC OpenCL runtime

and extends it with a network layer that allows the access to devices in a distributed

memory system. The clOpenCL [54] platform comprises a wrapper library and a set of

user-level daemons. Every call to an OpenCL primitive is intercepted by the wrapper

which redirects its execution to a specific daemon at a cluster node or to the local

runtime. While the objectives of these approaches are similar to ours, none of them

provides an abstraction layer to reduce the complexity associated with the OpenCL

development and, furthermore, they show a very limited scalability in clusters of 4 to 8

compute nodes.

Besides OpenCL-based approaches, also Compute Unified Device Architecture (CUDA)

solutions have been proposed to simplify distributed memory systems programming.

CUDASA [55] is an extension of the CUDA programming language which extends par-

allelism to multi-GPU systems and GPU-cluster environments. rCUDA [56] is a dis-

tributed implementation of the CUDA acAPI that enables shared remote GPGPU in

HPC clusters. cudaMPI [57] is a message passing library for distributed-memory GPU

clusters that extends the MPI interface to work with data stored on the GPU using

the CUDA programming interface. All of these approaches are limited to devices that

support CUDA, i.e., NVidia GPU accelerators, and therefore they cannot be used to

address heterogeneous systems which combines CPUs and accelerators from different

vendors.

63

Device Management (wtr)

void init devices(’DQL’, ...) device get device(’DQL’, ...)

int get num devices() void release devices()

void print device infos(device)

Buffer Management (wtr)

buffer create buffer(device, mem flag, size, evt)

void write buffer(buffer, size, source ptr, wait evt, evt)

void read buffer(buffer, size, dest ptr, wait evt, evt)

void release buffer(buffer, wait evt, evt)

Kernel Management (wtr)

kernel create kernel(device, name, kernel name, build options,

flag, evt)

void run kernel(kernel, work dim, global work size,

local work size, wait evt, evt, num args, ...)

void release kernel(kernel, wait evt, evt)

Event Management (wtr)

event create event() void release event(evt)

event merge events(num, ...) void wait for events(num, ...)

void init event array(num, evt)

void release event array(num, evt)

Table 3.5: The complete libWater API.

3.4.3 The LibWater Programming Interface

In this section we present an overview of libWater ’s interface. A more detailed descrip-

tion of the rationale behind the design of the API can be found in [36].

libWater is a C/C++ library-based extension of the OpenCL programming paradigm.

It inherits the main principles from the OpenCL programming model trying to overcome

its limitations. While maintaining the notion of host and device code, libWater exposes a

very simple programming interface based on four key concepts: device, buffer, kernel and

event. A device represents a compute device, but differently from the original paradigm

this single object is an abstraction of the OpenCL platform, device, queue and context

concepts.

Table 3.5 presents the complete API of the libWater library. The prefix wtr and the C

language pointer syntax has been removed from the table for readability reasons. Ini-

tialization and selection of devices is done, respectively, by using the wtr init devices

and the wtr get device routines. Once a device is created, it is possible to allocate

data and execute computation on it. In libWater, this is done through the use of the

64

buffer and the kernel concepts. These two objects are similar to their respective OpenCL

versions, with the main difference that, during their creation, they are bound to a spe-

cific device. For this reason no device must be specified for buffer and kernel related

functions. The principal kernel functions are wtr create kernel and wtr run kernel.

The former receives as parameter a flag that specifies whether the name input argu-

ment contains the kernel code or it is the name of a file containing the OpenCL kernel.

The latter is used for executing a kernel in the previously bound device. The param-

eters work dim, global work size and local work size are the same specified in the

OpenCL clEnqueueNDRangeKernel. The num args parameter states the number of in-

put arguments accepted by the kernel. This parameter is followed by a list of a variable

number of pairs. Each pair consists of a size (in bytes) and a pointer to the correspond-

ing kernel argument. The first value of the pair distinguishes between buffers – when is

equal to 0 – or a valid address in the host memory. The fourth concept in libWater is

the event object. Most of kernel and buffer functions have one or two parameters called

wait evt and evt. The latter is an output argument which is used by the invoked com-

mand to generate an event object. If not specified, libWater assumes blocking semantics

for the routine. The former specifies the event object on which the execution of the com-

mand depends. If not present, the command has no dependencies and thus it can be

immediately executed. Since there can be a dependency between several commands, the

wtr merge events function can be used to merge multiple event objects into one.

The last major difference between libWater and the OpenCL model is the fact that

initialization and release of buffers and kernels can be invoked using a non-blocking

semantics. The main reason for this is to increase the amount of operations that the

runtime system can overlap. In the next section we explain how dependency information

enforced by events are then exploited by libWater ’s runtime system.

3.4.4 The LibWater Distributed Runtime System

While the main focus of the programming interface of libWater is on simplicity and

productivity, the underlying runtime system aims at low resource utilization and high

scalability. Calls to libWater routines are forwarded to a distributed runtime system

which is responsible for dispatching the OpenCL commands to the addressed devices

and for transparently and efficiently moving data across the cluster nodes. The libWa-

ter distributed runtime is written in C++ and internally uses several paradigms, such

as pthreads, OpenMP and MPI for parallelization.

65

WTR
Scheduler

MPI Endpoint

Global Command
Queue

Host Thread

...
wtr_create_buffer(...);
...

wtr_run_kernel(...);
...
...
wtr_wait_for_event(...);

C
lu

st
er

 N
od

e
#0

C
lu

st
er

 N
od

e
#i

 (i
!=

0)

wtr_command(s)

wtr_command

wtr_command

wtr_command

OpenCL command(s)

OpenCL command(s)

1
OpenCL queue

OpenCL queue

OpenCL CPU Device
2

Scheduler Thread

2

WTR
Scheduler

Local Command Queue

wtr_command

wtr_command

wtr_command

MPI Endpoint

OpenCL queue

Scheduler Thread

OpenCL GPU Device

OpenCL GPU Device

OpenCL CPU Device

OpenCL GPU Device

3

3

Figure 3.3: libWater ’s distributed runtime system architecture.

3.4.4.1 Runtime System Architecture

Figure 3.3 shows the organization of the libWater distributed runtime system. The

host code, which directly interacts with libWater ’s routines, runs on the so called root

node, which by default is the cluster node with rank 0. This thread will be referred

to as the host thread. In the background, a second thread, i.e., the scheduler thread, is

allocated to execute an instance of the WTRScheduler. On the remaining cluster nodes,

a single scheduler thread is spawned independently of the number of available devices

(only one MPI process is allocated per node). This thread executes an instance of the

WTRScheduler which represents the backbone of libWater ’s distributed runtime system.

Each WTRScheduler continuously dequeues wtr commands from the local command queue.

wtr commands in the system are generated in two ways, either by (i) libWater ’s routines

(step 1), or (ii) by delegation from the root scheduler (step 3). Calls to the libWater ’s

interface are converted into command descriptors (i.e., command design pattern) and

immediately enqueued into the root node local command queue (step 1) of Figure 3.3.

Since all wtr commands are generated by the root node itself, we refer to its queue as

the runtime global command queue.

wtr commands are either wrappers for OpenCL commands or data transfer jobs (i.e.,

send job or recv job) which are generated by the library routines whenever the device

addressed by a read or write buffer operation is located in a remote (i.e., rank 6= 0)

compute node. The descriptor of a wtr command is self-contained since it carries all the

information necessary for its execution. To be portable across cluster nodes, OpenCL

objects such as kernels, buffers and events are identified, within the wtr command object,

by a unique ID. The root scheduler continuously fetches the wtr commands from the

global command queue, decodes its content and – depending on the targeted device –

dispatches the command to the correct node. When the wtr command addresses one of

66

the local OpenCL devices, the corresponding OpenCL command is created and enqueued

into the device command queue (step 2). When a remote OpenCL device is addressed, an

MPI message is generated – serializing the content of the wtr command descriptor – and

dispatched to the cluster node hosting the requested device. The WTRScheduler of the

target node then de-serializes the wtr command and, instead of immediately executing it,

enqueues the wtr command instance into the local command queue (step 3). The same

WTRScheduler is then responsible to dispatch the corresponding OpenCL command into

one of its local device queues (step 2).

The heartbeat of the WTRScheduler is an advanced event system which allows the man-

agement of an entire compute node – hosting multiple OpenCL devices – using only

a single application thread. Because one instance of the WTRScheduler runs on every

cluster node, trying to keep the resource usage as low as possible is of paramount im-

portance in order to avoid wasting CPU cycles which can be used to run an OpenCL

kernel. Different from related work, e.g., the SnuCL runtime system [51], which exclu-

sively reserves an entire cluster node and a physical CPU core in each compute node only

for scheduling purposes, our system does not exclusively reserve any user resources for

scheduling. Furthermore, using a single thread, for both executing local wtr commands

and for performing scheduling decisions, reduces the amount of synchronization since

accesses to event and the command queues do not need to be synchronized.

Relying on a single thread can however easily become a performance bottleneck. An

interesting example is the interaction with MPI routines. By default many MPI imple-

mentations realize blocking behaviour with a spin-lock mechanism in order to minimize

latency. This means for example that a blocking receive, waiting for a message from

the communication channel, continuously checks for incoming data usually saturating a

CPU core. In an environment like ours, where CPU cores may be used to run OpenCL

kernels, this behaviour must be avoided. Our solution is to avoid in every event handler

routine any call to blocking MPI or OpenCL routines and always use the non-blocking

semantics. The main idea is the creation of periodic events, handled by the event sys-

tem using a priority queue based on timestamps, to check for the completion of pending

operations. For OpenCL routines, we exploit the OpenCL event system and the asso-

ciated callback mechanism. In this way, the WTRScheduler is able to dispatch several

commands on the OpenCL devices, or MPI data transfers, which although being issued

sequentially (by the single flow of the execution) are concurrently executed by the avail-

able resources (i.e., OpenCL devices and the network controller). The same event-based

technique utilized to manage multiple OpenCL devices in a single node is also exploited

on the large scale across cluster nodes.

67

1 wtr init devices(WTR_ALL);

2 wtr_event* evts[get_num_devices ()];

3 for (int i=0; i<get_num_devices (); ++i) {

4 size_t offset=size /2*i;

5 wtr_device* dev = wtr_get_device(i);

6 assert(dev != NULL && "Device does not exist!");

7 wtr_event* e[8];

8 wtr_init_event_array (7,e);

9 wtr_kernel* kern = wtr create kernel(dev ,"kernel.cl","fun", "", WTR_SOURCE , e+0);

10 wtr_buffer* buff = wtr create buffer(dev , WTR_MEM_READ_WRITE , size/2, e+1);

11 wtr write buffer(buff , size/2, ptr+offset , e+1, e+2);

12 e[7] = wtr_merge_events (2, e+0, e+2);

13 wtr run kernel(kern ,1,(size_t [1]){size/2},NULL ,e+7,e+3,2,

14 0, buff ,

15 sizeof(size_t), &offset);

16 wtr read buffer(buff , size/2, ptr+offset , e+3, e+4);

17 wtr release buffer(buff , e+4, e+5);

18 wtr release kernel(kern , e+3, e+6);

19 evts[i] = wtr_merge_events (2, e+5, e+6);

20 wtr_release_event_array (8, e);

21 }

22 /* Blocks until buffers and kernels are released */

23 wtr wait for events(2, evts+0, evts +1);

24 wtr_release_event_array (2, evts);

Listing 3.18: A complete multi-device program example using libWater ’s routines

3.4.4.2 Event-based Command Scheduling

As already explained in the previous Section, libWater puts a strong emphasis on events.

Following the semantics of OpenCL, dependency information enforced by programmers

are used to select wtr commands, which can be safely enqueued into one of the cluster

nodes. libWater provides an event object, i.e., wtr event. Internally, wtr events are

mapped either to an OpenCL cl event object, or to a wtr command identifier which is

automatically generated for each wtr command enqueued into the system. These depen-

dencies allow the runtime system to organize enqueued wtr commands into a DAG.

A complete multi-device libWater -based host program is shown in Listing 3.18. This

code initializes all the available devices. For each device the code in Listing 3.18 does

the following: create a kernel (i.e., kern, in line 9) and a read/write buffer (i.e., buff,

line 10). Then the contents from the host memory is written into the device buffer by

the wtr write buffer command (line 11) and the wtr run kernel command is issued

providing buff as an input argument (lines 14-16). The computed result is then retrieved

by the wtr read buffer command (line 16) which moves data from the device memory

back to the host memory.

From the runtime system point of view, the execution of the previous code generates a

set of dependent commands structured as the DAG depicted in Figure 3.4. The DAG

68

G(V,E) is composed of vertices, i.e., wtr commands ∈ V , interconnected through directed

edges (a, b) ∈ E | a, b ∈ V , or events, which guarantee that the correct order of execution,

and therefore the semantics of the input program, is maintained. The set of dependencies

associated with a command c ∈ V is defined as c.deps = {v ∈ V | (v, c) ∈ E}. It is worth

mentioning that not all libWater library routines generate a corresponding wtr command.

For example, creation, merging and release of events are only meaningful in the root

node, therefore there is no need for serializing them. In Figure 3.4, each wtr command

carries a descriptor in the form x|y where x represents the node rank, c.node id, on

which the targeted device, c.dev id, is hosted and y is the unique command identifier

assigned by the runtime system. As already mentioned, for buffer operations on remote

devices (i.e., device on node 1) explicit data transfers are automatically inserted by the

libWater library (e.g., wtr commands 10 and 14).

Events determine when a wtr command can be scheduled for execution. The scheduler

uses a just-in-time strategy to select the next wtr command from the local command

queue. The logic works as follows: enqueued wtr commands are analyzed in a FIFO

fashion and, for each ready command, the scheduler checks whether dependencies –

explicitly specified by event objects – are satisfied. If a command has no dependencies,

it can be executed. Since the host program generates all the commands solely on the

root node, scheduling is done at this node. However, a centralized scheduler on a single

node is not an effective strategy since it limits command throughput and thus the overall

scalability of the system.

In order to solve this problem, we rely on the fact that the OpenCL runtime system

already has the capability of scheduling commands and handling dependencies by us-

ing events. It is worth noting that in OpenCL this mechanism is limited since events

cannot be used to perform command synchronization across different contexts. libWa-

ter unifies event handling through WTRScheduler instances which manage inter-context

synchronization and offload intra-context synchronization to the OpenCL driver.

We implemented a three-level hierarchal scheduling approach as described in Algorithm 1.

At the top level, the root node of the libWater runtime system pro-actively schedules

wtr commands from the global queue to the targeted cluster nodes. cmd, fetched from

the command queue, is sent to the target node (i.e., cmd.node id) only if each of its de-

pendent commands (i.e., the set cmd.deps) are to be executed on the same remote node

(lines 7–10). The second level scheduling is local to each node, lines 12–15. The sched-

uler checks whether cmd only depends on wtr commands addressing the same OpenCL

device. In such case, the command is enqueued into the corresponding device queue

(i.e., dev.dev id) and dependencies are mapped to local OpenCL events. Alternatively,

69

wtr_create_kernel0|1

wtr_create_buffer0|2

wtr_write_buffer0|3

wtr_run_kernel0|4

wtr_read_buffer0|5

wtr_release_buffer0|6

wtr_release_kernel0|7

wtr_create_kernel1|8

wtr_create_buffer1|9

wtr_write_buffer1|11

wtr_run_kernel1|12

wtr_read_buffer1|13

wtr_release_buffer1|15

wtr_release_kernel1|16

send_job1|10

e+0 e+1

e+2

e+3

e+3

e+4

e+0e+1T:1|10

e+2

e+3

e+3

recv_job1|14

e+4

T:1|14

wtr_wait_for_events

e+5

e+6 e+6

e+5

Figure 3.4: DAG of wtr commands generated during the execution of the code snippet
in Listing 3.18.

if a wtr command C1 depends on a second wtr command C2, scheduled in another con-

text (of the same node), the local WTRScheduler ensures that C1 is not enqueued into

the OpenCL device queue before C2 is completed. The third-level scheduling is imple-

mented by the OpenCL runtime system itself which is responsible of managing single

device queues. If cmd cannot be scheduled, due to unsatisfied dependencies, then it is

pushed back in the command queue.

Command dependencies are automatically updated when a wtr command c completes.

Locally, a command completion event is generated. The associated callback function is

depicted in Algorithm 2. The function removes, for every command in the local queue,

any dependence on c. Additionally, nodes notify the root scheduler with a message (lines

8–10) triggering a similar completion event internally at node 0. In such a way, com-

mands in the global queue waiting for the completion of c can be scheduled – depending

on the targeted device – either to a local device or to a remote node.

This multi-level scheduling allows the runtime system to hide the costs of the schedul-

ing, as well as data transfers, with the actual work being done by the devices in the

background. The main idea is to use non-blocking semantics when OpenCL commands

are scheduled in the corresponding devices. In this way, the WTRScheduler can contin-

uously dispatch commands to other devices or move data from and to the root node. In

the example in Figure 3.4, commands 0|1 and 0|2 can be executed in parallel. Events

70

Algorithm 1 The WTR Scheduler’s algorithm

1: Input: cmd queue . Local FIFO wtr command queue
2: Input: my rank . MPI process rank
3: procedure ScheduleCMD(cmd queue : input,my rank : input)
4: while true do
5: cmd← cmd queue.pop();
6: if cmd.node id 6= my rank then
7: if ∀ d ∈ cmd.deps | d.node id = cmd.node id then
8: send(cmd, cmd.node id, SCHED) . Delegates cmd to node
9: continue

10: end if
11: else
12: if ∀ d ∈ cmd.deps | d.dev id = cmd.dev id then
13: issue(cmd.cl cmd, cmd.deps) . Delegates to corresp. dev.
14: continue
15: end if
16: end if
17: cmd queue.push(cmd) . Failed to schedule event due to deps.
18: end while
19: end procedure

Algorithm 2 Update wtr command dependencies

1: Input: c . Completed command
2: Input: cmd queue . Local command queue
3: Input: my rank . Rank associated to executing process
4: procedure CallbackCmdCompletion(c : Input, cmd queue : Input,my rank : Input)
5: for cmd in cmd queue do
6: cmd.deps.remove(c) . Removes c from the dependencies
7: end for
8: if my rank 6= 0 then
9: send(c, 0, DONE) . Notifies the root node of c completion

10: end if
11: end procedure

at addresses e + 0 and e + 1 are handled by the root WTRScheduler since the OpenCL

standard does not allow non-blocking semantics for these operations. The remaining

commands (i.e., 0|3, 0|4 and 0|5) are inserted asynchronously into the OpenCL device

queue of node 0, upon completion of commands 0|1 and 0|2. Events e+2 and e+3 are

therefore handled directly by the OpenCL runtime system. Following the same logic,

wtr commands addressing the second OpenCL device (i.e., 1|∗) are sent to the node with

rank 1. The blocking function wtr wait for events stops the execution of the host

until the release operations on both nodes have completed.

3.4.4.3 The DCR Optimization

The underlying architecture of the libWater runtime system and the emphasis on events,

promoted by its interface, enables several runtime optimizations which are transparent

to the user. This capability is a direct consequence of adhering to the OpenCL queuing

71

SendJob

WriteBufferJob

ReadBufferJob

RecvJob

SendJob

WriteBufferJob

ReadBufferJob

RecvJob

1

1

1

1

2

2

2

2

SendJob

WriteBufferJob

ReadBufferJob

RecvJob

N

N

N

N

WriteBufferJob

ScatterJob

WriteBufferJob

GatherJob

1

1

2

2

WriteBufferJobN

N

Optimizer

*

*

ReadBufferJob ReadBufferJob ReadBufferJob

Figure 3.5: Dynamic collective communication pattern replacement (DCR) optimiza-
tion.

semantics. While commands are being enqueued into the system, a command DAG

(as shown in Figure 3.4) is internally created. Since OpenCL issues commands to the

appropriate device only when an explicit flush is invoked by the programmer, the runtime

system can analyze large portions of the application DAG and optimize it for improving

scalability.

An optimization which has been implemented in the libWater runtime system is the dy-

namic detection and replacement of collective communication patterns (DCR). When-

ever the addressed device is not hosted in the root node, a call to wtr write buffer

and wtr read buffer respectively generates an MPI send and receive operation. When

an OpenCL application is distributed among all available devices, input buffers are usu-

ally either split or replicated between compute nodes. This parallelization strategy is

common and it results in a DAG containing several send/receive transfer operations for

every device of the cluster. An example is depicted in Figure 3.5 which represents a

realistic DAG resulting from the splitting of an input and output buffer among a set of

N OpenCL devices.

Point-to-point data transfers performed by the libWater runtime system imply an in-

creased latency when compared with the native MPI send or receive routines. The reason

for that is the polling mechanism implemented by the libWater runtime system – mainly

employed to save node resources – which replaces the spin-lock mechanism commonly

used by MPI libraries. Additionally, the number of required data transfers is directly

proportional to the cluster nodes (and thus devices). This results in a large number of

72

Algorithm 3 DCR pattern recognition

1: Input/Output: G(V,E) . Command DAG
2: Input: root . DAG’s entry point
3: function replace collective patterns(G(V,E) : input/output, root : input)
4: for ∀ t in BFS(G(V,E), root) do
5: if t.type ∈ {SendJob,RecvJob} then
6: jobs[t.node id].append(t) . Orders transfer jobs
7: end if
8: end for
9: for i← 0 to min({jobs[k].length : ∀ k | 0 ≤ k < N}) do

10: pattern← 0
11: for j ← 1 to N do
12: if jobs[j][i].type 6= jobs[j − 1][i].type then break
13: if jobs[j][i].buf = jobs[j − 1][i].buf ∧ jobs[j][i].size = jobs[j − 1][i].size then
14: if pattern = 2 then break
15: pattern← 1 . Sequence recognized as a broadcast
16: end if
17: if jobs[j][i].buf = jobs[j − 1][i].buf + jobs[j − 1][i].size then
18: if pattern = 1 then break
19: pattern← 2 . Sequence can be either scatter or gather
20: end if
21: end for
22: if j 6= N ∨ pattern = 0 then continue
23: if pattern = 1 ∧ jobs[0][i].type = SendJob then
24: replace with broadcast(jobs, i)
25: else
26: if jobs[0][i].type = SendJob then replace with scatter(jobs, i)
27: else replace with gather(jobs, i)
28: end if
29: end for
30: end function

commands being dispatched by the runtime system and consecutively negatively impacts

the overall scalability. MPI offers a large set of communication patterns called collective

operations [3]. These routines are highly efficient since nearly all modern supercomput-

ers and high-performance networks provide specialized hardware support for collective

operations [58]. Additionally, the implementation of such collective operations employs

dynamic runtime tuning techniques which choose, among a set of semantically equivalent

algorithms, which best fit the underlying network topology and architecture [59–61].

Related work analyzed the problem of automatic detection of collective patterns from a

set of point-to-point communications. This technique is common in MPI performance

tools which are capable of detecting such patterns via post-mortem analysis of program

traces [10]. The general problem of collective communication pattern detection is NP-

hard, however, under particular restrictions the problem can be solved in polynomial

time. A more recent work [9] proposed a fast solution, with a complexity of O(n log n),

which makes the approach more suitable for runtime systems.

The goal of our DCR optimization algorithm is to analyze the command DAG isolating

73

point-to-point data transfers and detect whether a subset of those resembles one of

the collective patterns supported by MPI. This is possible since – if the application is

carefully written using events for command synchronization – the command DAG will be

available to the runtime system scheduler before the first blocking command is invoked

(e.g., wtr wait for event(s)). Since data transfers in our environment have all the

same root (the node 0), the analysis for patterns is simplified. The pattern recognition

is presented in Algorithm 3. The command DAG is traversed once in breadth-first order

(lines 4–8), transfer commands are collected into N separate lists (i.e., variable jobs), one

per device. On the extractedN lists, pattern analysis is performed, lines 9–29. The check

is done by considering elements having the same position within the transfer job lists.

Furthermore, the check is simplified by the fact that every send and receive wtr command

carries information of the buffer location (buf) and the amount of bytes being transfered

(size). The pattern analysis starts by taking the first transfer wtr command from the N

lists and by checking against a supported pattern, i.e., broadcast, scatter or gather. For

instance, in a broadcast N send operations are expected where ∀ i | 0 ≤ i < N−1, buf i =

buf i+1 ∨ sizei = sizei+1. If the check fails, the transfer jobs are tested against a scatter

or gather pattern ∀ i | 0 ≤ i < N − 1, buf i + sizei = buf i+1.

Once a pattern is recognized, single point-to-point transfers are removed from the com-

mand DAG and replaced by the corresponding collective communication operation, lines

24, 26 and 27. A visual example of this optimization is depicted in Figure 3.5, where

multiple send operations are collapsed into a single scatter operation and correspond-

ingly, receives are rewritten as a gather operation. By doing so, dependencies between

successive commands are updated in order to keep the semantics of the input program

unchanged.

Since collective operations must involve all the processes in a communicator, the current

implementation of the DCR optimization works when all the initialized devices partici-

pate in the computation. Therefore, the analysis is limited to regular applications which

must involve all OpenCL devices in data transfers. This is important to keep the pattern

recognition algorithm simple and fast, since this optimization is applied during runtime.

In the future, we plan to improve this mechanism by extending the pattern recognition

also to sub-groups of devices.

3.4.5 Experimental Evaluation

We used libWater to encode 6 computational codes, some of them taken from various

OpenCL benchmarking suites (i.e., AMD and IBM), and studied their scalability. Four

of the OpenCL kernels were optimized for local memory, i.e., PerlinNoise (from IBM),

74

Site Vienna Scientific Cluster Barcelona Supercomputing Center

Cluster VSC2 MinoTauro GPU Cluster

Max # of nodes 1.314 128

Processors 2 x AMD Opteron 6132 HE 2 x Intel Xeon E5649

Cores per node 2 x 8 2 x 6

Clock Frequency 2.2 GHz 2.5 GHz

Memory per Node 32 GB DDR3 24 GB DDR3

GPUs – 2 x Nvidia M2090

Interconnection Infiniband 4x QDR Infiniband 4x QDR

Open MPI version 1.6.1 1.6.1

OpenCL version AMD APP 2.6 CUDA 4.1

Top500 (June 2013) 238th 442th

Table 3.6: The VSC2 and BSC experimental target architecture.

NBody (from AMD), Floyd and kNN manually written by us. For the remaining two

codes, MatrixMul and LinReg we used a naive implementation unoptimized for what

concern local memory. The Table 3.7 shows, for each code, the number of input and

output buffers used by the application. We define a buffer as splittable when its content

can be distributed among the devices. The nature of a buffer is strictly related to the

algorithm being implemented within the OpenCL kernel, and thus the application. Non

splittable buffers are always replicated on every device.

For the scalability analysis we used two large-scale production clusters, the Vienna Sci-

entific Cluster VSC2 [62] and the BSC’s MinoTauro GPU Cluster [63]. Details of the

systems and their respective positions in the Top500 [19] are depicted in Table 3.6. A

second study was conducted to test the suitability of libWater to exploit the compu-

tational capabilities of a heterogeneous cluster configuration. For this purpose we used

a cluster, composed of 3 compute nodes (i.e., mc1, mc2 and mc3), custom made with

off-the-shelf GPU accelerators. The hardware details are depicted in Table 3.8.

The six applications utilized for our study are listed in Table 3.7. We started from a

pure OpenCL implementation and rewrote them using libWater. In Table 3.7, we show

the reduction, in terms of lines of code, achieved when the application is written using

our library. It is worth mentioning that while the original OpenCL applications were

single device codes, the libWater based implementation is instead multi-device code. On

average, we were able to reduce the lines of the host code by approximately a factor of

2 due to the higher level abstractions provided by libWater.

75

Application
OpenCL

LOC
libWater

LOC
Input size

Input/Output
buffers

(splittable)
Short Description

PerlinNoise 412 301 20K x 20K 0(0) / 1(1) Gradient noise generator

Nbody 450 324 600K bodies 2(0) / 2(2) N-body simulation

kNN 234 101 ref : 8M, query: 80K 2(1) / 2(1) k-nearest neighbor

Floyd 222 113 8K, Adj. mat. 64K 1(0) /1(0) Floyd-Warshall

MatrixMul 219 104 7Kx7K (A = B = C) 2(1) / 1(1) Matrix Multiplication

LinReg 298 149 1000K 4(2) / 1(1) Linear regression

Table 3.7: Application codes used for libWater evaluation.

3.4.5.1 Homogeneous CPU cluster

The applications shown in Table 3.7 were executed on the VSC2 homogeneous CPU

cluster. We were able to access up to 64 compute nodes with a total of 1024 CPU cores.

Since the 2 AMD CPUs which are hosted per node are considered by the OpenCL driver

as a single device, the speedup was computed based on the number of compute nodes

(and thus OpenCL devices) instead of single CPU cores. The workload partitioning is

implemented, for each test case, by assigning to each OpenCL device an equal amount

of work.

The scalability tests were performed in the following way: the original OpenCL version

of the applications were executed in a single node and their execution times used as a

reference measurement. libWater was then used for node numbers ranging from 2 to

64. The main differences between the original version of the application codes and the

one written using libWater are mainly in the host code. The kernel code was slightly

modified only to forward the offset value used by the workload partitioning (as shown

in Listing 3.18). We computed the ideal scaling for each application using the reference

execution time and dividing it by the number of nodes. We conducted experiments with

libWater by using two different settings: the first, named baseline, uses the runtime

system without dynamic optimizations enabled; the second, DCR, uses the collective

pattern replacement mechanism as described in Section 3.4.4.3. The results of our

experiments are depicted in Figures 3.6 and 3.7.

For each of the six applications, we show the execution time (in seconds) for up to

64 devices and the corresponding speedup with respect to a single node. Overall, we

observe that our approach scales almost linearly, especially for those codes using few

input/output buffers. PerlinNoise, Figure 3.6(a), is an example of those, since it has

no dependencies on input buffers and the data produced by the kernel is distributed

between the devices. For such code, the baseline configuration of our runtime system

achieves a speedup of 53 for 64 nodes, and thus an efficiency of 83%. When the number

and size of the input/output buffers increases, the efficiency of our system decreases.

76

Execution time (in secs.)

Number of nodes

●

●

●

●

●

●

●

1 2 4 8 16 32 64

4.3

7.5

14.1

27.3

53.5

106

211.9

●

ideal
baseline
DCROpt

baseline
DCROpt

Speedup

Number of nodes

2 4 8 16 32 64

2
4

7.8

15

28.1

48.9
52.7

(a) PerlinNoise

Execution time (in secs.)

Number of nodes

●

●

●

●

●

●

●

1 2 4 8 16 32 64

10.1

14.9

27.2

52.7

104

207.5

408.4

●

ideal
baseline
DCROpt

baseline
DCROpt

Speedup

Number of nodes

2 4 8 16 32 64

2
3.9

7.8

15

25.2
27.3

32.1

40.5

(b) NBody

Execution time (in secs.)

Number of nodes

●

●

●

●

●

●

●

1 2 4 8 16 32 64

8.6

14.3

27.2

53.7

105.4

206.6

411.2

●

ideal
baseline
DCROpt

baseline
DCROpt

Speedup

Number of nodes

2 4 8 16 32 64

2
3.9
7.7

15.1

25.3
28.8
31.2

47.6

(c) floyd

Figure 3.6: Strong scaling of libWater on the VSC2 (1 of 2)

The worst case is represented by the LinReg application, Figure 3.7(c), which stops

scaling after 32 nodes. This kernel has 4 input buffers, 2 of them are not splittable

(because of dependencies within the kernel code) and therefore must be replicated on

every node. The remaining 2 input and output buffers are instead splittable. For such

77

Execution time (in secs.)

Number of nodes

●

●

●

●

●

●
●

1 2 4 8 16 32 64

7
9.6

18.1

35.9

71.4

139.4

276.4

●

ideal
baseline
DCROpt

baseline
DCROpt

Speedup

Number of nodes

2 4 8 16 32 64

2
3.9

7.7

15.2

24.8
27.1
28.9

39.8

(a) kNN

Execution time (in secs.)

Number of nodes

●

●

●

●

●

●

●

1 2 4 8 16 32 64

12.5

19.3

33

57

104.9

202.6

377.8

●

ideal
baseline
DCROpt

baseline
DCROpt

Speedup

Number of nodes

2 4 8 16 32 64

1.9
3.6

6.6

11.5

18.2
19.6

22.4

30.3

(b) MatrixMul

Execution time (in secs.)

Number of nodes

●

●

●

●

●

●

●

1 2 4 8 16 32 64

12

18.7

35.9

71.1

139.1

279

423.5

●

ideal
baseline
DCROpt

baseline
DCROpt

Speedup

Number of nodes

2 4 8 16 32 64

1.5
3

6

11.8

16.9

21.1
22.6

35.2

(c) LinReg

Figure 3.7: Strong scaling of libWater on the VSC2 (2 of 2)

code we have an immediate decrease (75% on two nodes) of the efficiency. This is

because the kernel execution is delayed due to the fact that several wtr commands are

executed (and transfered to the target nodes) to create and initialize the input/output

buffers. However this delay is a constant and system efficiency remains almost unvaried

78

up to 16 nodes. On 32 and 64 nodes the efficiency of the baseline runtime system starts

decreasing significantly.

This problem is largely addressed by the dynamic collective pattern replacement, i.e.,

DCR, optimization which was introduced in Section 3.4.4.3. This optimization reduces

the load on the scheduler since it replaces several single transfer jobs with one collective

operation. In LinReg this optimization improves the scalability of the system by a

factor of 2 achieving an efficiency of 55%. A small effect of this optimization can be

observed for smaller node configurations because collective operations are optimized for

a large number of nodes. An interesting result is the effect of the DCR optimization

on the PerlinNoise test case. In such a case, the DCR optimization fails to improve

performance over the baseline. The reason is that collective operations are blocking while

point-to-point communications in the runtime system are non-blocking thereby allowing

overlapping of multiple transfers. The synchronization costs introduced by the gather

operation is therefore not properly compensated by the amount of exchanged data. We

believe that this problem can be eliminated by using non-blocking collective routines

which have been introduced in the latest MPI standard [3] and will soon be available

in mainstream MPI libraries. Additionally, since this optimization is done dynamically,

and therefore the amount of data being transfered is known by the scheduler, heuristics

can be integrated to decide when such optimization should be applied.

On average, libWater achieves an efficiency of 80% on 32 nodes and 64% when 64 nodes

are used. Without the DCR optimization the system has an efficiency of 47% on 64

nodes. This means that the DCR optimization improves the system efficiency by 17%

on 64 nodes and we expect this value to increase proportionally with the number of

nodes.

3.4.5.2 Homogeneous GPU cluster

The second experiment assesses the scalability of the libWater runtime system on the

MinoTauro GPU cluster, hosting two OpenCL devices per single node. The N-body

simulation described in Table 3.7 was executed with multiple problem sizes. We were

able to access up to 32 nodes of the MinoTauro cluster with a total of 64 GPU devices. In

all the experiments, the workload was equally partitioned between the available devices.

The optimization of the N-body simulation on the GPU processor is an active research

problem [64–67]. The problem is well known to be suitable for the GPU architecture

and in case of an high number of particles for cluster of GPUs.

We ran the NBody test case using 3 different input sizes that show the benefit of using an

high number of GPUs in case of large number of bodies in the test. The results of our

79

Execution time (in secs.)

Number of devices

●

●

●

●

●

●

●

1 2 4 8 16 32 64

14.9

23.5

44.1

85.8

171.5

343

Speedup

Number of devices

2 4 8 16 32 64

2

4

7.8

14.6

23

(a) NBody 2400K

Execution time (in secs.)

Number of devices

●

●

●

●

●

●
●

1 2 4 8 16 32 64

40.6
47.3

87.6

171.9

342.4

683.9

1365.8

Speedup

Number of devices

2 4 8 16 32 64

2
4

7.9

15.6

28.9

33.7

(b) Nbody 4800K

Execution time (in secs.)

Number of devices

●

●

●

●

●

●

●

1 2 4 8 16 32 64

110.1

177.3

344.9

685.4

1367.8

2721.9

5425.8

Speedup

Number of devices

2 4 8 16 32 64

2
4

7.9

15.7

30.6

49.3

(c) NBody 9600K

Figure 3.8: Strong scaling of NBody on the BSC’s MinoTauro GPU Cluster

experiments are depicted in Figure 3.8. The 3 tests were conducted respectively with

an input size of 2 (Figure 3.8(a)), 5 (Figure 3.8(b)) and 10 (Figure 3.8(c)) Million bod-

ies. With the smallest input size the application scales almost linearly up to 16 GPUs

and stops scaling after 32 GPUs. Increasing the input size by a factor 2 increases the

80

mc1 mc2 mc3

CPUs
2 x AMD

Opteron(tm)
6168 @1.9GHz

2 x AMD
Opteron(tm)

6168 @1.9GHz

2 x Intel(R)
Xeon(R) X5650

@2.67GHz

GPUs
2 x ATI Radeon

HD 5870
1 x NVIDIA

GTX 480
1 x NVIDIA

GTX 460

RAM 24 GB DDR3

Interconn. Infiniband QDR

Open MPI 1.6.1

OpenCL AMD APP 2.6 CUDA 5.0 CUDA 5.0

Table 3.8: The architecture of mc1, mc2 and mc3 heterogeneous compute nodes.

execution time by a factor 4, due to the quadratic complexity of the N-body algorithm.

With an input size of 5 and 10 million bodies the application becomes more suitable

for a GPU cluster and with the biggest tested input size achieves a speedup of around

49 on 64 GPUs with an efficiency of 77%. It is worth mentioning that in such envi-

ronment is important from a user prospective to find a trade-off between the number

of devices and the desired efficiency. The results show that the hierarchical scheduling

approach described in Algorithm 1 is able to handle multiple devices per node without

compromising the overall scalability of the system.

3.4.5.3 Heterogeneous CPU/GPU cluster

Since OpenCL allows access to heterogeneous devices we conducted a second experiment

which demonstrates libWater on a heterogeneous GPU cluster as described in Table 3.8.

The application codes were rewritten in order to control the workload distribution via

command line arguments. It is worth mentioning that workload partitioning for het-

erogeneous architectures is an active research problem [68–71]. However, this aspect

is orthogonal to our library and for the sake of this experiment, we derive workload

partitionings in an empirical way.

We ran the MatrixMul and the Floyd test cases using different combinations of devices.

For each device configuration, several different workload splittings were tested and the

fastest one was chosen. The partitionings and their corresponding execution times, are

shown in Table 3.9. For example, in MatrixMul, configuration C1 assigns all the workload

to the first GPU of node mc1. The execution time for this configuration is 63.3 seconds.

By equally splitting the workload between the two accelerators on the same node, i.e.,

C2, we double the performance. Between the GPUs, the NVidia GTX 480 is the fastest

device requiring only 29.4 seconds to complete the work. However libWater can be used

to improve the execution time even further. The overall execution time can be reduced by

81

Device Workload Partition Configurations

M
a
t
r
i
x
M
u
l

C1 C2 C3 C4 C5 C6 C7 C8

mc1-GPU1 100% 50% - - 35% 25% - 22%

mc1-GPU2 - 50% - - - 25% - 22%

mc2-GPU3 - - 100% - 65% 50% 75% 44%

mc3-GPU4 - - - 100% - - 25% 12%

Exec. time (in secs.) 63.3 32.5 29.4 68.4 23.7 19.0 26.6 17.3

F
l
o
y
d

mc1-GPU1 100% 50% - - 2% 1% 0.5%

mc1-GPU2 - 50% - - - 1% - 0.5%

mc2-GPU3 - - 100% - 98% 98% 99% 98%

mc3-GPU4 - - - 100% - - 1% 1%

Exec. time (in secs.) 101.6 51.3 14.9 58.3 17.3 16.0 13.1 16.3

Table 3.9: Performance of MatrixMul and Floyd on the heterogeneous cluster for
different combination of GPUs.

50% by using the workload partition as described by configuration C8 which assigns 22%

to each GPU in mc1, 44% to the NVidia GTX 480 and the remaining 12% to the NVidia

GTX 460 accelerator. For the Floyd kernel, the results are different. Its execution on

the GTX 480 is 8 times faster than the AMD GPU and 4 times better than the GTX 460.

However, performance can still be improved by splitting the workload between the two

NVidia accelerators by assigning 99% of the work to the faster GTX 480 and 1% to the

GTX 460. This experiment demonstrates, despite higher latencies caused by additional

data transfers between host and device memory, non-blocking communication yields

good scalability behaviour even for heterogeneous architectures. However, scalability on

such environments depends on several factors and we plan to investigate this issues in

future work.

3.5 Summary

In this chapter we proposed several approaches to simplify distributed memory program-

ming and improve productivity. Proposed ideas span from an advanced lightweight C++

interface to MPI (Section 3.2), to the use of meta-programming techniques (Section 3.3)

and a powerful distributed runtime system (Section 3.4) which automatically generates

communication statements in a way which is transparent to the programmer.

In HPC, experienced distributed memory programmers often prefer to retain full control

over communication generation and placement. Our proposed MPP interface has been

successfully received by the MPI community and immediately adopted in an experimental

way by the Gromacs particle simulator for molecular dynamics [72].

82

However we also believe that programming models and systems that hide the complexity

of message passing semantics are needed. On the one hand simplified programming

models enable fast prototyping of new ideas and applications. On the other hand, they

allow unexperienced programmers to easily address small to medium cluster systems

with very little effort. At last, providing an higher abstraction level (also through the

use of Domain Specific Languages (DSLs)) can have the effect of improving the adoption

of the message passing paradigm for parallel programming since it is usually perceived as

difficult (with an high entry barrier) and often ditched by newcomers in favor of shared

memory parallel languages and paradigms such as OpenMP and pthreads.

Chapter 4

Runtime Parameter Tuning of

Message Passing Programs

Support for the message passing programming model is provided either at the program-

ming language level (e.g., Erlang [73] and Scala [74]) or through third-party libraries

(e.g., MPI [3]). In both cases, a runtime system is included which realizes the abstrac-

tions, such as channels and communication contexts, necessary for two or more processes

to communicate. These runtime systems are usually complex and highly optimized soft-

ware layers designed to be portable on many architectures; to this end, they expose a high

level of customizability through the use of a set of parameters to suite various hardware

configurations.

In this chapter of the thesis we focus on the runtime parameter tuning of one of the

most widely used implementations of the MPI standard, i.e., Open MPI. We analyze

how parameter settings can negatively and positively influence the performance of an

application and that optimal parameter values may depend on many factors: such as the

application code, the input data and the target cluster configuration. Once analyzed these

parameters, we derive methods delivering near-optimal parameter setting for a single or a

class of applications. We use several different strategies to accomplish this: evolutionary,

machine learning and statistical methods designed to address different use-case scenarios.

83

84

4.1 Introduction

In HPC, MPI is the de-facto standard for programming distributed memory systems.

Because of the wide range of hardware configurations that MPI implementations have to

address, MPI libraries allow customization through user-configurable parameters to bet-

ter fit the characteristics of the underlying cluster architecture (e.g., cache size, type and

topology of interconnections). Tuning these parameters is, however, a time-consuming

task and requires detailed knowledge of the underlying architecture (i.e., interconnection

and node architecture). For production clusters (e.g., BlueGene, RoadRunner), param-

eter tuning is often performed by the vendor itself. In other cases, parameter values are

manually set to achieve a performance trade-off across a set of micro-benchmarks. How-

ever, as more and more small- to mid-size in-house commodity clusters with off-the-shelf

components are being used by application groups and universities, parameter tuning is

slowly becoming a critical issue. As no standardized methods exist, the default settings

provided by MPI libraries are often employed, which can lead to poor performance.

Generally, we can distinguish two kinds of parameters:

1. Compile-time parameters, which are set during compilation of the MPI library,

They are generally used to enable/disable features such as the level of support

should be provided for multi-threaded execution (e.g., in OpenMPI the MPI THRE-

AD MULTIPLE thread level, which allows multiple threads to invoke MPI routines

without worrying about possible race conditions) or RDMA support (see Sec-

tion 3.3.2). In general these parameters are more oriented towards functionality

rather than performance.

2. Run-time parameters, they are used to adapt an instantiation of the MPI environ-

ment to better fit the characteristics of a target system, e.g., size of the internal

buffers or processor affinity binding. Parameters of this class are generally easier to

tune by the end-user (no particular administration privileges are required). This

thesis focuses on the setting of runtime parameters.

From the most widely used MPI library implementations, MVAPICH [75] allows users

to tune runtime parameters through environment variables, while Open MPI offers com-

mand line options to the Open MPI’s Modular Component Architecture (MCA) [76],

which will be presented in Section 4.2. Most of the distributed software developers are

unaware of these parameters. However, as shown in Section 4.3, the impact of these

parameters on the execution time of a program can be substantial, e.g., a reduction of

85

the execution time by half. Moreover, libraries usually expose several dozens of tun-

able runtime parameters making the optimization space infeasible to be exhaustively

explored.

Besides the existence of basic guidelines on how and when to tune particular param-

eters [76], only one work in literature has been proposed to address automatic run-

time parameter tuning. This tool is called the Open Tool for Parameter Optimiza-

tion (OPTO) [11]. It determines the parameter combination that optimizes the execu-

tion of a program on a specific target machine. OPTO is an Iterative Feedback-driven

Tuning (IFT) tool which, based on heuristics, tries to find “near-optimal” parameter

values through several hundreds of program executions. The same approach has been

employed for compilers, also known as Iterative Compilation (IC) [77], to find a “good”

sequence and values of compilation flags optimizing the execution time (or the power

consumption) of sequential programs for a target processor architecture. In IC, the

compiler iteratively explores the optimization space defined by the input program by

applying transformations and evaluating the resulting binaries on a target system. The

main drawback of the IC and IFT-based techniques is the dramatic increase in compila-

tion or optimization time. A large number of program execution (50 to 200) is usually

needed to find a good transformation sequence or parameter combination. Over the

years, IFT-based techniques have been improved in several ways, either by introducing

better algorithms to reduce the number of program executions [13], or by using ML

techniques which, by means of a training phase that learns the behavior of the machine

to focus the search towards the optimal setting [78]. The main disadvantage of the

presented techniques is, nevertheless, the additional executions of the input program

required. While paying this cost may still be acceptable for compile-time or off-line

training, it becomes less convenient for runtime parameters, as the performance gain

resulting from tuned settings may not justify additional program runs. Furthermore,

these techniques are sensitive to the input data (e.g., input data size, number of MPI

processes), often leading to solutions which are optimized for a specific input data set

only.

The goal of this chapter is to propose three methods to determine the MPI runtime

parameter values that significantly improve the performance of an application on a

target cluster. In other words, we aim at customizing the value of the default setting

of any MPI library for a specific target architecture fully automatically, without any

knowledge of the underlying hardware.

• The first method, presented in Section 4.5, considers evolutionary techniques [79]

to explore the large optimization space generated by the available runtime param-

eters. We show that with this technique it is possible to converge to a near-optimal

86

solution using a smaller number of evaluations compared to OPTO, which involves

simple heuristics to guide the search process.

• The second method, in Section 4.6, is based on ML techniques. The underlying

idea is to gather knowledge of a target system by running kernel codes with varying

settings of the runtime parameters. During a training phase, data of the executed

configurations and relative performance is gathered. From that data a model is

extrapolated, or trained, using ML algorithms. The optimized parameter setting

for a new input program is determined by querying the model once.

• Our last approach for runtime parameter tuning is presented in Section 4.7. While

the previous methods focus on delivering parameter settings which optimize a given

application code and architecture; this method aims at finding a trade-off across

application kernel codes characterizing a particular workload (e.g. HPC) which

improves the execution of a class of programs based on a similar workload. To do

that, we rely on statistical analysis, in particular we use the ANOVA [80] to (i)

find the set of parameters with meaningful impact on the execution time, and (ii)

to determine the values which, on average, improve the program execution time

with respect to default settings.

4.2 The Modular Component Architecture

In this thesis, we focus on performance tuning of the runtime parameters provided by

Open MPI’s MCA [76]. MCA consists of a set of frameworks, components, and modules

which are assembled at runtime to create an MPI implementation. A framework is

dedicated to a specific task such as providing data transfer primitives for a particular

network interconnect (i.e., Byte Transfer Layer (BTL)) or MPI collective operations

(i.e., COLL). An MCA component is the specific implementation of a framework interface.

Typically, the same framework can have multiple implementations, e.g., BTL includes

support for Transmission Control Protocol (TCP), Infiniband (OpenIB), shared memory

(SM), and others. Each module defines a set of runtime parameters whose values can

be specified when an MPI application is started via the mpirun command, therefore, no

dynamic tuning is possible.

The current development version of Open MPI has several hundreds of MCA runtime

parameters. Features of the runtime environment such as processor and memory affinity

can be enabled or disabled by using specific parameters. Other parameters refer to

internal buffers (e.g., TCP send/receive buffer) which are allocated by the Open MPI

library as specified by the user provided parameter values. Lastly, the behavior of

87

the runtime environment can be customized by means of threshold values. A good

example is the opportunity to change the semantics of the send operation in relation

to the transmitted message size (i.e., the eager limit). For small messages, the data is

directly transmitted to the receiver without any acknowledgement from a matching recv

operation (also called eager send). When the message size exceeds a threshold value, a

different protocol is utilized such that an acknowledgement from a matching receive is

required in order for the send operation to complete (rendezvous). A default setting for

these parameters is provided by the Open MPI library. In the rest of the chapter we

refer to this as the default setting.

Adding buffering to communication routines is a common practice to improve the la-

tency of the communication routines. The MPI standard itself does not acknowledge the

existence of these runtime parameters. This means that there is no standardization of

their names and semantics. However, since they are widely used in all major implemen-

tations of the MPI standard (e.g., MPICH2, Open MPI, MVAPICH) similarities can be

detected. Optimization techniques used within the libraries are often similar, leading

to parameters which differ in the name but similar semantics (e.g., MP EAGER LIMIT in

MPICH2 is semantically equivalent to sm eager limit in Open MPI). Therefore, the

findings of this thesis, which are based on the parameters offered by the Open MPI

platform, can be extended to other major MPI implementations.

4.3 Motivation

In this section we analyze the impact of MPI runtime parameter tuning on the execution

time of parallel codes. We examined codes from the NPB suite [81] and studied their

performance behaviour on three different cluster systems.

4.3.1 Experimental Setup

We considered the kernel codes from the NPB suite version 3.3 which consists of three

benchmarks (BT, LU and SP) and five kernels CG, EP, FT, IS, and MG. We chose these ker-

nels due to their importance for performance sensitivity for point-to-point and collective

communication patterns [82].

We used, in our evaluation, the three SMP clusters summarized in Table 4.1. For each

cluster, we considered two node sizes and evaluated each experiment for a small and a

large input data size. The following scheduling policy, or mapping function, was used

that allocates an MPI process pi ∈ P (see Definition 10) to a computing unit cuj ∈ CU

88

System Name LEO 2 IBM Blade Karwendel

of compute nodes 8-32 2-4 2-8

Chips per node 2 2 4

cus per chip 4 4 2

Core Architecture Harpertown L5420 Nehalem X5570 Opteron 880

Clock Frequency 2.5GHz 2.93GHz 2.4GHz

shared L2/L3 cache 4MB (shared by 2) 8MB (shared by 4) 2x1MB (not shared)

Symmetric Multi-
Threading (SMT)

– 2-fold –

Memory per Node 32GB DDR2 32GB DDR3 16GB DDR2

Interconnection Infiniband x8 QDR Infiniband x8 QDR Infiniband x4 SDR

Operative Systema CentOS 5.3 CentoOS 5.4 CentOS 4.7

Kernel Version 2.6.18 2.6.18 2.6.9

Open MPI version 1.2.6 1.4.2 1.3.3

Compiler GCC 4.1.2 GCC 4.4.3 GCC 4.3.3

Optimization Flags -O3 -O3 -O3

Table 4.1: Experimental target architectures.

(see Definition 1):

pi −→ cuj | i = j

Note that |P| = |CU| represents the number of processes being used to execute a pro-

gram, we denote this quantity as the communicator size. We assume always to run as

many processes as computing units available (no over-subscription of nodes). Given a

compute unit, cui, its physical position within the topology is determined by a tuple

(see Definition 9) determined as follows:

map : cui → (
i

cus per node
,
i mod cus per node

cus per chip
, i mod cus per chip)

We used the IBM Blade with 2 and 4 nodes (i.e., 32 respectively 64 MPI processes), the

Karwendel cluster with 2 and 8 nodes (i.e., respectively 16 and 64 processes) and LEO2

with 8 and 32 nodes (i.e., 64 respectively 256 MPI processes). Although the node con-

figurations of the parallel computers are significantly different, the type of interconnect

and the SMP nature of the computing nodes are identical. Each cluster supports Open

MPI for writing parallel algorithms configured to use the Infiniband network for inter-

node communication and shared memory for intra-node communication. Therefore, we

focused on the tuning of the Open MPI runtime environment on the runtime parameters

of the OpenIB and SM modules (see Section 4.2).

The CPU’s cores of the IBM cluster are capable of handling multiple flows of executions,

or threads. In particular, the Nehalem core architecture can run two logical flows in

89

parallel per each physical computing unit (see Definition 1). Therefore a quad-core

CPU with 2-fold SMT can handle 8 distinct execution flows. In our experiments these

additional logical flows are considered as normal cus enabling each node of the IBM

cluster capable of running 16 MPI processes.

4.3.2 Performance-Oriented Runtime Parameters

Based on our experimental platforms, we selected 27 MPI runtime parameters with a

clear performance-oriented semantics. This list was obtained from online documenta-

tion [76] and related work on the topic of Open MPI runtime parameters tuning [11].

They are listed in Table 4.2. A description is provided in Appendix B extracted from

the documentation provided by the MCA framework [76]. The default parameter values

given by the Open MPI library is shown on the second column of the Table 4.2. Some

of the parameters can be assigned with a predefined number of values, for instance

mpi yield when idle can be either 0 or 1. Others (e.g., btl sm eager limit) can as-

sume an arbitrary value range, only limited by the available computer resources (e.g.,

memory size and number of Infiniband links). For the latter we considered only a subset

of the possible values as specified by the value range column of the Table 4.2. The stride

operator x : y : ∗z is used for compactness, representing a geometric progression [83] of

exponentially growing values, i.e.,

[
x, x ·

(
z1
)
, x ·

(
z2
)
, x ·

(
z3
)
, . . . , y

]
Programs from the NPBs are executed by providing a value to each of those parameters.

If a value is not provided, the default setting will be enforced by the library. The vector

which assigns a value to each of the parameters is also referred to as a configuration.

Definition 38 – configuration

Let us define a configuration (C) that consists of a tuple of n runtime parame-

ters (p1, p2, . . . , pn), where pi ∈ Params. A configuration instance, c, is a value

setting where every pi gets a value assigned, such as c := (v1, v2, . . . , vn) where

vj ∈ Values(pj) is a value (a buffer/threshold size or a flag value) associated with

the parameter pj . Throughout this chapter we use the term parameter setting as a

synonym for configuration instance.

90

Parameter name Default Value range

mpi_yield_when_idle 0 0, 1

mpi_paffinity_alone 0 0, 1

mpi_preconnect_mpi 0 0, 1

mpi_leave_pinned 0 0, 1

COLL: Collective operation tuning (coll *)

sm_tree_degree 4 2 : 8 : ∗2
sm_control_size 4096 512 : 256K : ∗2
sm_fragment_size 8192 512 : 256K : ∗2
sync_barrier_after 0 0, 500, 1K, 5K, 10K

sync_barrier_before 1000 0, 500, 1K, 5K, 10K

tuned_init_tree_fanout 4 4 : 16 : ∗2
tuned_init_chain_fanout 4 2 : 16 : ∗2

SM: Shared memory communication tuning (btl sm *)

eager_limit 4096 512 : 256K : ∗2
max_send_size 32768 512 : 256K : ∗2
rndv_eager_limit 4096 512 : 256K : ∗2
fifo_size 4096 512 : 256K : ∗2
num_fifos 1 2 : 16

OpenIB: InfiniBand communication tuning (btl openib *)

eager_limit 12288 512 : 256K : ∗2
max_send_size 65536 512 : 256K : ∗2
rndv_eager_limit 12288 4K : 256K : ∗2
use_message_coalescing 1 0, 1

user_eager_rdma 0 0, 1

eager_rdma_num 16 2 : 64 : ∗2
use_async_event_thread 1 0, 1

ib_max_rdma_dst_ops 4 1 : 8

rdma_pipeline_send_lenght 1048576 4K : 2M : ∗2
rdma_pipeline_frag_size 1048576 4K : 2M : ∗2
min_rdma_pipeline_size 262144 4K : 512K : ∗2

Table 4.2: List of 27 performance runtime parameters meaningful for our target
architectures.

4.3.3 Random Space Exploration

Finding the optimal parameter setting by exhaustive exploring of the optimization space

is an exponential problem that can require millions of runs for every input program,

rendering it impossible. A common solution is to employ randomized algorithms (e.g.,

simple, simulated annealing) for finding approximate solutions as close as possible to

the optimal one.

In this section we randomly explore the optimization space for each of the five computa-

tional kernels by evaluating 1000 distinct configuration instances on each target clusters.

We executed the same configuration instances for different input data and communicator

91

Figure 4.1: Performance variance with respect to Open MPI’s default setting reg-
istered for 1000 parameter configurations when used to run the NPBs on our target

architectures with the small node setting.

sizes that yielded a total of 20000 runs on each cluster. We computed the performance

gain by comparing each experimental run against the one using the default Open MPI

parameter setting. The bar plots in Figures 4.1 and 4.2 depict the variance of the per-

formance gain by running each benchmark with different parameter settings. The points

inside the boxes are within the lower and upper quartile (the median is represented by

92

Figure 4.2: Performance variance with respect to Open MPI’s default setting reg-
istered for 1000 parameter configurations when used to run the NPBs on our target

architectures with the large node setting.

the bar inside each box), ranges outside the box represent the minimum and maximum

samples, while the single points outside the ranges are the outliers.

First, we can observe that, on average, the Open MPI’s default settings are a fairly

good choice for most benchmarks. In fact, 80% of the tested configuration instances

have an increased execution time with respect to the default settings. For example,

93

IS has a sensible performance slowdown on each target architecture, but achieves a

speedup (with respect to the default settings) of around 10% by parameter tuning.

Interesting performance improvements are also visible for other kernel codes such as CG

and EP on every architecture. On average, the performance gained by the “best” random

configuration compared to the default setting is of approximately 26% on LEO2, 15%

on the IBM Blade and 17% for the Karwendel cluster. This means that with the “best”

parameter setting, found by the random sampling, a program executes 15 to 30% faster

with respect to the default values. In the rest of the chapter, we refer to the configuration

instance delivering the fastest, measured, execution time for a particular benchmark and

target architecture as its OPUB. Important to note is that this is not the optimum c,

as we only explored a subset of the optimizations space. However, since the random

probing was designed to cover the optimization space homogeneously, we expect the

global optima not to be far too from the OPUB. Throughout the chapter, the word

“best” is used as a synonym for OPUB.

This exploration of the optimization space also highlighted several properties of the

OPUB. For example, a configuration instance which is shown to be the “best” choice

for one kernel may be suboptimal for another. The “best” parameter values could also

change for different input data or communicator sizes. Figure 4.3 highlights this aspect.

We selected four kernels FT, EP, IS and MG, and their relative OPUB configurations

resulting from the random exploration on the LEO2 cluster. We used the data from

LEO2 since the larger number of nodes results in higher performance gains, and thus, the

aforementioned performance behaviour is better visible. Afterwards, we used the OPUB

configuration instance of each kernel to run other kernels, measured the execution time

and compared the results. Each of these configuration instances are represented as a bar

in the graph in Figure 4.3 (in total we have 4 distinct instances. i.e., i = 1, . . . , 4). Each

benchmark Bi (on the X-axis) has been executed with configurations cj : ∀j ∈ {1, . . . , 4}.
We can observe that the “best” setting for a specific kernel can result in a significant

performance loss when used to run other applications. For example, FT always exhibits

a performance loss when executed with configuration instances from other benchmarks.

Executing FT with its own OPUB setting yields, however, a performance improvement

of around 2%. On the other hand, using the “best” configuration instance for FT to

run other benchmarks yields a suboptimal improvement or even a slowdown for MG. The

other kernels show similar behavior.

These experiments demonstrate the complexity that system administrators are facing

during parameter tuning of MPI libraries for different architectures and the performance

gain which is achievable by fine tuning of these parameters. Eventually, administrators

manage to reach a satisfiable parameter setting after a tedious and time consuming

94

ep.B.64 ft.B.64 is.B.64 mg.B.64
-20

-10

0

10

20

30

40
ft.B.64 ep.B.64 is.B.64 mg.B.64

Benchmark name

P
e

rf
o

rm
a

n
ce

 g
a

in
 (

in
 %

)

Figure 4.3: Performance gain when using the “best” configuration of an NPB on
LEO2 for running the other three NPBs.

manual tuning, a process which is likely to be driven by chance. Our goal is to propose

automatic tools which automatically deliver near-optimal parameter values.

4.4 Related Work

To the best of our knowledge, only few works related to the optimization of MPI runtime

parameter settings exist in literature. This problem is similar to other fields, such as

the optimization of compiler flags. We can divide the approaches in literature into three

separate categories:

Search-based: In this group we consider all techniques which employ heuristics to

search the optimization space generated by the large combination of parameter

values. All of the IFT-based methods are included in this category.

ML-based: It represents an improvement over the previous group; techniques based on

ML uses previous knowledge (gathered during the training phase) to narrow the

search space.

Statistical-based: This class of algorithms considers techniques which are not limited

to a single application. The goal is to find a configuration instance which suites

the underlying architecture independently on the application code.

OPTO can be classified among the search-based approaches [11]. OPTO systematically

tests large numbers of combinations of the Open MPI’s runtime parameters for com-

mon communication patterns and performance metrics to determine the “best” set for

95

a specific benchmark under a given platform. OPTO is based on a library incorporat-

ing various search algorithms, namely the Abstract Data and Communication Library

(ADCL). ADCL evaluates the performance of some (or each) configurations of the pro-

vided runtime parameters, and by using heuristics, chooses the version leading to the

lowest execution time.

In [12], Cooper at al. used a genetic algorithm to find compiler optimization sequences

that generate small object codes. Instead of finding parameter values, the algorithm

proposed in [12] was designed to determine the compiler optimizations and the order

which delivers smaller object code for a given application. Experiments showed that for

most of the codes, the genetic search was able to outperform (both in terms of generated

object code size and performance) the outcome of a fixed optimization sequence (similar

to what it is offered by the -O3 flag of a compiler). Moreover, compared to random

probing, the genetic algorithm converged faster to quality solutions.

Search techniques have also been employed within libraries to adapt the implementation

of an algorithm to the underlying architecture. Relevant examples are the Automatic

Tuned Linear Algebra Software (ATLAS) [84] and the Fastest Fourier Transform in

the West (FFTW) [85]. The idea underlying the architecture of ATLAS and FFTW is

similar. The libraries include several implementations (or versions) of the same algorithm

and the “best” version is chosen at runtime by an optimizer across several invocation

of the routine. In order to do this efficaciously, the planner uses dynamic programming

techniques to prune the search space. This paradigm is also called Automated Empirical

Optimization of Software (AEOS).

ML techniques have been also used in MPI programs for optimizing collective opera-

tions [86]. The bottom line is that collective operations can be implemented by using

several algorithms (e.g., 2D/3D mesh, recursive doubling, bruck, ring and pair) and

depending on the network topology, communicator and message size, some implementa-

tions perform better than others. The problem of selecting the algorithm for a specific

collective operations which is optimal for the communicator size, topology and message

size is addressed by using decision trees. Off-line training builds a tree which selects the

optimal algorithm corresponding to a particular collective routine, communicator and

message size. At runtime, whenever a collective operation is called, the model is queried

with the current message and communicator size. The query yields the best algorithm

to be employed.

In the context of statistical based methods, several work exist related to the optimiza-

tion of compiler flags. These techniques have never been applied to MPI’s runtime

parameters, nevertheless the problem they aim to solve is similar. In [13], Eigenmann

proposed an algorithm, called Combined Elimination (CE); CE is an iterative algorithm,

96

at each step it recognizes the compiler flags with negative effects on performance and

turns them off. The algorithm has been proved to converge to an optimal configuration

quickly but still several dozens of iterations, and thus evaluations of input programs,

are required. In [14], statistical techniques have been employed to improve iterative

compilation. Also this approach deals with compiler flags and thus it assumes binary

variables (i.e., on/off). The full factorial design of an experiment with k parameters (or

flags) is 2k combinations, in order to reduce the number of configuration a fractional

factorial design is defined where orthogonal arrays (OA) are considered. The algorithm

proposed is iterative, it first identifies options with a large overall effect and switch them

to on; then it looks at the remaining options to see what improvement they can produce

given the partial setting already constructed.

The aforementioned approaches either cannot be directly applied to the MPI runtime

parameter tuning problem (e.g., because only dealing with binary variables or they

require too many executions to explore the optimization space). In the rest of this

chapter we propose three novel approaches which focus on runtime parameter tuning for

different use-case scenarios.

4.5 Auto-Tuning with Evolutionary Techniques

In this section we describe the first of the three methods proposed for tuning MPI runtime

parameters. This method is similar to the technique used by the OPTO optimizer. The

main idea is to explore the optimization space, for a given input code, generated by

varying runtime parameter settings. In order to minimize the number of evaluations,

the search is focused on those areas likely to give shortest execution time. We derived an

algorithm based on evolutionary techniques which is tailored to the runtime parameter

problem [79].

In general, an evolutionary search algorithm uses mechanisms inspired by biological

evolution, such as reproduction, mutation, recombination, and selection. Candidate so-

lutions to the optimization problem play the role of individuals in a population, and

the fitness function determines the quality of the solutions. Individuals are composed

by a set of genomes which represent the atomic building blocks which are recombined

across generations to form new individuals or offspring. Evolution of the population

takes place after the repeated application of the above operators. Evolutionary based

search techniques are shown to be successful for very large and complex optimization

spaces [87]. A drawback of any evolutionary algorithm is that a solution is “better”

(in terms of fitness) only in comparison to other, presently known solutions; such an

algorithm actually has no concept of an “optimal solution”, or any way to test whether

97

a solution is optimal. This also means that an evolutionary algorithm never knows for

certain when to stop.

In our context, an individual is a particular configuration instance of MPI runtime pa-

rameters. We define the recombination operator (or crossover) in a way such that good

parameters are preserved across generations. This section continues describing how the

generic evolutionary algorithm has been tailored to the MPI runtime parameter prob-

lem. The proposed algorithm has been evaluated on the three experimental platforms

presented in Table 4.1.

4.5.1 Tournament Selection

Tournament selection is a method of selecting an individual from a population of indi-

viduals in an evolutionary algorithm. An evolutionary algorithm starts by generating

an initial population of individuals (or configuration instances), E, of a determined size.

Each individual i is composed of a variable number of genomes randomly generated. In

our context, a genome g is defined by the following structure:

i :=(g0, . . . , gn) ∈ E,where

g := (p, vp) | p ∈ Params ∧ vp ∈ Values(p)

Genome g is composed of the MPI parameter name p, chosen within the set of parameters

Params depicted in Table 4.2; and a value, in Values(p), which is in the set of p’s possible

values (column value range of Table 4.2). Given an individual of the population, a

parameter setting is generated by using the parameter values vj in the correct order

(dictated by the configuration).

Once the initial population is created, the tournament selection strategy is applied [88].

In each generation, a subset of size t individuals, with t << G, is randomly selected and

their fitness is evaluated. In this context, the fitness is given by the performance gain

(with respect to the Open MPI’s default parameter setting) of a program executed with

the parameter values contained in the selected individual genomes. The two individuals

with best fitness, i.e., higher performance gain, inside the tournament group are chosen

to create two offspring by applying a crossover operator (see later). To escape local

performance maxima, a mutation operator – selected with low probability (≤ 0.2%)

– is also applied to the newly created offspring. A tournament completes with the

replacement of the elements with lowest fitness with the newly generated offspring.

98

The algorithm iterates until a maximum number of generations has been reached, or no

improvement of the overall fitness is contributed by the new offspring for at least 10 gen-

erations. Tournament selection has been chosen because of its properties. It is efficient,

with a computational complexity of O(n), and it allows the selection pressure to be eas-

ily adjusted by tuning the tournament size. On the one hand, a small tournament leads

to a low selection pressure as the probability of a genome present in the tournament

to be carried on to the new offspring is high. On the other hand, a larger tournament

results in a higher selection pressure, which makes the algorithm more unstable. Due to

the algorithm formulation, the genetic search ideally converges to individuals with high

fitness value whose genomes are composed of only runtime parameters that are meaning-

ful for the underlying architecture. Parameters with no performance improvements will

be lost in the genetic pool of the population as poor performing individuals are always

replaced with newly created offspring.

4.5.2 Crossover and Mutation Operators

Of extreme importance for a genetic algorithm to converge to optimal solutions is the

definition of the crossover and mutation operations. The crossover operator takes the

two configuration instancess with highest fitness in the current tournament (Turn) and

recombines their genomes to create new offspring. Crossover has to carry on those

parameters which are the cause of the high fitness value of tournament winners. The

genome structure of the offspring generated by a crossover operation (i.e., os) has been

defined, for our context, as follows:

os :={g0, . . . , gi, . . . , gn},where

gj := (pj , vpj)

0 ≤ j ≤ i ∃ gpar0 , gpar1 ∈ Turn :

pj ∈ gpar0 ∧ pj ∈ gpar1 ⇒ vpj := rand(gpar0 [pj], gpar1 [pj])

i < j ≤ n ∃ gpar0 , gpar1 ∈ Turn :

(pj , vpj) ∈ gpar0 ∧ pj 6∈ gpar1 ∨ (pj , vpj) ∈ gpar1 ∧ pj 6∈ gpar0

In our implementation, those parameters which are present in both parent genomes

(i.e., gpar0 and gpar1) are always carried on to the children, i.e., 0 ≤ j < i, the parameter

values are chosen (randomly) to be one of their parent values. The size of the new

offspring n is chosen randomly, however, offspring are never smaller or larger than the

parents. We allow variable size individuals so that runtime parameters which have been

recognized not to have any effect on the execution time of an application are lost across

99

generations. The remaining genomes, i.e., i ≤ j < n, are randomly chosen from both

the parents amongst the ones which are not in common.

The mutation operator, applied with a probability of 0.2%, randomly changes parameter

values, i.e., vj , with a probability of 0.5%. Mutation is important in order to avoid local

maxima.

4.5.3 Experimental Evaluation

The genetic search algorithm has been executed multiple times on each architecture of

Table 4.1. The population and tournament sizes have been set empirically, they are

respectively E = 50 and t = 5. The initial population is generated in a way that all of

the 27 runtime parameters of Table 4.2 appear in at least one individual. Additionally,

the tournament selection makes sure that individuals whose fitness has not been yet

evaluated are selected for the next tournament. This guarantees that every individual

fitness is evaluated once.

The graph in Figure 4.4 shows, for each generation, the fitness value (i.e., performance

gain) of the best configuration in the population. For the LEO2 cluster, the genetic

search, discovers configurations which outperform the upper bound previously found

with the random exploration, i.e., the OPUB, with almost a tenth of the evaluations.

Furthermore, the search reaches a maximum after approximatively 50 generations which,

considering an average number of 3 evaluations per tournament, results in a total of

150 program evaluations. Also for the IBM Blade system and the Karwendel cluster,

evolutionary search returns an average performance gain which is close to the OPUB

value found with random exploration. A performance value which is within 80% of the

OPUB can be obtained with 15 generations (i.e., around 45 evaluations).

Unfortunately we could not directly compare the result of our evolutionary tuning al-

gorithm with OPTO since its code is not available. Comparing with their performance

results presented in [11], our tool requires a similar amount of evaluations to OPTO.

However, in our setup we considered a larger number of parameters, 27 versus 4, making

the optimization space to explore much larger.

4.6 Auto-Tuning with Machine Learning

The genetic search approach presented above is best when a program with a specific input

configuration instance (input data and communicator sizes) has to be tuned for a given

target machine and the user can afford several executions of this program. Sometimes

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

0

5

10

15

20

25

30
LEO2 IBM Blade Karwendel

Generation number

P
e

rf
o

rm
a

n
ce

 g
a

in
 (

in
 %

)

IBM: upper bound (from RAND)

LEO2: upper bound (from RAND)

Karwendel: upper bound (from RAND)

Figure 4.4: Average performance gains of the configurations with best fitness in the
population related to a generation number.

this is not feasible since a single execution of the input code may be too long making

the tuning process span over a long period of time.

In this section we propose a novel approach for MPI runtime parameter tuning based

on ML. The main goal is to reduce the time needed for the estimation of the parame-

ter setting which best suites a given application and the underlying target architecture.

The main idea is to derive a model which delivers near-optimal parameter settings given

an input program. Since deriving such a model based on an analytical method would

require to take into account the complex interactions between the hardware architec-

ture characteristics and the application code features; we use ML technique to learn a

prediction model from data.

The basic assumption behind ML-based approaches is that similar codes have similar

behaviour. Moreover, the runtime parameter setting derived for one code is likely to

have also positive effect for a similar code. The efficacy of the method and its prediction

accuracy depends on the way differences between two codes are measured. For this,

metrics are used to characterize a message passing program. These program features

can be both static and dynamic. Static features, e.g., number of point-to-point and

collective communication statements, can be extracted by analyzing the input code.

Whereas the extraction of dynamic features (e.g., average amount of data exchanged in

communication) requires one profiled execution of the input code.

This section describes how the runtime parameter tuning problem can be expressed as a

predictive modeling problem and introduces the ML-based framework by describing the

feature extraction, training and deployment of the model.

101

4.6.1 Parameter Selection and Experimental Setup

During the training phase, the optimization space is explored exhaustively (i.e., all

combinations of runtime parameter values are tested and measured). We used all 8

codes of the NPBs as the program training set. In order to make this exploration

feasible, we reduced the number of parameters from 27 to the most meaningful 4. The

selection has been done by computing the Pearson correlation coefficient [89] between

the parameter values and the execution time from the data gathered during the random

exploration described in Section 4.3. The four parameters with the absolute highest

correlation value have been selected:

sm eager limit: eager threshold for communication done over shared memory (SM)

btl openib eager limit: eager threshold for communication done over InfiniBand (OpenIB)

mpi paffinity alone: binds the MPI process rank to a physical cu

mpi yield when idle: MPI processes frequently yield the CPU to its peers (degraded

mode [76])

Also, because of time constraints, we limited our experiments to a single architecture,

we chose the LEO2 cluster, see Table 4.1, since it provides the largest number of nodes.

4.6.2 The Prediction Model

The predictive modeling problem can be formally represented as follows. Let x be a

vector of program features extracted from an MPI program p, s be the performance

curve (speedup) of p and c be the runtime parameter setting with the “best” measured

speedup. We want to build a model, f , which predicts the configuration instance, ĉ, i.e.,

f(x) := ĉ. The closer the speedup resulting from the execution of the program with the

predicted runtime parameter setting (i.e., ĉ) is to s, the more accurate the model will

be.

Figure 4.5 depicts an overview of the proposed ML framework for MPI runtime param-

eter tuning. It consists of two major phases: the (i) training process and the (ii) model

deployment.

• During the training phase data is collected by running a set of training programs

on the target machine against several configuration instances of a set of runtime

parameters. The program features together with the current runtime parameter

setting and the achieved speedup is stored in the training data repository. This

102

Executable

mpicc

Execution
Time

< Parameter Settings >< Parameter Settings >

Training Phase

MPI Training programs
bench

.cfg

GainGain

Feature
Extraction

< Features >< Features >

Defines the runtime
parameters to be tuned and

the range of values

MPI Runtime

Data Elaboration

Parameter Settings
Generator

Training Data

Target
Machine

ML Training Algorithm

Trained
Machine

Deployment

MPI Input
program

Feature
Extraction

<x1, xn>

Aggregate
MCA

parameter
file

<x1, xn>

<r1, rm>

<r1, rm>

training

Figure 4.5: Overview of the ML-based method.

phase can be expensive, however it only needs to be executed once before the input

code to be optimized is presented to the tool. For this reason it is also referred to

as off-line training. Using supervised learning techniques [90] the predictive model

is then built from the collected data.

• When the model is deployed, on-line, it is used to predict the optimal runtime

parameter settings for unseen input programs presented to the tool. In this phase,

the system automatically extracts the input program features and presents them to

the trained machine (or model) which returns the predicted setting as an Aggregate

MCA (AMCA) parameter file [76].

In the following section we describe the feature extraction phase and an overview of the

ML algorithms used to build the predictor.

4.6.3 Feature Extraction

Figure 4.6 depicts a classification of the 19 features herein employed to represent MPI

programs. Both point-to-point and collective communication patterns are described.

The point-to-point communication graph is described by the average number of receivers,

for each process in the communicator, and the average distance between the source and

the destination of a message. These metrics are weighted according to the number

of messages exchanged. In this way, patterns which are more frequently used within

the code are recognized to be more relevant. Additionally the average point-to-point

message size in bytes is stored. Collective communications are divided into three different

categories: one-to-n, n-to-one or n-to-n. Routines which are included in the one-to-n

category are for example MPI Bcast and MPI Scatter. MPI Reduce and MPI Gather

103

Point-to-Point

Collective

Comm. pattern
Avg. # of destinations

Avg. comm. distance

Average message size

Communication time
Total communication time

of operations
Total # of MPI operations

1 to N

N to 1

N to N

Avg. comm. size

Avg. message size

Collective pattern time
Total collective time

Communication time
Total communication time

Total communication time
Total execution time

Total wait time
Total communication time

Total synchronization time
Total communication time

M
P

I P
ro

g
ra

m
 F

ea
tu

re
s

Figure 4.6: Classification of the 19 program features used to characterise MPI pro-
grams

are instead classified as n-to-one pattern. The most expensive collective pattern is

represented by n-to-n and it refers to routines like MPI Alltoall and MPI Allreduce.

For each of the patterns the average communicator and message size are measured. The

remaining features are used to measure the communication-over-computation ratio, the

wait and synchronisation time over the total communication time ratio and, to conclude,

the ratio between the time spent in point-to-point and collective operations over the total

communication time.

As most of the features depend on the input data and communicator size, the extraction

is done dynamically. Only one run of the input program is needed in order to extract

its feature set. MPI input programs are compiled and linked against a tracing library

which, using the MPI profiling interface (PMPI) [3], writes information about every

MPI call performed by each process of the program into trace files. For each operation

a time-stamp value, the execution time and the amount of data sent by a process is

stored. Specifically, the receiver is stored for point-to-point communications and the

communicator size for collective operations. Trace analysis is then performed in order

to extract features described in Figure 4.6. As each MPI process rank produces its own

trace file, analysis is done in parallel.

104

4.6.4 Training Prediction Models with Machine Learning Techniques

Supervised learning techniques [90] allow the deduction of prediction models starting

from training data by means of different algorithms. Commonly, supervised learning

generates a model that maps input features into desired outputs. As shown in Fig-

ure 4.5 each entry, td, of the training data, TD, is a vector of n values structured as

follows:

td := (x1, . . . , xf , v1, . . . , vp, Speedup)

Where f = 19 (number of the program features), p = 4 (number of runtime parameters)

and therefore n = 24. Training data cannot be used in this form as the speedup is

neither an input nor an output of the prediction model, i.e., f(x) = ĉ. Currently, the

training set contains the speedup values obtained by running the training set programs

against several runtime parameter settings. As we want to optimize the speedup, only

the configuration instances with the highest performance gain must be filtered to be

used by the learning algorithm.

TDbest := {(xi, cbest) | ⇒ speedup((xi, cbest)) = max(speedup((xi, ck)) ∀k)}

In this work we compare the prediction accuracy of two ML algorithms: k-Nearest

Neighbours [90] and Artificial Neural Networks [91].

4.6.4.1 k-Nearest Neighbours (k-NN)

The k-NN is amongst the simplest of all ML techniques and allows object classification

based on closest training examples in the feature space. An object is classified by a

majority vote of its neighbours, with the object being assigned to the class most common

amongst its k nearest neighbours. This technique does not require the construction of

a model as the classification of a new input can be done by determining its k closest –

by means of a metric defined on the program features – neighbours in the training set.

Despite its simplicity, the time used to classify a new input linearly grows with the size

of the training set leading to slow prediction performance with very large training sets.

Euclidean distance has been used as a metric and the best prediction results have been

obtained with k = 3. New input programs are classified by measuring the Euclidean

distance between their features and the feature vectors contained in the training set.

The three nearest neighbours are selected and for each parameter the predicted value is

determined as follows:

Rbest :=

(∑
v1(i)

k
, . . . ,

∑
vp(i)

k

)
∀i = 1, . . . , k

105

4.6.4.2 Artificial Neural Networks (ANNs)

The second ML algorithm which fits the formulated prediction model is represented by

ANNs. ANNs have the ability to derive knowledge from complicated or imprecise data

and can be used to extract patterns and detect trends. ANNs are particularly robust to

noise and can be used to model both linear and non-linear classification and regression

problems. In this thesis we use a type of neural network known as feed-forward Multi-

Layer Perceptron (MLP). An MLP can be easily configured, in terms of input/output

units and number of layers, in a way to meet the requirements of the prediction model,

i.e., 19 inputs (program features) and 4 outputs (runtime parameter values). Supervised

training with MLP is possible by means of the back-propagation algorithm. Unlike k-

NN, ANNs require to be trained. Training time depends on the size of the training data.

Once trained, ANNs are very fast in delivering the prediction with a deployment time

which only depends on the number of layers.

A four-layer feed-forward back-propagation network is used, the ANN structure with

the best performance for our problem is chosen as below. The number of units in the

input/output layers is defined by the problem, thus 19 neurons in the input layer (equal

to the number of program features) and 4 in the output layer (equal to the number

of runtime parameters to estimate) are needed. The two hidden layers (H1 and H2)

of the network contains, respectively, 16 and 10 units. The hyperbolic tangent Sigmoid

transfer function has been used for H1 and the output layer, the Sigmoid has been

used for H2. A learning rate in the range [0.2, 0.3] and a momentum of 0.8 has been

used for training. Configuration of the parameters of the ANN used in our prediction

problem has been derived empirically by testing different setups and choosing the one

with highest prediction accuracy.

4.6.5 Experimental Evaluation

In this section we evaluate the accuracy of the ML-based model for 8 of the NPBs (i.e.,

BT, CG, EP, FT, IS, LU, MG, SP). The experiments have been conducted on the LEO2

cluster.

The prediction accuracy has been measured using the Leave-One-Out Cross Valida-

tion (LOOCV) method [90]. When the runtime parameter values for benchmark x are

predicted, the model is built by using the training data obtained by removing x from the

training set. x’s feature vectors – resulting from varying input data and communicator

sizes – are then used to query the trained prediction model. The closer the execution

time – measured by running x with the estimated runtime parameters – is to the upper

106

bound in performance, the more accurate the prediction is. The raw training data (TD)

consists of ∼9500 points while |TDbest| = 44.

In Figure 4.7, the two prediction models are shown and their prediction accuracy com-

pared with random selection. The random selection has been executed by randomly

choosing a value for the four selected runtime parameters described in Section 4.6.1.

The produced parameter setting was then used to run the input code. We repeated this

process five times and computed the average performance improvement with respect to

the Open MPI default parameter setting.

In Figure 4.7 the graph represents the percentage of the available speedup achieved by

the estimated runtime parameter settings for random selection, k-NN and ANNs when

the LOOCV method is used. The performance value is relative to the OPUB which,

in this scenario, is represented by the execution time of best configuration instances

contained in TDbest.

The prediction always achieves a performance improvement which is, on average, within

92%, for k-NN, and 96%, for ANNs, of the OPUB. This means that the configuration

instances predicted by our ML-based model yields a performance improvement which is

very close to the best possible achievable via runtime parameter tuning. For the LEO2

cluster this means a 20% performance improvement over the default setting provided

by the Open MPI library. If compared to a random selection, the performance of the

configuration instances predicted using ML is generally higher. In fact, by averaging the

absolute performance gain value resulting from random parameter settings, the overall

performance is worse than what is achieved using the Open MPI’s default settings.

For benchmarks BT, MG and SP, the prediction is accurate as these applications are based

on point-to-point communications with very similar feature vectors. For example the

three benchmarks have an average point-to-point communicator size of 6 and the distance

between communicators is 9.9; as a consequence, the configuration instances derived by

the model are very similar. Degradation in the prediction accuracy is measured for

benchmarks EP and IS. EP, for example, is an embarrassingly parallel application and it

presents unique input features across the training set. Only few messages are exchanged

among the processors and we measured that 50% of the overall communication time is

spent in synchronisation barriers. As none of the other benchmarks in the training set

presents a similar behaviour, the prediction accuracy is affected. Prediction accuracy can

be improved by introducing new benchmarks (or feature vectors) in the training data.

Benchmarks must be selected in a way the program feature space is homogeneously

covered.

107

0
%

2
0

%

4
0

%

6
0

%

8
0

%

1
0

0
%

P
e

rf
o

rm
an

ce
 o

f
to

 P
re

d
ic

tio
n

to
 th

e
 U

p
p

e
r

B
o

un
d

 (
L

O
O

C
V

)

R
A

N
D

K
-N

N
A

N
N

B
e

nc
hm

a
rk

Performance relative
to the upper bound (in %) F

ig
u
r
e
4
.7
:

P
er

fo
rm

an
ce

ga
in

,
re

la
ti

ve
to

th
e

O
P

U
B

,
fo

r
th

e
8

N
P

B
s

u
si

n
g

p
a
ra

m
et

er
se

tt
in

g
s

es
ti

m
a
te

d
w

it
h

ra
n

d
o
m

se
le

ct
io

n
(R

A
N

D
),

k
-N

N
a
n

d
A

N
N

s.

108

MPI runtime

MPI kernel
codes

MPI tunable parameters

Performance
Data

Random Configuration
Generator

of samples

Exploration Phase Parameter Tuning Phase

cfg

ANOVA

Finds the list of
parameters with

meaningful
impact on

performance

Post
Processing

Selects the
parameter value

with highest
average

performance
P1: 1
P6: 128
...

Result

List of meaningful MPI
runtime parameters with

estimated optimal value for
the underlying architecture

Figure 4.8: Parameter tuning and application optimization design.

4.7 Auto-Tuning with ANOVA

In this Section, we propose a two-phase method for tuning MPI runtime parameters

for individual clusters based on the execution of a set of kernels and micro-benchmarks

which characterize an application workload. We employ a statistical method called

ANOVA [80] to identify the parameters with the highest effect on the execution time,

and subsequently the parameter values which deliver on average better performance.

Differently from the approaches presented so far, this method delivers a single parameter

setting which is defined as the optimizing trade-off for a class of applications with a

workload similar to the one used during the characterization phase. An overview of our

method is described in Figure 4.8.

In a first exploration phase, those selected kernels are executed on the target machine

with varying configuration instances of the MPI runtime parameters. Because the ex-

ploration space can be too large, and an exhaustive exploration is infeasible, random

settings are generated up to a number defined by the user, as shown in Section 4.3.

During the second parameter tuning phase, the training data is collected and analyzed

using ANOVA. The outcome of this phase is a set of parameters (or a configuration

C) with a major impact on the overall performance, for which the “best” setting with

the maximum performance improvement is estimated for every considered cluster. Dif-

ferently from previous approaches, our method requires to be executed only once, for

every cluster architecture. The derived parameter setting can then be utilized to replace

default parameter settings provided by the Open MPI library. Applications executing

on the cluster will automatically benefit from the new parameter values.

We used this approach to tune parameter settings for two of the clusters, the IBM Blade

and the LEO2 clusters, as listed in Table 4.1. For the exploration phase we employed

5 kernels of the NPBs. Estimated parameter settings by ANOVA have been tested

109

against a set of real codes from the SPEC MPI 2007 benchmark suite [1]. For the first

exploration phase we used the same data gathered during the random exploration of

the optimization space discussed in Section 4.3. As a consequence, with the OPUB we

refer to the configuration instances reaching maximum performance gain seen during

that exploration.

4.7.1 Parameter Selection

Factorial ANOVA takes n independent variables (or factors), each of them assuming a

number of levels (or values). The method then measures for each level how different the

mean values are and how much of the observations are spread out around their respective

means. ANOVA is mainly utilized to verify whether the null hypothesis (i.e., there is no

statistical difference between the means of each level) can be rejected with a determined

confidence level. The analysis of variance can be conducted either by looking at single

factors independently (i.e., 1-way ANOVA) or by capturing interdependencies among

multiple factors (i.e., 2-way or in general n-way ANOVA).

For example, a specific MPI runtime parameter may not show any meaningful correlation

with the execution time when analyzed alone, but may become important when coupled

with other parameters. Unfortunately, the algorithm which computes the n-way ANOVA

is of complexity O (sn), where s is the number of samples and n the number of factors.

Since in our settings, s ≈ 20000 and n ≈ 27, the problem becomes largely infeasible to

be solved. For this reason, we resort on 1-way ANOVA that is of linear O(S) complexity

and, as we will show later in this section, delivers satisfactory results.

We used in our experiments the ANOVA package from R [92]. Before running the

analysis, we computed the performance gain of each experiment by dividing the execution

time of each parameter configuration instance with the Open MPI default execution and

then normalized this value with respect to the OPUB. As depicted in Figures 4.1 and

4.2, different kernels achieve different levels of performance improvement, therefore, by

dividing the performance gain with the relative OPUB, each kernel will contribute to the

final solution with the same weight. Table 4.3 displays the parameters with a meaningful

impact on the execution time resulting from 1-way ANOVA under a confidence level of

99.9% on LEO2 and IBM blade machines. A dash ‘–’ means that the null hypothesis of

no variance between the parameter values can not be discarded, meaning that changing

the parameter value does not cause modifications in execution time. In such cases, the

default Open MPI’s setting is used. For the other parameters recognized to have a

meaningful impact, we show the value with the highest mean performance gain.

110

Table 4.3 also shows that different parameters are selected to impact the execution time

on the two different clusters. Nevertheless, eight of them significantly influences the

performance of both computers, as follows (a complete description of the parameters is

given in Appendix B):

• mpi paffinity alone for controlling affinity mapping of processes to cores;

• btl sm eager limit and btl openib eager limit for setting the eager limits for

both intra-node and inter-node communications;

• mpi yield when idle used by some applications to oversubscribe cores with MPI

processes. In the Open MPI library, when a process blocks because of synchroniza-

tion issues, spin-lock (or active wait) is always utilized as MPI assumes node cores

to be exclusively used and not shared with other programs. However, for some ap-

plications it makes sense to spawn more MPI processes than available cores, a.k.a.

over-subscription of nodes. The mpi yield when idle flag forces the MPI library

to work in aggressive (when disabled) or degraded mode. In aggressive mode, a

blocking MPI processes never voluntarily gives up a core to other processes, while

in degraded mode each process frequently yields the processor to its peers, thereby

allowing all processes to make progress;

• mpi preconnect mpi for establishing a fully-connected topology during the MPI In-

it() initialization phase which is beneficial for communication-intensive applica-

tions but detrimental to embarrassingly parallel ones;

• mpi leave pinned used to pre-register user message buffers so that the RDMA

protocol can be used1;

• max send size that defines the maximum chunk size used to send large messages

via the OpenIB or SM layers for intra- and inter-node communications. By default,

Open MPI splits messages into smaller chunks to enable a pipelining effect between

sender and receiver. Large messages usually lead to better efficiency but with the

drawback of inhibiting the pipelining effect.

4.7.2 Parameter Optimization

We utilize the ANOVA’s results to find the parameter setting which represents a good

compromise across the computational kernels. In R, we use the model.table(ano-

va output, "means") command to produce, for each meaningful parameter, the average

1Unfortunately, we could not explore this parameter on the LEO2 machine because user authorization
reasons.

111

IBM LEO2

Parameter name ANOVA BEST ANOVA BEST

mpi_paffinity_alone 1 1 1 1

mpi_yield_when_idle 0 1 1 0

mpi_preconnect_mpi 1 1 1 1

mpi_leave_pinned 1 1 NA NA

coll *

sm_tree_degree – 8 – 8

sm_control_size – 64K 128K 4K

sm_fragment_size – 16K 4K 8K

sync_barrier_after – 0 1000 1000

sync_barrier_before – 0 – 5000

tuned_init_tree_fanout – 16 – 8

tuned_init_chain_fanout – 8 – 4

btl sm *

eager_limit – 8K 16K 32K

max_send_size 8K 16K 128K 32K

rndv_eager_limit – 1K 1024 16K

fifo_size – 1K 128K 16K

num_fifos – 13 11 7

btl openib *

eager_limit 64K 64K 128K 128K

max_send_size 64K 64K 128K 128K

rndv_eager_limit – 8K – 16K

use_message_coalescing – 0 – 1

user_eager_rdma – 0 – 0

eager_rdma_num – 2 – 8

use_async_event_thread – 0 – 1

ib_max_rdma_dst_ops – 4 – 4

rdma_pipeline_send_len. – 1M – 512K

rdma_pipeline_frag_size – 4K – 4K

min_rdma_pipeline_size – 16K – 65K

Table 4.3: “Best” parameters values derived by ANOVA and BEST for both target
architectures.

performance value associated with each parameter level. The optimizing parameter

setting is therefore determined by selecting, for each parameter, the value with the

highest average performance. An example is depicted in Figure 4.9, where the average

performance gain associated with each level of the btl openib eager limit parameter

is shown for both target architectures. On each cluster, no performance gain relative to

the Open MPI’s default value can be observed up to a parameter value of 12288 Bytes.

For LEO2 an average performance gain of 10% is registered with a parameter value of

128 KB, while for IBM blade the optimal setting is 64 KB.

Figure 4.9 also shows how overestimating or underestimating the eager limit usually

112

51
2

10
24

20
48

40
96

81
92

16
K

32
K

64
K

12
8K

25
6K

-25

-20

-15

-10

-5

0

5

10

15
LEO2 IBM Blade

Parameter value (in Bytes)

P
e

rf
ro

m
a

n
ce

 g
a

in
 (

in
 %

)

Figure 4.9: Mean performance gain for btl openib eager limit parameter levels.

leads to severe performance losses. The eager limit should be set in a way that frequent

messages are always delivered using the eager protocol which reduces the synchroniza-

tion costs. Setting the threshold too high leads to a performance loss since larger buffers

are allocated on the nodes. The optimal eager limit value generally depends on sev-

eral factors such as the amount of cache per core, the latency, the bandwidth, and the

interconnection topology. Therefore, finding the optimizing parameter setting by an an-

alytical model often requires detailed knowledge of the target machine and the execution

behavior of the input program. Our method automatically data mines those values by

using a statistical method which does not require any expert knowledge. Similar infor-

mation with the one depicted in Figure 4.9 for the btl openib eager limit parameter

can be extracted for the other parameters with meaningful impact on performance. We

report in Table 4.3 the parameter values with the highest mean performance gain.

Changing affinity (i.e., mpi paffinity alone = 1) and pre-connect of MPI nodes (i.e.,

mpi preconnect mpi = 1) is beneficial for every architecture. Interesting is the fact

that enabling the mpi yield when idle flag on processors with SMT should in general

be avoided because an SMT-based processor already has an efficient thread scheduling

mechanism. Therefore, by forcing threads to yield we only increase the context switching

overhead. On LEO2, which does not support SMT, the overall execution time improves

when forcing threads to yield before suspending. Interesting is also that the value of

the btl openib eager limit parameter is half on IBM than on LEO2, which is a direct

consequence of the CPU’s cache sizes. IBM Blade has quad-core CPUs supporting 2-fold

SMT with a shared level-3 cache of 8 MB leading to an ideal amount of 1 MB of cache

per MPI process. On the other hand, LEO2 uses older Intel quad-core CPUs with 12MB

113

of level-2 caches shared among two cores, leading to an ideal 3 MB per MPI process.

This extra amount of cache allows LEO2 to more efficiently use larger buffers and to

achieve a higher performance gain.

Finally, we should note that the parameter settings derived by our method strongly

depend on the workload type (i.e., the set of characteristic kernels) and only marginally

on the input data size and communicator sizes being used during the exploration phase.

To further investigate this aspect, we ran ANOVA on multiple subsets of the tuning

data gathered during the training phase and reported the derived parameter values in

Table 4.4, where each column represents the ANOVA output for a specific data subset:

• A, B, and C use the data generated by running the five NPB kernels with the input

data size A, B, respectively C. Each subset contains performance data of both small

and the large communicator sizes.

• 32, 64, respectively 256 use the data generated by the experiments run with a

communicator of size 32, 64 respectively 256. As before, each subset contains both

the performance data resulting from the small and the large input data sizes.

Table 4.4 demonstrates that for each subset of the tuning data, the number of relevant

parameters may vary, however, their value across different data subsets remains largely

constant. This insight can be used to drastically reduce the duration of the tuning phase,

avoiding kernel executions for multiple input data and communicator sizes. Large input

data sizes are nevertheless preferable, since for large messages the size of Open MPI’s

runtime buffers converges towards a dimension that optimizes the cache use on the target

architecture, as indicated by the btl openib eager limit threshold.

4.7.3 Experimental Evaluation

We employ the parameter settings determined by ANOVA based on the five NPB kernels

at the end of the parameter tuning phase to optimize the execution of 10 applications

from the SPEC MPI 2007 suite [1]. The goal is to demonstrate that the parameter values

delivered by our technique outperform Open MPI’s default setting for new unseen input

codes. We also validate the results against two other tuning strategies for runtime

parameters:

RAND: Randomly selects a parameter combination for every input program. To prop-

erly simulate this selection strategy, 5 random configurations are generated (for

each input code) and the average performance gain value computed.

114

IBM Blade LEO2

Parameter name A B 32 64 A B C 64 256

mpi_paffinity_alone 1 1 1 1 – 1 – 1 –

mpi_yield_when_idle 0 – 0 – 1 1 – 1 1

mpi_preconnect_mpi 1 1 1 1 1 1 1 1 1

mpi_leave_pinned 1 1 1 1 NA NA NA NA NA

coll *

sm_fragment_size – – – – – 4K – 4K 4K

sync_barrier_after – – – – – 1000 – 1000 1000

btl sm *

eager_size – 16K – – – – – – –

max_send_size – 8K – – 128K 128K 128K 128K 128K

rndv_eager_limit – – – – 1024 1024 – 1024 1024

fifo_size – – – – 128K 128K 128K 128K 128K

num_fifos – – – – – 6 – 3 6

btl openib *

eager_limit 16K 64K 64K 64K 128K 128K 128K 128K 128K

max_send_size – 64K 128K – 128K 128K 128K 128K 128K

Table 4.4: ANOVA results on a selected subset of tuning data for both target archi-
tectures.

BEST: Randomly generates 80 training configurations selects the combination with the

largest performance gain across the entire set of kernels.

First, we show in Figure 4.10 the performance relative to OPUB obtained by executing

the five NPB kernels with the configurations delivered by RAND, BEST and ANOVA

based on parameter values from Table 4.3. ANOVA reaches an average performance gain

of around 13% with respect to the default setting on IBM Blade, and of around 24%

on LEO2, i.e., 90% of the performance improvement available on the machine. On the

other hand, RAND delivers on both machines almost no performance gains as expected,

while BEST achieves an average performance gain similar to ANOVA of 10% on IBM

Blade and 24% on LEO2. Compared to the approaches presented in Sections 4.5 and 4.6,

which ideally deliver a performance improvement close to OPUB, our approach yields

approximatively 88% of the OPUB without requiring any additional run of the input

program.

Finally, we conducted an experiment to understand how the parameters tuned for one

particular architecture affect the performance of running new codes. We selected ten

applications from the SPEC MPI 2007 [1] suite displayed in Table 4.5 and executed

them on the two target architectures using the parameters tuned by RAND, BEST and

115

cg
.6

4.
A

cg
.6

4.
B

cg
.2

56
.B

cg
.2

56
.C

ep
.6

4.
A

ep
.6

4.
B

ep
.2

56
.B

ep
.2

56
.C

ft.
64

.A

ft.
64

.B

ft.
25

6.
B

ft.
25

6.
C

is
.6

4.
A

is
.6

4.
B

is
.2

56
.B

is
.2

56
.C

m
g.

64
.A

m
g.

64
.B

m
g.

25
6.

B

m
g.

25
6.

C

0%

20%

40%

60%

80%

100%

Benchmark

cg
.3

2.
A

cg
.3

2.
B

cg
.6

4.
A

cg
.6

4.
B

ep
.3

2.
A

ep
.3

2.
B

ep
.6

4.
A

ep
.6

4.
B

ft.
32

.A

ft.
32

.B

ft.
64

.A

ft.
64

.B

is
.3

2.
A

is
.3

2.
B

is
.6

4.
A

is
.6

4.
B

m
g.

32
.A

m
g.

32
.B

m
g.

64
.A

m
g.

64
.B

0%

20%

40%

60%

80%

100%

RAND BEST ANOVA

P
e

rf
o

rm
a

n
ce

 R
e

la
tiv

e
 t

o
 O

P
U

B
 (

in
 %

)

IBM Blade

LEO2

108%

111% 106%

Figure 4.10: Performance relative to OPUB for the NPB kernels executed with the
parameters tuned by RAND, BEST and ANOVA.

ANOVA. We simulated new and not previously encountered runtime conditions by run-

ning the SPEC benchmarks using a communicator size of 48 on IBM Blade and 128

on LEO2. We chose the mref input data size with a runtime of approximatively two

hours per iteration on our two machines. We repeated each experiment three times and

reported the average performance values. Since we did not explore the optimization

space for these benchmarks, we have no knowledge of the OPUB and, therefore, report

only the absolute performance gains obtained. The results show that RAND does not

achieve any improvement over the Open MPI default settings, as already observed in

the previous experiment. On the IBM Blade, the parameter tuning with ANOVA only

slightly outperforms BEST, however, ANOVA delivers delivers substantially better re-

sults on LEO2. The reason in our belief is the larger number of relevant parameters

detected to by ANOVA on LEO2, which increases the probability of BEST to select less

performance-efficient parameter values. Because ANOVA determines parameter settings

by combining information gathered from many executions of the characteristic kernels,

the outcome is more reliable. The average performance improvement measured for the

SPEC codes is about 20%, which is comparable to the one observed for the kernel codes

in the tuning phase.

4.8 Summary

In this chapter we analyzed the importance of runtime parameter tuning for MPI ap-

plications. They provide a way to significantly reduce the execution time of a program

116

IBM Blade LEO2

Benchmark
Baseline
[sec.]

RAND BEST ANOVA
Baseline
[sec.]

RAND BEST ANOVA

104.milc 437 -2% 13% 14% 323 -5% -21% 9.0%

107.leslie3d 1737 4% 6% 6% 770 1% -20% 13.0%

113.GemsFDTD 1072 -3% -0.4% -0.3% 624 2% -11% -3.4%

115.fds4 741 0.7% -3 % -1% – – – –

122.tachyon 762 0.2% 0.4% 1.2% 247 -1.5% -34% -1.4%

126.lammps 767 7% 7% 7% 311 -12% -36% 8.0%

128.GAPgeofem 572 -1% 4% 4% – – – –

130.socorro 1025 -0.5% 1.2% 2% 391 -7% -3% 37.6%

132.zeusmp2 1070 -0.7% -0.4% 0.2% 743 15% 25% 52.6%

137.lu 1573 0.1% -2% 3% 388 12% 14% 45.1%

AVG GAIN 0.4% 2.5% 3.4% 0.6% -11% 20.07%

Table 4.5: Performance gain for the SPEC MPI 2007 [1] applications executed using
the parameter settings estimated by RAND, BEST and ANOVA on the two target

architectures.

without changing the application code. We derived three methods for estimating optimal

parameter settings which are suited for different application scenarios.

The evolutionary method delivers the best parameter settings specific to the application

(for a particular input configuration) and the target machine. The major drawback is

the fact that the application code to be optimized has to be executed multiple times (50

to 150 depending on the required performance). Derived parameter settings deliver on

average a performance improvement of around 27% on the LEO2 cluster and 15% for

the Karwendel and IBM clusters. Use of the evolutionary search is suggested for those

cases where an in-house cluster is being used to run a handful of application codes with

a stable input configuration (communicator and input data sizes). In such a case, time

invested in the exploration of the search space is amortized across several executions of

the program.

For those scenarios where many runs of the input code cannot be afforded, the ML-based

method is preferred. A training phase is used to create a prediction model which delivers

optimized parameter settings based on a set of program features. The training phase

is usually expensive but it is executed only once, when the cluster is deployed. Input

programs must also be executed once in order for the feature extraction to take place

on the collected execution traces. As shown in the experiments, the parameter settings

delivered in this way are very close to the performance upper-bound uncovered during

the exploration of the optimization space, i.e., the OPUB. One limitation of this method

is the amount of parameters that can be estimated by means of ML algorithms. The

number should be kept small otherwise prediction accuracy may dramatically decrease.

The last approach for parameter tuning aims at replacing the role of default parame-

ter setting to match a given cluster system. This method is based on an, expensive,

117

exploration phase which needs to be conducted only once. During this phase compu-

tational kernels which characterize the workload of a cluster system are executed with

varying parameter settings. The method delivers a single parameter setting which is,

by definition, a trade-off across the computational kernels that are examined during an

exploration phase. Unseen input program with similar workload characteristics benefits

from the derived parameter values. This last method is well suited for those scenarios

where a cluster is shared among many users belonging to the same application area.

Chapter 5

Message Passing-Aware Compiler

Analyses and Transformations

Message passing programs are often challenged to scale up to several million cores. In

doing so, the programmer tunes every aspect of the application code. However, for large

applications, this is not practical and expensive tracing tools and post-mortem analyses

are employed to guide the tuning efforts finding hot-spots and performance bottlenecks.

In this chapter, we revive the use of compiler analysis techniques to automatically detect

and apply optimizations to communication statements of a distributed memory program.

We present two optimizations which deal with communication statement placement. The

first, empirically studies the interactions between CPU caching and communications for

several different scenarios. Gained insights are then used to formulate a set of intu-

itive rules for communication calls placement. The second, focuses on increasing the

communication/computation overlap of a message passing program using the result of

exact data dependence analysis provided by the polyhedral model. This is obtained by

employing a novel approach, presented in this chapter, which allows the representation

of message passing routine semantics within the PM’s constraints. Finally we examine

the problem of static communication matching of message passing statements. In this

thesis we present a novel static analysis which can establish a communication match for

many real codes which is a prerequisite for several compiler transformations.

119

120

5.1 Introduction

5.1.1 Message- and Cache-Aware Compiler Optimizations

When writing a message passing program, the programmer must guarantee the seman-

tic correctness ond position the communication routines within the code. There are

many architectural aspects which may play a role in determining a good program posi-

tion to place send or receive calls. For example, the request management overhead of

asynchronous routines – which are commonly used to hide communication costs – may

penalize performance for small message sizes. Runtime systems for distributed memory

libraries (e.g., MPI [93] and UPC [7]) usually employ optimizations to hide many ar-

chitectural details from the programmer. For example long messages may be split into

smaller chunks to enable pipelining [94]. On the contrary, when too many short mes-

sages are sent, the runtime system may try to coalesce information into larger messages

reducing the injection rate [8, 95]. Optimizations done at runtime are highly effective

since the system is fully aware of the underlying architecture. However, most of the

decisions have already been made by the programmer in the source code and therefore,

at this stage, it is often too late to overcome performance problems. For these reasons,

production codes are usually hand-tuned for particular target architectures.

In Section 5.2, we study the impact of CPU cache on MPI communication routines.

We measured, with a synthetic benchmark, the differences in terms of execution time,

for point-to-point operations performed when the data being sent is fully loaded into

the CPU cache or not. We repeated the experiment with multiple configurations, i.e.,

intra-node and inter-node. In the same way we measured the impact of point-to-point

communication routines on the application cache by accessing application data, pre-

viously loaded into the cache, right after the communication is performed. From the

gathered data we derived a set of rules and guidelines which can be utilized to transform

the input program for improved cache utilization and thus performance. To the best

of our knowledge, this aspect has been largely neglected until now. Work in literature

focuses on quantifying the impact of local memory on communications [96]. Those works

are largely concerned with non-regular data types which involve expensive packing/un-

packing operations and optimizing the way the MPI library handles them; whereas our

work focuses on contiguous data and how the impact of communication routines can be

exploited, by a programmer or a compiler, to optimize the input code.

121

5.1.2 Exact Dependence Analysis for Increased Communication Over-

lap

Compiler technology has been used in the past to optimize message passing programs

[15, 16, 97–99]. The main idea is to extend the compiler analysis module to understand

the semantics of message passing routines and treat them not just like a library call

but as a language construct. In doing so, existing compiler analysis can be utilized to

uncover optimization potentials hidden within the input code.

In Section 5.3 we show an approach based on compiler analysis, and specifically exact

data dependence analysis to maximize the computation/communication overlap for a

given input code. Indeed, increasing the time window on which computation and com-

munication can be performed in parallel (or overlapped) is one of the well known rules

of thumb used to optimize message passing codes. As opposed to the previous compiler-

based approaches, we utilize finer-grain exact analyses produced by the PM [100]. Unlike

the traditional dependence graph, which contains data dependency information between

the program statements, the dependence polyhedron lists dependencies on the basis of

statement instances [101] (see Section 2.3.2). By using this more detailed analysis our

approach increases the time interval between generating the data or buffer availability

and the final consumption of the data.

5.1.3 Static Matching of Communication Statements

A main challenge for message passing programs is the static matching of messages, i.e.,

to determine if a given send statement may form a communication channel (match) with

a receive statement. This problem is similar to the serial alias analysis [102] and thus of

paramount importance for many higher-level analyses and transformations. For exam-

ple, well-known approaches for communication tiling [15] and message coalescing [103]

rely on a matching analysis.

The idea behind tiling is to replace a single data transfer of N elements between a pair of

processors with N/T message exchanges, each with T elements. Coalescing corresponds

to a dual approach by aggregating N distinct sends operations into one. It is easy to

understand that any update to a send or receive operation, which changes the amount of

data being transferred, requires to update all matching communication statements and

their transitive closure. In most previous works, e.g., [15, 103], the matching problem has

been neglected assuming that the user specifies all matches explicitly. This essentially

prevents any automated optimization and increases code development and maintenance

significantly. Thus, those promising transformation techniques did not find wide adop-

tion.

122

In this thesis we present a novel approach for static matching of communication state-

ments. We use the PM [23, 24] to augment the communication statements in a program

with the knowledge of the subset of processes involved in the communication. We use

polyhedral techniques to symbolically compute the number of instances (each set’s car-

dinality) of all communication statements. We then model the matching problem as a

bipartite graph, and use the cardinality information as capacity; hence we transform the

matching problem into a parametric maximum network flow problem [104]. A matching

is said valid only if the computed flow uses all the available capacity. The algorithm

guarantees that none of the possible matches is excluded.

5.2 Message- and Cache-Aware Compiler Optimizations

As shown in Section 2.2.1, the send routine transfers a buffer, buff i, allocated within a

process’, pi, memory space, i.e., buff i ⊆ Api to a receiver process, pj , which stores the

received data in a buffer, buff j ⊆ Apj . These sender (buff i) and receiver (buff j) buffers,

are stored in the main memory of processes pi and pj , respectively. However, hardware

caches are interleaved between the computing units and the main memory. This means

that when a cu accesses elements of a buffer, these elements are automatically copied

(by the hardware coherency protocol) onto the caches and thus made available to the

requesting cu. In this section we investigate the impact of the caches on point-to-point

on point-to-point communication routines. communication routines.

5.2.1 Analyzing MPI Cache Behaviour

In order to highlight the effects of CPU caches on MPI communication routines we

wrote a synthetic benchmark. The main goal of the MPI cache benchmark is to capture

differences in terms of execution time between communication routines with multiple

configurations of the CPU cache and additionally, to measure their impact on the cache.

In doing so, we also collected the value of several performance counters using the PAPI

library [105]. Many benchmarking suites for MPI exist in literature[106, 107]. Cod-

dington et al. wrote a survey of benchmarking tools for MPI’s point-to-point commu-

nications [108]. However none of those is designed to capture cache behaviour of MPI

routines. Some of the tools, e.g. MPIBench[107] and SKaMPI[106], provide options

to pre-load messages into the cache before performing the communication but they do

not provide a way to precisely capture the level of cache pollution caused by MPI com-

munication routines. The benchmark code which has been developed for this purpose

follows the guidelines for reproducibility of measurements described in [109]; the code

is publicly available from [110]. Beside the execution time, the benchmark registers the

123

values of multiple PAPI performance counters which will be used to understand low level

implementation details of the underlying MPI library.

The benchmark is split into two scenarios, SCN1 and SCN2, which are further described

in this section.

5.2.1.1 Scenario 1 – SCN1

SCN1 studies the behaviour of single MPI send/receive routines. A skeleton of the bench-

mark code is shown in Listing 5.1. With this benchmark we are interested in capturing

the behaviour, in terms of performance counters and runtime, of two basic MPI routines,

i.e. MPI Send and MPI Recv, considering different states of the cache. The benchmark

performs a ping-pong operation with three different initial cache states. In the first case,

INV (lines 34-37), we make sure all the content in the cache is wiped out and none of

the data elements being sent or received are present into any of the CPU caches. The

second cache configuration, EXCL in lines 39-43, entirely pre-loads into the cache the

message data right before the communication is performed. Data elements are only read

which means the corresponding cache lines are in the “exclusive” state. In the last cache

configuration, MOD in lines 45-49, cache lines are preloaded in the “modified” state.

5.2.1.2 Scenario 2 – SCN2

In the second scenario, referred as SCN2, we want to capture the level of cache pollution

caused by send/receive communication routines. The skeleton of the benchmark code

for this setting is shown in Listing 5.2. This is obtained by measuring the time, together

with other performance counters, required to traverse the array containing the message

data previously exchanged in the ping-pong operation. This is done considering multiple

configurations of the cache. In INV, we start by cleaning the caches, we then perform the

message exchange and, upon competition of the send/receive, data is traversed and the

measurement is performed (lines 23-27). In the second configuration, PRE, we pre-load

the message data into the cache before performing the message exchange (lines 29-34).

It is worth noting that, in both cases, the code for which we perform the measurements

does not contain any communication statements. The obtained data is compared with

the values measured while traversing the message buffer without previously performing

any communication. Also in this case we consider two cache configurations, i.e., cache is

invalidated before the array elements are accessed, BASE INV in lines 11-14, or the array

is fully pre-loaded into the cache before being traversed, BASE PRE in lines 16-20.

124

1 #define CL 64 // Size of a Cache Line (in bytes)

2 #define CS // Total Cache Size (in bytes)

3

4 void cache_bench(unsigned N) {

5 assert(rank < 2 && "Only two MPI processes allowed");

6 // @@ Warms up communication channels

7 for(size_t ci=128, end=CS*4; ci <=end; ci*=2) {

8 // @@ Allocates Data buffers

9 char* msg = new char[max(ci ,CS)*2];

10 char* buff = &msg[max(ci ,CS)];

11 // @@ Performs Measurments

12 for (size_t i=0; i<N; ++i) { test_inv(msg ,buff ,ci); }

13 for (size_t i=0; i<N; ++i) { test_excl(msg ,buff ,ci); }

14 for (size_t i=0; i<N; ++i) { test_mod(msg ,buff ,ci); }

15 delete [] msg;

16 }

17 }

18 inline void comm(char* msg , size_t n) {

19 sync();

20 if (rank ==0) {

21 START_INSTRUMENTATION ();

22 MPI_Send(msg ,n,MPI_BYTE ,1,0,comm);

23 END_INSTRUMENTATION ();

24 } else {

25 START_INSTRUMENTATION ();

26 MPI_Recv(msg ,n,MPI_BYTE ,0,0,comm ,MPI_STATUS_IGNORE);

27 END_INSTRUMENTATION ();

28 }

29 }

30 inline void clean(char* buff , size_t size) {

31 for(long i=0, i<max(CS ,size); i+=CL) { load(buff[i]); }

32 }

33 // Communication from ‘invalid ’ cache

34 inline void test_inv(char* msg ,char* buff ,size_t size) {

35 clean(buff , size);

36 comm(msg , size);

37 }

38 // Communication from warm cache (‘exclusive ’)

39 inline void test_excl(char* msg ,char* buff ,size_t size) {

40 clean(buff , size);

41 for(long i=size -1; i>=0; i-=CL) { load(msg[i]); }

42 comm(msg , size);

43 }

44 // Communication from warm cache (‘modified ’)

45 inline void test_mod(char* msg ,char* buff ,size_t size) {

46 clean(buff , size);

47 for(long i=size -1; i>=0; i-=CL) { write(msg[i]); }

48 comm(msg , size);

49 }

Listing 5.1: MPI Cache Benchmark Code Skeleton for SCN1

We repeated the experiment with two different process allocations in order to test intra-

node and inter-node point-to-point communications. This was obtained by allocating

the two MPI processes respectively on different computing nodes or on the same multi-

processor machine. In both cases, the use of affinity settings ensured the MPI processes

125

1 #define CL 64 // Size of a Cache Line (in bytes)

2 #define CS // Total Cache Size (in bytes)

3

4 // traverse the message buffer

5 inline void traverse(char* msg , size_t size) {

6 START_INSTRUMENTATION ();

7 for(long i=0; i<sizel i+=CL) { load(msg[i]); }

8 END_INSTRUMENTATION ();

9 }

10 // Traverse the msg array when not in cache

11 inline void test_base_inv(char* msg , char* buf , size_t size) {

12 clean(buff , size);

13 traverse(msg , size);

14 }

15 // Traverse the msg array when preloaded into cache

16 inline void test_base_pre(char* msg , char* buf , size_t size) {

17 clean(buff , size);

18 for(long i=size -1; i>=0; i-=CL) { load(msg[i]); }

19 traverse(msg , size);

20 }

21

22 // Communication from ‘invalid ’ cache and access to data

23 inline void test_inv(char* msg ,char* buff ,size_t size) {

24 clean(buff , size);

25 comm(msg , size);

26 traverse(msg , size);

27 }

28 // Communication from warm cache (‘exclusive ’) and access to data

29 inline void test_pre(char* msg ,char* buff ,size_t size) {

30 clean(buff , size);

31 for(long i=size -1; i>=0; i-=CL) { load(msg[i]); }

32 comm(msg , size);

33 traverse(msg , size);

34 }

Listing 5.2: MPI Cache Benchmark Code Skeleton for SCN2

are bound to a specific core of distinct CPUs. This is done in order to take full advantage

of the CPU cache and avoid conflicts which arise when multiple processes share the same

last level cache.

5.2.1.3 Hardware Platforms

We evaluated the code on 2 computing platforms summarized in Table 5.1. The LEO3

cluster system consists of 162 compute nodes (with a total of 1944 cores). All nodes are

connected through an Infiniband 4x QDR high speed interconnect. Each node contains

two Intel Xeon CPU based on the Nehalem architecture where Hyper Threading (HT),

or 2-fold SMT, has been disabled. The VSC2 cluster has been already presented in Sec-

tion 3.4.5. CPU cache layout for the two system is summarized in Table 5.1. These are

both production clusters and the measurements have been taken while the clusters were

126

System name LEO3 VSC2

Max # of cn 162 1.314

Chips per node 2 2

cus per chip 6 8

Core Architecture Intel Xeon X5650 AMD Opteron 6132 HE

Clock Frequency 2.67GHz 2.2GHz

L1 cache 32KB + 32KB 64KB + 64KB

L2 cache 256KB (private) 512KB (private)

L3 cache 12MB (shared by 6) 2x6MB (shared by 4)

SMT Disabled NA

Memory per Node 24GB DDR3 32GB DDR3

Interconnection Infiniband 4x QDR Infiniband 4x QDR

Kernel Version 2.6.32 2.6.32

Open MPI version 1.5.5 1.5.4

SM module OpenMPI default KNEM[111]

Table 5.1: Experimental target architectures.

fully operational, therefore some level of noise is expected to show up in the measure-

ments. In order to reduce it we repeated each measurement 100 times and considered

the median.

5.2.1.4 MPI Communication Protocols

The cache benchmark treats the underlying MPI library as a black box. This allows us to

make considerations which are not biased towards a particular feature of an MPI imple-

mentation. However, MPI libraries are very complex and in order to correctly interpret

the gathered data, implementation details cannot be completely neglected. Every MPI

library exposes several “knobs” which can be used to tune the performance of a par-

ticular application on the underlying target platform, see Chapter 4. One of the most

relevant threshold for point-to-point communication is the so called “eager limit”. The

eager protocol is not standardized by the MPI specification, however it is an implementa-

tion technique utilized by all MPI implementations. Every message exchanged between

peer processes is subject to this protocol. MPI libraries typically use (at least) two

algorithms, eager and rendezvous. When the size of the transmitted message is smaller

than the specified threshold value, the message (together with an MPI header) is eagerly

sent to the receiver. For larger messages the rendezvous protocol is utilized instead, see

Section 2.2.1. The eager protocol is useful when latency is important because it avoids

127

CTS/RTS round-trip overhead. However it requires additional buffering at the receiver

side. Rendezvous protocols are typically used when resource consumption is critical.

For example, the Open MPI library [112] uses multiple protocols, detailed in [113]. In

the case of eager send, the behaviour is the same as described before. The rendezvous

protocol however enables better latency hiding. When the communication is performed

over RDMA-enabled networks (such as an OpenFabrics-based network, e.g., InfiniBand)

the protocol is divided into three phases. In the first phase the RTS message is sent to

the receiver, while the sender is waiting for the CTS message, it starts “registering” the

rest of the large message with the OpenFabrics network stack. Since the registration (or

pinning) is slow the process is pipelined so that registration latency is hidden.

In shared-memory, the rendezvous protocol can use several implementation mechanisms

which have been presented over the last decade because of the increasing relevance of

multi-core systems. Most shared-memory message passing implementations, such as

Nemesis [114] device in MPICH2 and the SM component in Open MPI, depend on

a double buffering memory scheme. An extra memory buffer is pre-allocated as an

exchange zone between processes. Communication between the processes is performed

using the so called copyin/copyout semantics (CICO). The sender process copies from

the message buffer into the shared memory and in the same way the receiver reads it

out and copies into the receiver buffer. In order to reduce latency, the copy happens in a

pipelined way. However approaches exist, such as KNEM [111], which via an OS kernel

extension, allows the direct copy from the sender to the receiver buffer. This mechanism

has the advantage to eliminate the additional memory copy and therefore reduces both

latency and cache pollution.

We perform our measurements using the default settings provided by the chosen MPI

library. We use Open MPI with the default eager limit, which is set by default to 12

KiB for communication over Infiniband and to 4 KiB for intra-node communication, on

both systems. In the LEO3 cluster we used the default shared memory provided by the

Open MPI library which is based on the CICO mechanism. On the VSC2 cluster shared

memory communications are performed using the KNEM kernel extension.

128

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

5e+035e+045e+055e+06

tim
e

MPI_Send

el:12K

cache:12M

64
128
256
512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M
2M
4M
8M

16M
32M

●
IN

V
E

X
C

L
M

O
D

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

50100150200

P
A

P
I_

L2
_D

C
M

el:12K

cache:12M

64
128
256
512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M
2M
4M
8M

16M
32M

●
IN

V
E

X
C

L
M

O
D

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

50100200

P
A

P
I_

L3
_T

C
M

el:12K

cache:12M

64
128
256
512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M
2M
4M
8M

16M
32M

●
IN

V
E

X
C

L
M

O
D

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

1550500

S
N

O
O

P
Q

_R
E

Q
U

E
S

TS
.IN

V
A

LI
D

A
TE

el:12K

cache:12M

64
128
256
512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M
2M
4M
8M

16M
32M

●
IN

V
E

X
C

L
M

O
D

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

5e+035e+045e+055e+06

M
es

sa
ge

 s
iz

e
(in

 b
yt

es
)

MPI_Recv

el:12K

cache:12M

64
128
256
512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M
2M
4M
8M

16M
32M

●
IN

V
E

X
C

L
M

O
D

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

50100150200

M
es

sa
ge

 s
iz

e
(in

 b
yt

es
)

el:12K

cache:12M

64
128
256
512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M
2M
4M
8M

16M
32M

●
IN

V
E

X
C

L
M

O
D

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

50100200

M
es

sa
ge

 s
iz

e
(in

 b
yt

es
)

el:12K

cache:12M

64
128
256
512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M
2M
4M
8M

16M
32M

●
IN

V
E

X
C

L
M

O
D

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

1e+011e+031e+05

M
es

sa
ge

 s
iz

e
(in

 b
yt

es
)

el:12K

cache:12M

64
128
256
512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M
2M
4M
8M

16M
32M

●
IN

V
E

X
C

L
M

O
D

F
ig
u
r
e
5
.1
:

L
E

O
3

In
te

r-
n
o
d

e
–
S
C
N
1

–
S

en
d

/
R

ec
ei

v
e

129

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

5e+035e+045e+055e+06

tim
e

MPI_Send

el:4K

cache:12M

64
128
256
512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M
2M
4M
8M

16M
32M

●
IN

V
E

X
C

L
M

O
D

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

5e+011e+035e+04

P
A

P
I_

L2
_D

C
M

el:4K

cache:12M

64
128
256
512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M
2M
4M
8M

16M
32M

●
IN

V
E

X
C

L
M

O
D

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

1e+021e+041e+06

P
A

P
I_

L3
_T

C
M

el:4K

cache:12M

64
128
256
512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M
2M
4M
8M

16M
32M

●
IN

V
E

X
C

L
M

O
D

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

550500500050000

M
E

M
_L

O
A

D
_R

E
TI

R
E

D
.L

3_
M

IS
S

el:4K

cache:12M

64
128
256
512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M
2M
4M
8M

16M
32M

●
IN

V
E

X
C

L
M

O
D

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

5e+035e+045e+055e+06

M
es

sa
ge

 s
iz

e
(in

 b
yt

es
)

MPI_Recv

el:4K

cache:12M

64
128
256
512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M
2M
4M
8M

16M
32M

●
IN

V
E

X
C

L
M

O
D

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5e+015e+025e+035e+045e+05

M
es

sa
ge

 s
iz

e
(in

 b
yt

es
)

el:4K

cache:12M

64
128
256
512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M
2M
4M
8M

16M
32M

●
IN

V
E

X
C

L
M

O
D

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1e+021e+041e+06
M

es
sa

ge
 s

iz
e

(in
 b

yt
es

)

el:4K

cache:12M

64
128
256
512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M
2M
4M
8M

16M
32M

●
IN

V
E

X
C

L
M

O
D

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

1e+011e+031e+05

M
es

sa
ge

 s
iz

e
(in

 b
yt

es
)

el:4K

cache:12M

64
128
256
512
1K
2K
4K
8K

16K
32K
64K

128K
256K
512K

1M
2M
4M
8M

16M
32M

●
IN

V
E

X
C

L
M

O
D

F
ig
u
r
e
5
.2
:

L
E

O
3

In
tr

a
-n

o
d

e
–
S
C
N
1

–
S

en
d

/
R

ec
ei

v
e

130

5.2.2 Benchmark results

In this section, the data gathered by running our cache benchmark for the LEO3 cluster

architecture is shown and analyzed.

5.2.2.1 Inter-node communication – Infiniband

Figures 5.1 and 5.3 depict the values obtained by the two benchmark scenarios (SCN1

and SCN2) using inter-node communication, over Infiniband.

Figure 5.1 shows several performance counters associated with the MPI Send operation,

in the first line, and MPI Recv, in the second line, using the three cache configurations:

INV, EXCL and MOD. The first column shows the execution time which, in order to be

as precise as possible, is expressed in terms of number of CPU clock cycles. Differ-

ences in terms of the execution are barely noticeable. However, we can note that data

preloading into the cache (as in EXCL and MOD) reduces the amount of L2 data cache

misses (PAPI L2 DCM counter in the second column) up to the eager limit, this is visible

especially at the receiver side where buffering happens. The two routines have a reduced

execution time, which reaches its peak of around 20% for messages of 8KiB, when the

message data is preloaded into the cache.

After the eager threshold is exceeded, we still have better behaviour of L2 cache however

there is an increase of L3 cache misses (PAPI L3 TCM hardware counter) which is similar

for the EXCL and MOD cache states. While the reduced cache misses in L2 cache are

constant for increasing message sizes, L3 cache misses proportionally grow with the

message size. To better understand the reason for this, we show another performance

counter, in the last column of Figure 5.1, which depicts the number of snoop invalidation

requests addressing the CPU. The snoop is a signal used to maintain cache coherency

among processors in a SMP machine [20]. It can be noted that during the rendezvous

protocol, the number of invalidation requests increases considerably if the message data

is preloaded into the cache. This is more noticeable for the receiver as the NiC driver

updates the message buffer in main memory and therefore eventual dirty copies in the

cache need to be invalidated.

The measurements for the second scenario, SCN2, are depicted in Figure 5.3. As pre-

viously stated, this benchmark measures the performance resulting from accessing the

message buffer right after being sent/received. We keep performance values for BASE INV

and BASE PRE as a upper and lower bound for what we expect to be the performance

from this scenario. Interesting is the number of L3 cache misses, in the case of the sender

process, accessing the data after the send operation (INV) causes the same amount of

131

● ● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1e
+0

3
1e

+0
5

1e
+0

7 time

M
P

I_
S

en
d

el
:1

2K

ca
ch

e:
12

M

64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

32
M

● BASE_INV
BASE_PRE
INV
PRE

● ● ● ●
●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

1e
+0

1
1e

+0
3

1e
+0

5

PAPI_L3_TCM

el
:1

2K

ca
ch

e:
12

M

64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

32
M

● BASE_INV
BASE_PRE
INV
PRE

● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

1e
+0

3
1e

+0
5

1e
+0

7

Message size (in bytes)

M
P

I_
R

ec
v

el
:1

2K

ca
ch

e:
12

M

64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

32
M

● BASE_INV
BASE_PRE
INV
PRE

● ● ● ●
●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

1e
+0

1
1e

+0
3

1e
+0

5

Message size (in bytes)

el
:1

2K

ca
ch

e:
12

M

64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

32
M

● BASE_INV
BASE_PRE
INV
PRE

Figure 5.3: LEO3 Inter-node – SCN2 – Cache Pollution

misses measured for BASE INV. This means the send operation does not pollute the ap-

plication cache. However this is not true for messages which are smaller than the eager

limit. In that case, there are no L3 cache misses for both INV and PRE configurations.

Major differences between sender and receiver happen beyond the eager threshold. In

PRE, while at the sender side the amount of cache misses is comparable with the one

measured for the BASE PRE configuration; the receiver behaviour is instead similar to

the BASE INV case. The receive operation invalidates the entire L3 cache (as suggested

by the memory bus snoop operations shown in Figure 5.1) and accessing the received

elements costs as many memory operations as accessing it from a completely invalid

cache (BASE INV). Additionally, loading the data after the receive routine causes more

misses than the BASE INV configuration (which should be the performance upper-bound).

Unfortunately we could not find a reasonable explanation for this. The increased amount

of L3 cache misses has also a significant impact on the execution time which for INV and

PRE is slightly higher than BASE INV. In our opinion, the reason for this is consequence

of the memory pinning operation performed by the MPI library. Also it is worth saying

that the same kind of behaviour has been observed at the sender side when the data

is preloaded in a “modified” state. In that case, the send operation invalidates all the

preloaded cache lines and therefore accessing the buffer data after the communication

132

● ● ● ●

● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

1e
+0

3
1e

+0
5

1e
+0

7 time
M

P
I_

S
en

d

el
:4

K

ca
ch

e:
12

M

64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

32
M

● BASE_INV
BASE_PRE
INV
PRE

● ● ●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

1e
+0

1
1e

+0
3

1e
+0

5

PAPI_L3_TCM

el
:4

K

ca
ch

e:
12

M

64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

32
M

● BASE_INV
BASE_PRE
INV
PRE

● ● ● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

1e
+0

3
1e

+0
5

1e
+0

7

Message size (in bytes)

M
P

I_
R

ec
v

el
:4

K

ca
ch

e:
12

M

64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

32
M

● BASE_INV
BASE_PRE
INV
PRE

●
● ●

● ● ●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

1e
+0

1
1e

+0
3

1e
+0

5

Message size (in bytes)

el
:4

K

ca
ch

e:
12

M

64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

32
M

● BASE_INV
BASE_PRE
INV
PRE

Figure 5.4: LEO3 Intra-node – SCN2 – Cache Pollution

routine is slower.

5.2.2.2 Intra-node Communication – SM

In Figures 5.2 and 5.4, the data obtained for shared memory configuration for the LEO3

cluster is shown.

Figure 5.2 depicts the measurements for SCN1. In this case we observe overall a much

higher number of cache misses since the actual data exchange between the two MPI

processes happens in shared memory. However, for the sender process, we see only small

differences among the three configurations. We show the value of the MEM LOAD RETIR-

ED:L3 MISS performance counter which proves the advantage, i.e., reduced number of

memory load misses, due to fact of having the message buffer available in the cache. At

the receiver side instead, we observe a smaller number of both L2 and L3 cache misses

for messages up to the last level cache size. Overall, the performance of MPI routines is

improved when data is preloaded into the cache and the gain reaches its peak, around

25%, before the cache size is exceeded. As already stated, in this machine shared memory

communication is performed using a CICO mechanism. Because the transfer between

133

sender and receiver is done using a shared buffer, which for the Open MPI library is of

32 KiB, only a portion of the data cache gets polluted during the transfer.

This is visible in Figure 5.4. Differently from what observed for inter-node communica-

tions, in shared memory the message buffer is fully loaded into the cache for both INV

and PRE configurations. However while the amount of L3 cache misses for PRE, BASE PRE

and INV is almost the same up to 4 MiB, at 8 MiB we start seeing a gap between the

three configurations. The amount of cache pollution is higher at the sender side since

the difference in terms of cache misses between PRE and BASE PRE is noticeably higher

than the receiver side. This is unexpected since the data transfer from the user buffer to

the shared memory segment should be implemented using non temporal move instruc-

tions (e.g., MOVNTDQ), which avoids the target address to be loaded into the CPU cache.

However, this penalty happens only for message sizes which are larger than half of the

last level cache size.

5.2.3 Considerations and Optimization Guidelines

From the output of the MPI cache benchmark we derive, in this section, a set of intu-

itive rules to find a good placement for send/receive communication statements which

better exploit the properties of the CPU caches. We divide our consideration into three

subsections applying to specific ranges of the transmitted data, i.e., (i) from 1 byte up

to the eager limit, (ii) from the eager threshold up to the last level cache size and (iii)

beyond the available cache size.

5.2.3.1 From 1 Byte to the Eager Threshold

When the eager protocol is utilized, messages are transfered to the NiC using a memcpy()

operation which has the side-effect of loading the content of the send buffer into the CPU

cache. Therefore if the transmitted data is accessed right after the send operation, the

data will be still available in one of the CPU caches. Additionally the memcpy() routine

also benefits from having the source and target buffers preloaded into the cache. How-

ever, the input program could present dependencies (e.g., a read operation right after a

receive statement) which do not allow this transformation to be applied. In such situ-

ation, the sent/received data should be accessed immediately after the communication

routines or as late as before the message buffer content gets eliminated out from the

caches.

134

For messages up to the eager limit, it is always preferable to per-

form the communication when the message data is cached. Re-

ceived data should be immediately accessed.

5.2.3.2 From the Eager Limit to the Last Level Cache Size

We now consider the second message range, from the eager limit up to the cache size. In

this range intra-node and inter-node communication differ and we treat them separately.

As far as inter-node send operations are concerned, we observe an increase in the number

of L3 cache misses which is proportional to the message size in Figure 5.1. However the

overall number of cache misses is small thus the execution time is not affected by it.

More interesting effects can be seen in Figure 5.3. At the sender side, there is no

cache pollution caused by the send operation. Therefore we expect no changes in the

application performance from changing send statements placement.

However, things change dramatically at the receiver side. The receive operation invali-

dates all the preloaded cache lines in the case the message data was preloaded into the

cache. Additionally, because of the memory pinning, utilized by the rendezvous protocol

in Open MPI, accessing the received data right after the receive statement has a negative

impact on performance. A similar behaviour was also observed for the sender process

when the data is preloaded in a “modified” state as discussed in Section 5.2.2.2.

Inter-node: Avoid to access the transfered data immediately after

the communication routines. If possible, perform all the computa-

tions on the message buffer before issuing a send operation. At the

receiver side, delay the access to the receiver buffer by overlapping

it with other computations.

For shared memory communication there is, in Figure 5.2, a reduction of L2 and L3

cache misses which is proportional to the size of the message being transferred. This

has positive effects on the execution time which reaches a maximum improvement, of

around 25%, both for sender and receiver processes, for 8 MiB messages. For shared

memory communications, both the send and the receive routines populate the cache

with the content of the message buffer and in the case the data is preloaded before

the communication routine, the cache lines will not be invalidated. However, when the

CICO mechanism is utilized, cache pollution may occur for large messages.

Intra-node: Access the message data after the communication

statements, if the data is not already loaded into the cache, when

135

1 for(unsigned iter =0; iter <MAX_ITERS; ++iter) {

2

3 MPI_Sendrecv (&A[0][0] , COLS , MPI_DOUBLE , bottom , 0,

4 &A[ROWS -1][0] , COLS , MPI_DOUBLE , top , 0,

5 MPI_COMM_WORLD , MPI_STATUS_IGNORE);

6

7 for(unsigned i = 0; i<ROWS -1; ++i)

8 for(unsigned j = 0; j<COLS -1; ++j)

9 tmp[i][j]=A[i][j]+(A[i+1][j]+A[i][j+1]) /4;

10

11 double ** ttemp=A; A=tmp; tmp=ttemp; // swap arrays

12 }

Listing 5.3: 3-point stencil code

the message size is smaller than LAST LEV EL CACHE SIZE/2

bytes. If the data is already in the cache, perform all the compu-

tations before invoking any communication routine.

5.2.4 Beyond the Last Level Cache Size

Beyond the cache size the behaviour of our benchmarks tend to converge, therefore no

meaningful optimization rule can be defined. However, large messages can be divided

into smaller chucks using a well known MPI code transformation referred in literature

as software pipelining or message strip mining [98]. If the splitting size is chosen accord-

ingly, the cache effects can be enabled.

5.2.5 A Case Study: 3-point Stencil

Following the optimization guidelines derived in the previous section, we manually tuned

a 3-point stencil code which encodes a pattern commonly utilized in many HPC codes. A

common way of parallelizing such stencil operation in MPI is shown in Listing 5.3. The

code has a communication statement at the beginning of the loop which exchanges the

first and last row of a 2-dimensional matrix which is updated by the following stencil

computation. It is worth noting that while the receive operation must be performed

before the last iteration of the i loop, the send operation has no dependencies and can

be therefore issued at any program point, but before the swap procedure (line 11). We

derived two versions of the stencil code depicted respectively in Listings 5.4 and 5.5.

Based on the our observations, the code has a poor cache behaviour as the array elements

being sent, which are in a “modified” state, are accessed right after the communication

statement, therefore after being flushed out from the CPU cache (when the rendezvous

protocol is utilized). In order to optimize this aspect we can rewrite the code by moving

136

1 for(unsigned iter =0; iter <MAX_ITERS; ++iter) {

2

3 for(unsigned j = 0; j<COLS -1; ++j)

4 tmp [0][j]=A[0][j]+(A[1][j]+A[0][j+1]) /4;

5

6 MPI_Sendrecv (&A[0][0] , COLS , MPI_DOUBLE , top , 0,

7 &A[ROWS -1][0] , COLS , MPI_DOUBLE , bottom , 0,

8 MPI_COMM_WORLD , MPI_STATUS_IGNORE);

9

10 for(unsigned i = 1; i<ROWS -1; ++i)

11 for(unsigned j = 0; j<COLS -1; ++j)

12 tmp[i][j]=A[i][j]+(A[i+1][j]+A[i][j+1]) /4;

13

14 double ** ttemp=A; A=tmp; tmp=ttemp; // swap arrays

15 }

Listing 5.4: Tuned 3-points stencil code (OPT1)

1 for(unsigned iter =0; iter <MAX_ITERS; ++iter) {

2

3 for(long i = ROWS -3; i>=0; --i)

4 for(long j = COLS -2; j>=0; --j)

5 tmp[i][j] = A[i][j] + 1/4*(A[i+1][j]+A[i][j+1]);

6

7 MPI_Sendrecv (&A[0][0] , COLS , MPI_DOUBLE , top , 0,

8 &A[ROWS -1][0] , COLS , MPI_DOUBLE , bottom , 0,

9 MPI_COMM_WORLD , MPI_STATUS_IGNORE);

10

11 for(unsigned j = 0; j<COLS -1; ++j)

12 tmp[ROWS -2][j]=A[ROWS -2][j]+

13 (A[ROWS -1][j]+A[ROWS -2][j+1]) /4;

14

15 double ** ttemp=A; A=tmp; tmp=ttemp; // swap arrays

16 }

Listing 5.5: Tuned 3-points stencil code (OPT2)

the communication right after the first iteration of the loop. This has two advantages: (i)

it guarantees that the matrix rows which are going to be sent/received are freshly loaded

into the cache; (ii) it avoids to access the received data right after the communication

routine. The transformed code is depicted in Listing 5.4, we refer to this code version

as OPT1.

The OPT1 code version can however be further improved for the receive operation. As

a matter of fact, the received data is not immediately consumed but accessed only in

the last iteration of the stencil loop. This may not be optimal for messages which are

smaller than the eager limit. For optimizing this aspect we can derive a second code

version which utilizes the received data immediately after the data is available in the

receiver buffer. This is obtained by reversing the order of execution of the stencil code.

We traverse the 2-dimensional matrix from ROW-3 backwards until the first row. In this

137

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

OPT1
OPT2

Exchanged message size (in bytes)

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

(in
 %

)

40
60

80
10

0

(a) Intra-node

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

OPT1
OPT2

Exchanged message size (in bytes)

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

(in
 %

)

40
60

80
10

0

(b) Inter-node

Figure 5.5: LEO3 – Evaluation of tuned 3-point stencil application code

way we make sure to have the send data already into the cache. We then perform the

communication and successively complete the stencil by updating the last row. We refer

to this code version as OPT2, the code is depicted in Listing 5.5. It is worth noting that

in this version, the receiver buffer may not be loaded into the cache before the message

exchange if the entire problem does not fit into the cache.

5.2.5.1 Evaluation

We evaluated the three versions of the stencil code on the two clusters described in

Table 5.1. Each version has been executed multiple times with different problem sizes

using two different process allocations, i.e. intra-node and inter-node. We ran the stencil

code using two MPI processes to correlate the outcome with the results gathered by the

cache benchmark. We measured the execution time of each code versions and used the

value of the median obtained from 100 repetitions of the program.

Figure 5.5 shows the execution time of code versions OPT1 and OPT2 relative to the base-

line solution, i.e.,5.3 for the LEO3 cluster. The x axis refers to the size of the message (in

bytes) being exchanged by the stencil computation in every iteration. As expected, the

OPT2 version has better performance for small message sizes reaching, for shared memory,

138

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

OPT1
OPT2

Exchanged message size (in bytes)

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

(in
 %

)

40
60

80
10

0

(a) Intra-node

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

OPT1
OPT2

Exchanged message size (in bytes)

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

(in
 %

)

40
60

80
10

0

(b) Inter-node

Figure 5.6: VSC2 – Evaluation of tuned 3-point stencil application code

a performance improvement of around 20% for 256 bytes messages. For larger messages

OPT1 has a better performance reducing the execution time of the stencil code by 40%.

For larger message, the advantage becomes smaller as the communication/computation

ratio diminishes.

Figure 5.6 shows the results for the VSC2 cluster for both intra- and inter-node commu-

nications. Also on this machine, OPT2 has an advantage over the original stencil code for

very small message sizes. However, for larger messages this version is noticeable slower.

The OPT1 version, on the contrary, is faster for both inter- and intra-node communica-

tion. However, the measured performance improvement reaches approximatively 10%.

We believe the poor performance of the OPT2 version is due to the reversed access of

array elements which may inhibit the CPU data pre-fetcher from correctly determining

the data access pattern.

We showed the performance improvements a program can expect when communication

statements are correctly placed. Compilers usually apply similar optimizations to se-

quential codes. In the next Section we propose a method to consider the semantics of

communication statements by a compiler. Because this representation is based on a well

established framework, i.e., the PM, existing analyses (like data dependence analysis)

can be exploited to improve the behaviour of message passing programs.

139

1 for(unsigned iter =0; iter <NUM_ITERS; iter ++) {

2 S0 MPI_Sendrecv (&A[ROWS -2][0] , COLS , MPI_DOUBLE , top , 0,

3 &A[0][0] , COLS , MPI_DOUBLE , bottom , 0, MPI_COMM_WORLD , &s);

4 S1 MPI_Sendrecv (&A[1][0] , COLS , MPI_DOUBLE , bottom , 1,

5 &A[ROWS -1][0] , COLS , MPI_DOUBLE , top , 1, MPI_COMM_WORLD , &s);

6 for(unsigned i = 1; i<ROWS -1; ++i)

7 for(unsigned j = 1; j<COLS -1; ++j)

8 S2 tmp[i][j] = A[i][j] + 1/4*(A[i+1][j]+A[i-1][j]+A[i][j-1]+A[i][j+1]);

9 double ** ttemp=A; A=tmp; tmp=ttemp; // swap arrays

10 }

Listing 5.6: 5-points stencil code

5.3 Exact Dependence Analysis for Increased Communi-

cation Overlap

In the previous section we introduced a technique which improves cache behaviour for

particular sizes of the transmitted data buffer. However, beyond the size of the cache,

and in general for large messages, the rule of thumb is to use non-blocking communication

routines and use as much as possible computations to hide the communication overhead.

In this section we leverage the result of exact static dependence analysis, produced by the

PM, to increase the opportunities for hiding communication costs for existing message

passing programs.

5.3.1 Motivation and State of the Art

MPI programs often exhibit recurring code patterns which are direct consequences of

the programming paradigm. For example, many programs read the data right after

receiving it from a peer process by iterating over the received array elements. Similarly,

data is usually sent right after the sender process finishes the computation that writes

to array elements being transmitted. A relevant example is represented by a standard

parallelization of a 5-point stencil code depicted in Listing 5.6. Stencil codes are very

important in computational sciences and we show here a common way to parallelize

such a code [115]. We have communication statements at the beginning of the loop,

statements S0 and S1, which exchange data being computed in the previous iteration.

Right after the communication is performed, data is updated by a computational loop,

statement S2. In both case the compiler determines a true, or RAW (see Section 2.3.3),

data dependence on the elements of array A from statement S0 to S2 and between S1

and S2.

140

S0 WAW(1)

S2

RAW(0)

S1 WAW(1)

RAW(0)

WAR(1)

WAR(1)

WAW(1)

(a) Statement-based DDG

S0 WAW(1)

S2

RAW(0)
if: 1 ≤ j ≤ COLS-2 ^

i = 1

S1 WAW(1)

RAW(0)
if: 1 ≤ j ≤ COLS-2 ^

i = ROWS-2

WAR(1)
if: 1 ≤ j ≤ COLS-2 ^

i = 1

WAR(1)
if: 1 ≤ j ≤ COLS-2 ^

i = ROWS-2

WAW(1)

(b) Instance-based DDG

Figure 5.7: DDG for 5-points stencil code in Listing 5.6

Traditional compiler analyses usually derive dependence information on a per-statement

basis. For the 5-point stencil code in Listing 5.6 the DDG built by classical data de-

pendence analysis [116] is represented in Figure 5.7(a). We neglect, in this analysis,

the swap statements in line 10 since it introduces data dependencies between successive

iterations of the iter loop which are irrelevant since our focus is in maximizing the

overlap within the loop body.

Each dependence type is associated with a distance vector represented in brackets which,

in the case of loop-independent dependencies, is zero. We see that there are two, loop-

independent, RAW dependencies from statement S0 to S2 and between S1 and S2,

respectively. This is caused by the receive operation (implicit in the MPI Sendrecv

routine) writing elements of the array A. More precisely, the receive operation in S0

writes A’s array elements in the range A[0][0 : COLS). Same elements which are going

to be read later in the first iteration of the stencil loop – and thus Read-After-Write –

by statement S2. Although correct,these results are too conservative and coarse grained

inhibiting any kind of automatic optimization. As a matter of fact, every dependence in

the DDG exists for all the dynamic executions, or instances, of interested statements,

however this is not the case. For example the dependence between S0 and S2 only

applies to the first iteration of the stencil loop, all the remaining dynamic executions of

statement S2 are not dependent on S0. Similar considerations can be done for statement

S1, for which the data dependence applies solely to the last iteration of the stencil loop.

The PM enables novel data analysis and transformation techniques by representing

dependencies at the finest detail by an instance-based fashion. This technique is also

referred to as exact data dependence analysis [101]. This allow a compiler to relax some

of the constraints and apply more aggressive transformations at the array element level

141

which would not be supported by a more coarse level of analysis at the object level. An

example of the dependence polyhedron for the stencil code is shown in Figure 5.7(b).

The graph contains the exact same key dependencies but it carries more information for

each of them. An expression predicate states which subset of the statement instances

are affected by the dependence. When the predicate is missing, then the dependence

applies to every instance of that couple of statements. For example, the non loop-carried

RAW dependence between statements S0 and S2 exists for all the instances of S2 where

iterator i is 1 and j is between 1 and COLS-2 inclusive. This means that the remaining

instance of the stencil loop are not dependent on the communication statements and

therefore can be used to hide communication costs.

5.3.2 MPI Semantics in the PM

In this section we describe how the semantics of many MPI routines can be described

within the PM so that code regions containing MPI statements can be understood by

the compiler as standard SCoPs. The semantics of MPI functions is fully specified in

the MPI standard [3] and, in many cases, the effects of communication routines on the

input program can be described within the limitations imposed by the PM.

We divide this section into 2 parts respectively considering: (i) point-to-point and (ii)

collective communications. While presenting point-to-point and collective routines, we

assume, the data-type to be of MPI BYTE size. The model can be extended to take into

account datatypes, but this aspect is not dealt with in this work.

5.3.2.1 Point-to-Point Communication

In MPI the semantics of point-to-point communications are slightly different from the

one presented in Section 2.2.1. In MPI, channels are not explicit. However the concept

of communication channel (see Definition 15) is implicit within communication routines.

In MPI, a message channel can be identified by the quadruple (SRC,DEST,TAG,COMM).

Where SRC and DEST are the ranks of respectively the sender and the receiver process;

the TAG identifies one of the available channels and the COMM defines the context on

which this communication occurs. Communications between different contexts are not

allowed. Channels exist within a unique communication context, therefore the TAG is

used only to refer to channels within the current context, i.e., COMM. Also the rank of

a process depends on the context, meaning that a process can have assigned a different

rank depending on the COMM object on which the channel operates. MPI guarantees that

the order of messages transmitted on the same channel is preserved at the receiver side.

142

We recall the signature of MPI’s send operation, see Appendix A for a more detailed

description:

MPI_Send(buff,n,dtype,dest,tag,comm)

The function takes an array starting from buff address and sends to the destination

process, identified with dest , a number of n elements. The type, and thus the size of

each element being sent, is given by the dtype variable. As previously stated, we assume

for simplicity the type to be MPI BYTE. The semantics of the MPI Send statement can be

represented as follows:

USE(buff [i]) : ∀i | 0 ≤ i < n

This is equivalent to a FOR statement accessing the first n elements of an array buff ,

which perfectly fits within the constraints of the PM. Note that this is a simplification of

the actual behaviour of MPI implementation. An MPI library could decide to traverse

the elements of the array with a different ordering. In our model an ordering is not

fixed, the equation states that after the send operation n elements of the buff array will

be accessed in read mode. No dependencies are imposed between those accesses.

Similar consideration can be done for the MPI Recv routine. Its signature is defined as

follows:

MPI_Recv(buff,n,dtype,src,tag,comm,stat)

In the PM, a receive operation can be represented as a write operation (or definition)

to the first n elements of the buff array, additionally the update of stat object can be

captured as follows:

DEF(buff [i]) : ∀i | 0 ≤ i < n; DEF(stat [0])

It is worth noting that we do not capture the uses of the n, dtype, src and tag variables

since the C language implements a pass-by-value semantics for function arguments.

5.3.2.2 Capturing Communication Channel Semantics

While the introduced equations describe the input/output behaviour of the two basic

MPI routines, they miss to capture the semantics of the underlying communication

channel. Send and receive routines are not pure stateless functions, the MPI standard

guarantees that consecutive messages being sent to the same destination process, through

the same communicator, using the same message tag will be delivered in the same order

143

1 MPI_Send (&a, 2, MPI_INT , 1, 0, comm); S1

2 MPI_Send (&b, 1, MPI_DOUBLE , 1, 0, comm); S2

3 ...

4 MPI_Recv (&a, 2, MPI_INT , 0, 0, comm , s); S3

5 MPI_Recv (&b, 1, MPI_DOUBLE , 0, 0, comm , s+1); S4

Listing 5.7: Example demonstrating MPI’s channel semantics

{〈Send, r, t1, c, s1〉} u {〈Send, r, t2, c, s2〉 }
t2 ∈ Const t2 ∈ Var

t1 ∈ Const
if t1 uc t2 = > ⇒

{〈Send, r, t1, c, s1〉, 〈Send, r, t2, c, s2〉}
else ⇒ {〈Send, r, t1 uc t2, c, s1 ∪ s2〉}

{〈Send, r,⊥, c, s1 ∪ s2〉}

t1 ∈ Var {〈Send, r,⊥, c, s1 ∪ s2〉} {〈Send, r, t1 uv t2, c, s1 ∪ s2〉}

Table 5.2: Definition of meet operator, i.e., u, for channel analysis.

of issuing. The triplet (RANK,TAG,COMM) can be used to refer to an MPI communication

channel given a process execution context. An example of the importance of statically

capturing channel semantics is depicted in Listing 5.7. MPI guarantees that the message

sent from statement S1 is received by S3 and, at the same way, S2 and S4 match. Any

static compiler analysis or transformations should keep the semantics unchanged.

Unfortunately, this important dependence is not correctly captured by our PM repre-

sentation since there is no explicit dependence between statements S1 and S2 which

states that the receiver is expecting the messages issued with a specific ordering. This is

solved by explicitly adding an artificial data dependence (on a ghost variable) between

statements depending on the semantics of the underlying communication channel. For

example consider the message passing code in Listing 5.7. The two statements S1 and

S2 have a channel dependence. In the PM representation we can state this dependence

by introducing a use immediately followed by a definition of a new variable associated

to the communication channel:

DS1 := USE(buff [i]) : ∀i | 0 ≤ i < n; USE(chn0) ≺ DEF(chn0)

A similar representation is used for statement S2 leading to RAW dependence on variable

chn0 which the transformation module cannot automatically break. A transformation

who wants to split and rearrange the schedules of these two statements would need to

manually handle the RAW dependence in order to maintain the channel semantics.

Determining MPI statements depending on same channel is trivial when the value of

the destination/source rank, message tag and communicator are compile time constants.

However, the problem becomes more complex, in the general case, when variables are

144

utilized and the control flow of the program is not trivial (e.g., no control flow state-

ments within the code). This problem can be partially resolved by employing constant

propagation to replace constant variables with their assigned value. However, a specific

analysis is required to capture dependencies among MPI communication statements due

to the channel semantics. We achieve this by using classical data-flow analysis tech-

niques [102] presented in Appendix D. We derive an analysis which states, for each MPI

statement, whether the statement has an additional dependence on the communication

channel. When this dependence exists, the identifiers of directly dependent statements

are returned by the analysis. Because we are interested in capturing such channel depen-

dencies within SCoPs boundaries, the analysis is limited to those code regions, therefore

there is no need for inter-procedural dataflow analysis as functions have been already

inlined before the SCoP analysis.

At a specific program point, the information of dependent communication statements

are propagated using a dataflow variable (see Appendix D) Channel which is a set of

tuples defined as follows:

Channel = 〈x, rank, tag, comm,DepStmts〉 where :

x ∈ {Send,Recv}
rank, tag, comm ∈ {⊥, c ∈ Const, v ∈ Var}

DepStmts ⊂ N

The value of the destination/source rank, message tag, and comm can be either a

compile constant, c, a program variable, v, or the ⊥ symbol used to indicate that the

corresponding rank, tag and comm is not known and can therefore be an arbitrary

value. The DepStmts set stores the identifiers of MPI communication statements which

are reaching at the entry of the CFG block (see Definition 35) containing a particular

communication statement. Communication statements are identified by the enclosing

CFG block identifier. Since we work with a non-separable dataflow framework (see

Appendix D), the CFG is built in such a way that blocks can only contain one statement.

We also assume, as pre-condition, the availability of alias analysis [102] and therefore

the existence of an isAliasOf (a, b) predicate which states whether variable a is an alias

for variable b. The dataflow problem for the channel analysis is defined on the power-set

of the Channel set (i.e., 2Channel) and the meet (or confluence), u, operator is defined

as follows:

{〈Send, rs, ts, cs, s1〉} u {〈Recv, rr, tr, cr, s2〉} = {〈Send, rs, ts, cs, s1, 〉, 〈Recv, rr, tr, cr, s2〉}

145

Moreover, the outcome of the confluence operator applied to two send operations tar-

geting the same rank and communicator, but using different message tags, is depicted

in Table 5.2. Operators uc and uv are defined as follows:

c1 uc c2 =

c1 if c1 = c2

⊥ if c1 = ⊥ ∨ c2 = ⊥
> otherwise

v1 uv v2 =

{
v1 if v1 = v2 ∨ isAliasOf (v1, v2)

⊥ otherwise

The uc and uv operators determine whether the constants or variables used to address

a channel refer to the same value (or channel instance). In that case the constant value,

or the variable addressing the channel is returned. When instead we can statically

determine that the values being merged are different, the > symbol is returned. In the

cases where a decision cannot be made statically, the ⊥ symbol is used. For example

two variables which are not in an aliasing relation may or may not refer to the same

communication channel, therefore a safe assumption must be taken stating that there

might be a channel dependence between the two statements. Note that since ⊥ is the

greatest lower bound (glb) of the lattice corresponding to this problem (see Appendix D).

In Table 5.2 the ⊥ value has been neglected as input value for t1 and t2 since the resulting

value of the merge operation is always 〈Send, r,⊥, c, s1 ∪ s2〉. The same merge operator

is utilized to aggregate rank and comm values.

For simplicity, let us define a boolean predicate, collide(ch1 , ch2), which given two tuples

ch1, ch2 ∈ Channel returns true when the two channels may refer to the same channel:

collide(〈Send, r1, t1, c1, 〉, 〈Send, r2, t2, c2, 〉) =

true if r1 u r2 ∈ {⊥, r1},

t1 u t2 ∈ {⊥, t1},
c1 u c2 ∈ {⊥, c1},

false otherwise

146

The four component of the non-separable analysis framework, as described in Ap-

pendix D, are defined as follows:

ConstGenn = ∅

DepGenn(x) =

{〈Send, r u r1, t u t2, c u c1, {n} ∪ s1〉} if n is send(. . . , r, t, c)∧
∃ ch := 〈Send, r1, t1, c1, s1〉 ∈ x
collide(ch, 〈Send, r, t, c, 〉)

{〈Send, r, t, c, {n}〉} if n is send(. . . , r, t, c)∧
∀ ch := 〈Send, r1, t1, c1, s1〉 ∈ x
¬ collide(ch, 〈Send, r, t, c, 〉)

∅ otherwise

ConstKilln(x) = ∅

DepKilln(x) =

{〈Send, r1, t1, c1, s1〉} if n is send(. . . , r, t, c)∧

∃ ch := 〈Send, r1, t1, c1, s1〉 ∈ x,
collide(ch, 〈Send, r, t, c, 〉)

∅ otherwise

In order to explain the equations, we present an example, in Listing 5.8. The CFG

annotated with the value of the dataflow variables generated by the channel analysis is

depicted in Figure 5.8. Dataflow values are generated (thanks to the DepGenn com-

ponent), for statements S1, S2, S3, S4, S5 and S6. At the meet point of the CFG (in

line 9) the merge operator, i.e., u is used to merge the values coming from the two

preceding blocks. The channel dependencies are listed as the last component of the

generated tuples. Statement S2 is dependent on S1 on the send operation. At the same

way, there is a dependence (on a recv) from statement S4 to S5. At the merge point

of the CFG a ⊥ value is generated since a u 1 = ⊥. Note that this only applies for the

channel with tag value 0. Next send statement, S7, is then recognized to have a channel

dependence with statement S3 since both operations targets the same destination and

use same tag and comm values. It is worth noting that the analysis does not understand

the parallel execution of the code, meaning that an ordering is enforced also for commu-

nications executing in parallel by distinct processes. This has the effect of generating

more dependences than needed which however are semantically correct.

5.3.2.3 Collective Routines

Until now, collective routines have been largely overlooked for compiler optimizations.

However they are widely used in production codes because of their performance. We

describe how the semantics of a subset of the collective routines present in MPI can be

147

1 if (rank ==0) {

2 MPI_Send (&a, 2, MPI_INT , 1, 0, c);

3 MPI_Send (&b, 1, MPI_DOUBLE , 1, 0, c);

4 MPI_Send (&a, 1, MPI_INT , 2, 1, c);

5 } else if (rank ==1) {

6 MPI_Recv (&a, 2, MPI_INT , 0, 0, c);

7 MPI_Recv (&b, 1, MPI_DOUBLE , 0, 0, c);

8 MPI_Send (&a, 1, MPI_INT , a, 0, c);

9 }

10 if (rank ==0)

11 MPI_Send (&b, 1, MPI_DOUBLE , 2, 1, c);

12 ...

Listing 5.8: Example demonstrating MPI’s channel semantics

T: rank == 0

S1: MPI_Send(&a,2,MPI_INT,1,0,c)

S2: MPI_Send(&b,1,MPI_DOUBLE,1,0,c)

S3: MPI_Send(&a,1,MPI_INT,2,1,c)

S4: MPI_Recv(&a,2,MPI_INT,0,0,c)

S5: MPI_Recv(&b,1,MPI_DOUBLE,0,0,c)

S6: MPI_Send(&a,1,MPI_INT,a,0,c)

{ <S, 1, 0, c, { S1 } >}

{ <S, 1, 0, c, { S1,S2 } >}

{ }

{ <R, 0, 0, c, { S4 } >}

{ <R, 0, 0, c, { S4,S5 } >}

{ <S, a, 0, c, { S6 } >,
 <R, 0, 0, c, { S4,S5 } > }

S7: MPI_Send(&b, 1, MPI_DOUBLE, 2, 1, c)

true false

{ <S, 1, 0, c, { S1,S2 } >,
<S, 2, 1, c, { S3 } > }

{ <S, 2, 1, c, { S3,S7 } > , … }

T: rank == 0

true
 { <S ,⊥, 0, c, { S1,S2,S6 }>, <S, 2, 1, c, {S3}>, <R, 0, 0, c, { S4,S5 }> }

Figure 5.8: CFG of Listing 5.8 with annotated, at each CFG block’s exit point, the
values of the dataflow variables generated by the channel analysis.

described in the PM highlighting the limitations of the approach. Similar to what we

did for the point-to-point routines, we consider message types of bytes.

It is important to note that compared to collective routines described in Section 2.2.2, in

the MPI standard, these operations work within a communication context (or communi-

cator). As described in Appendix A, all processes belonging to the same communication

148

1 if (rank ==0) {

2 for (unsigned i=0; i<N; ++i) { def(buff[i]); } S1

3 MPI_Bcast(buff ,N,MPI_BYTE ,0,comm); S2

4 } else {

5 MPI_Bcast(buff ,N,MPI_BYTE ,0,comm); S3

6 }

7 ...

8 for (unsigned i=0; i<N; ++i) { use(buff[i]); } S4

Listing 5.9: Example of MPI code using broadcast operation

context must participate to a collective routine, and moreover, the operations are al-

ways blocking. However, for the sake of this thesis, we largely consider programs using

a unique communication context (i.e., MPI COMM WORLD). The semantics of the collective

operations is therefore the same as described in Section 2.2.2.

The bcast operation (see Definition 23) is a 1-to-N collective routine where a root process

sends to all other participating processes a number of data elements. Its signature

follows:

MPI_Bcast(buff,n,dtype,root,comm)

The main issue with most of MPI’s collective routines is that their behaviour depend

on the process id (or rank) value which is known only at runtime. For example, in

the broadcast operation, the process whose rank is equal to root reads n consecutive

elements of array buff . All the remaining processes, i.e., P − proot, write the same range

of elements in the buff array (see Definition 23). In general, the bcast’s semantics can

be encoded in the PM as follows:

USE(buff [i]) : ∀i | 0 ≤ i < n ∧ rank = root

DEF(buff [i]) : ∀i | 0 ≤ i < n ∧ rank 6= root

In order for the formula to be evaluated at compile time, we assume that a variable rank,

containing the runtime value of the process identifier (within the communicator comm),

is available at the entry point of the SCoP. If this is not the case a call to MPI Comm rank

routine shall be automatically inserted by the compiler. It is also important that eventual

control flow statements in the SCoP, which depend on the process rank value, are based

on the same rank variable used to describe semantics of the MPI routines. Also aliases

to that variable must be rewritten in terms of the rank variable. We assume for now

that this is true for the codes we are interested in. A compiler pass which is designed

to deal with such problem, called rank propagation is presented later in Section 5.4.3.1.

149

Let us consider the code in Listing 5.9. Process rank := 0 initializes the buff array

before broadcasting the value to its peers. By intersecting of the iteration domains

to the access functions, A, associated to each statement of the SCoP, we obtain the

following equations:

AS1 ={DEF(buff [i]) : i | 0 ≤ i < N ∧ rank = 0}
AS2 ={USE(buff [i]) : i | 0 ≤ i < N ∧ rank = 0 ∧ rank = 0};

{DEF(buff [i]) : i | 0 ≤ i < N ∧ rank 6= 0 ∧ rank = 0}
={USE(buff [i]) : i | 0 ≤ i < N ∧ rank = 0}

AS3 ={USE(buff [i]) : i | 0 ≤ i < N ∧ rank = 0 ∧ rank 6= 0};
{DEF(buff [i]) : i | 0 ≤ i < N ∧ rank 6= 0 ∧ rank 6= 0}

={DEF(buff [i]) : i | 0 ≤ i < N ∧ rank 6= 0}
AS4 ={USE(buff [i]) : i | 0 ≤ i < N}

After the conversion, the analysis modules which computes data dependencies based

on the PM representation can determine that a RAW data dependence exists between

statements S1 and S4, but no RAW dependence exists between S2 and S4 (since both

operations use of the buff array). This means that the transformation modules of a

compiler can allow the minimization of the dependence distance by for example fusing

S1 and S4 as shown in Listing 5.10.

It is worth noting that the transformation would not be valid if the variable used to

drive the control flow of the program is not the same utilized in the PM representation.

This knowledge allows us to statically remove the write access to the buff array (by

S1) within the rank = 0 CFG branch. For most MPI programs we can rely on the

fact that the variable used to store the current process rank is consistent within the

program. However, in the general case aliasing can occur and known dataflow analysis

techniques must be employed to rewrite all control flow expressions which takes into

account the process rank on the base of the same rank variable. Such analysis is presented

in Section 5.4.3.1.

scatter (see Definition 24) and gather (see Definition 25) routines have respectively a

1-to-N and N-to-1 collective semantics. Unlike the bcast operation, a scatter splits the

given buffer into chunks of equal size and distributes chunk p to process rank p. The

signature of MPI Scatter is the following:

MPI_Scatter(sbuff,scount,stype,rbuff,rcount,rtype,root,comm)

150

1 if (rank ==0) {

2 for (unsigned i=0; i<N; ++i) {

3 def(buff[i]); S1

4 use(buff[i]); S4

5 }

6 MPI_Bcast(buff ,N,MPI_BYTE ,0,comm); S2

7 } else {

8 MPI_Bcast(buff ,N,MPI_BYTE ,0,comm); S3

9 for (unsigned i=0; i<N; ++i) { use(buff[i]); } S4

10 }

Listing 5.10: Optimized MPI code with minimized distance between RAW

dependencies

Similar to the bcast operation, the behavior of this routine depends on the value of the

process rank invoking the operation. The root process reads scount ∗ nprocs element

from the sbuf array. For all (including the root), rcount elements are written to the rbuff

array. Note that the behaviour of MPI’s scatter routine is slightly different from the one

described in Definition 24. In fact, in MPI two arrays are provided as send and receive

buffers and the root process writes element to the receive buffer (i.e., rbuff). In the PM

the access functions for this operation is represented with the following constraints:

USE(sbuff [p][i]) : ∀ p, i | 0 ≤ p < np ∧ 0 ≤ i < scount ∧ rank = root

DEF(rbuff [i]) : ∀ i | 0 ≤ i < rcount

Beside rank, the polyhedral equations require the existence of another variable which

must be available at compile time, np := |P| which represents the number of processes

belonging to the communicator object comm utilized by the analyzed collective opera-

tion. Similar to the rank variable, a call to MPI Comm size shall be inserted at the entry

point of a SCoP to obtain a reference to its value.

One additional step is required to guarantee that analysis and transformations on such

representation are semantically correct. The scatter/gather functions accept the sbuff

array as a one dimensional array but internally we use a 2-dimensional accessing scheme

to address its elements. This might be non consistent with the way the buffer is utilized

outside the MPI routine and we need to keep the access in a consistent form in order

for the PM to understand whether two accesses (e.g., A[5], A[2][1]) address the same

memory cell and therefore could lead to a data dependence. In our approach, the multi-

dimensional accesses are linearized before being feed into the PM. Therefore access

sbuff [p][i] is rewritten as sbuff [p ∗ np + i]. Because of the limitation of the PM, i.e.,

non-affine access function are not supported, np must be a compiler time constant.

This is a limitation imposed by the current state of art of the libraries supporting the

151

Algorithm 4 Transformation flow for maximizing communication/computation overlap

1: Input: P = Syntax Tree of the input program; MOD = modified AST
2: Output: T = Syntax Tree of the transformed program
3: procedure maximize overlapp(P : input, T : output)
4: T = P
5: repeat
6: MOD = false;
7: G = extractDDG(T)
8: for all dep ∈ G do
9: if dist(dep) = 0∧ src(dep) is MPI routine ∧ sink(dep) is loop body ∧ dep applies

to a subset of stmt instances then
10: T = applyLoopFission(T, sink(dep), findCut(dep));
11: MOD = true
12: end if
13: end for
14: until MOD is false
15: for all dep ∈ G do
16: if dist(dep) = 0 ∧ src(dep) is MPI routine ∧ sink(dep) is loop body then
17: {COMM STMT,WAIT STMT} = toAsynchronous(src(dep))
18: T = removeStmt(T, src(dep))
19: T = moveToEarliestSchedule(T,COMM STMT)
20: T = moveToLatestSchedule(T, {WAIT STMT, sink(dep)})
21: end if
22: end for
23: end procedure

PM representation. However simplifications exists which could allow handling of such

expressions (for example forcing the access through the all sbuf array) [117].

In the same way the support for several other MPI collective routines such as MPI Gather,

MPI Reduce can be encoded.

5.3.3 Implementation and Evaluation

In this section we propose a compiler transformation which based on the result of the

instance based data dependence analysis obtained by the PM, maximizes the commu-

nication/computation overlap by accordingly transforming the input program. In this

work we focus on point-to-point communication routines.

5.3.3.1 Implementation

The approach is implemented in the Insieme Compiler and Runtime infrastructure pre-

sented in Appendix C. The Insieme Compiler fully integrates the PM analysis and trans-

formations and provides a foundation for source-to-source program optimization.

152

5.3.3.2 Normal Form

Before applying any transformation, the input code is pre-processed into a normal form.

In this form, an MPI program only contains MPI Send and MPI Recv statements so

that successive steps of the analysis process are simplified. It is worth noting that the

normalized program could have different buffering requirements and therefore may lead

to deadlocks if executed. For example rewriting a non-blocking send as MPI Send may

cause, if sends are present in every parallel branch of the CFG, a deadlock for message

size which are larger than the eager limit threshold. However, the program is kept in

this normalized form only for the sake of performing static analysis. The shape of an

MPI program in normal form is described by the following rules:

• Non-blocking point-to-point operations are rewritten to use the corresponding

blocking version. This is obtained by replacing every asynchronous routine with

the synchronous counterpart and by removing every MPI Wait statement in the in-

put code. Optimized, non-blocking code is generated by the code transformation

described in Algorithm 4.

• MPI Sendrecv operations are split into the corresponding MPI Send and MPI Recv

operations.

• MPI Ssend, MPI Rsend or MPI Bsend are rewritten to plain MPI Send.

Once the program is in normal form, we perform SCoP analysis to obtain a semantically

equivalent representation of the code region based on the PM. From this representation

we proceed with the extraction of the data dependence polyhedron.

5.3.3.3 Code transformation

Once the instance-based DDG is generated, we apply a sequence of transformations

as described in Algorithm 4. The idea is to iterate through all the loop-independent

dependencies which have an MPI communication statement as the source and a loop

body as sink. If the dependence applies to a subset of the instances of the sink then we

split the loop, applying the loop fission transformation [116], at the range provided by

the dependence analysis. In this way the iterations which are dependent on the MPI

communication statement are isolated into a new loop statement. Note that fission is

possible as long as there are no dependencies in the loop body that conflict with the

transformation being applied. The transformation framework in the Insieme Compiler

implements a pre-condition analysis which determine whether a transformation can be

safely applied.

153

1 for(unsigned iter =0; iter <NUM_ITERS; iter ++) {

2 MPI_Request __req0 , __req1;

3 MPI_Irecv (&A[0][0] ,COLS ,MPI_DOUBLE ,bottom ,0,com ,& __req0);

4 MPI_Irecv (&A[ROWS -1][0] ,COLS ,MPI_DOUBLE ,top ,1,com ,& __req1);

5 MPI_Send (&A[1][0] ,COLS ,MPI_DOUBLE ,bottom ,1,com);

6 MPI_Send (&A[ROWS -2][0] ,COLS ,MPI_DOUBLE ,top ,0,com);

7 // stencil loop after fission

8 for(unsigned i = 2; i<ROWS -2; ++i)

9 for(unsigned j = 1; j<COLS -1; ++j)

10 tmp[i][j] = A[i][j] + 1/4*(A[i+1][j]+A[i-1][j]+A[i][j-1]+A[i][j+1]);

11 MPI_Wait (&__req0 , MPI_STATUS_IGNORE);

12 // first iteration of stencil

13 for(unsigned j = 1; j<COLS -1; ++j)

14 tmp [1][j] = A[1][j] + 1/4*(A[2][j]+A[0][j]+A[1][j-1]+A[1][j+1]);

15 MPI_Wait (&__req1 , MPI_STATUS_IGNORE);

16 // last iteration of stencil loop

17 for(unsigned j = 1; j<COLS -1; ++j)

18 tmp[ROWS -2][j] = A[ROWS -2][j] + 1/4*(A[ROWS -1][j]+

19 A[ROWS -3][j]+A[ROWS -2][j-1]+A[ROWS -2][j+1]);

20 double ** ttemp=A; A=tmp; tmp=ttemp; // swap arrays

21 }

Listing 5.11: 5-points stencil code after code optimization

The procedure repeats until a fix-point is reached where every dependence in the DDG

applies to all the instances of the source and sink statement. The next step is to consider

all dependencies between communication statements and computational loops based on

the transformed code. For each of them, the source of the dependence – the communica-

tion statement – is removed from the code and the corresponding asynchronous version

of the routine is scheduled in its earliest position (which is determined by constraints in

the DDG). Listing 5.11 shows the transformed stencil code from Listing 5.6. The receive

is scheduled at the beginning of the loop body as shown in lines 3 and 4. The loop de-

pending on the communication statement, i.e., the sink, is scheduled lazily prepending

to it an MPI Wait operation placed to preserve the semantics of the program, lines 11

– 19 of Listing 5.11. The remaining non-dependent loop iterations will be, by the end

of the transformation, confined between the issuing of the asynchronous communication

operations and the consumption of the received data (lines 8–10). Therefore maximizing

the overlap window.

The transformation can be easily extended to take into account loop-carried depen-

dencies, in that case the distance of the data dependence, d, defines the number of

loop cycles which can be executed between the source and the sink of the dependence.

This can be handled by automatically allocating an array of d request objects for each

communication routine where the MPI Wait statement of a request generated by a com-

munication statement at iteration i occurs at iteration i+ d. This transformation, also

known as software pipelining [116], requires additional control code, therefore overhead,

154

VSC2 LEO3
of
MPI

Original
(in msecs.)

Transformed
(in msecs.)

Improvement
(in %)

of
MPI

Original
(in msecs.)

Transformed
(in msecs.)

Improvement
(in %)

16 219 218 0.3 12 264.9 264.5 0.09
32 89.7 89.0 0.8 24 118.7 118.9 -0.01
64 35.1 32.0 9.5 48 37.4 37.0 0.9
128 20.1 17.9 12.6 96 21.0 20.2 4.0
256 13.1 11.5 13.5 192 11.3 9.8 15.3
512 12.0 9.3 27.9 384 7.6 6.4 19.1

Table 5.3: Evaluation of the transformed code on the VSC2 and LEO3 cluster, fixed
problem size of 4Kx4K and NUM ITERS=10

to be inserted by the compiler to correctly fill and unload the pipeline. A compiler can

employ static heuristics in order to determine when software pipelining is beneficial for

a given input code.

5.3.4 Evaluation

We tested the transformed 5-point stencil code, depicted in Listing 5.11, on the two

production cluster LEO3 and VSC2 illustrated in Table 5.1 and compared its execution

time with the original code shown in Listing 5.6.

The code has been executed keeping the problem size constant, 4K by 4K elements,

and varying the number of MPI processes, results for both architectures are shown in

Table 5.3. We see that, as expected, the transformed code has overall a better per-

formance. Additionally, the improvement increases with the number of cores since the

smaller problem slice assigned to each processor is, the more dominant the communica-

tion overhead becomes. Since our transformation aims at hiding communication costs,

its benefit grows as the computation/communication ratio diminishes.

5.4 Static Matching of Communication Statements with

Affine Domains

In the previous section we have seen that changing a massage passing program often goes

beyond the manipulation of the single communication routines. The underlying channel

semantics must be understood in order to maintain program semantics. In MPI, one of

the implementation of the message passing paradigm, channels are not explicit within

the point-to-point communication routines. This means that in order to automatically

modify a message passing program, a compiler must reconstruct the missing knowledge

by analyzing the input code.

155

In Section 5.3.2.2, we proposed an analysis which determines channel dependencies of

communication statements. However, when a compiler decides to change a communica-

tion statements, e.g. by applying message coalescing, it must know which of the receive

statements within a program needs to be updated in order to keep program semantics.

The information of which receive operation matches a send operation (and vice-versa) is

generally difficult to determine statically, in MPI, due to the non-deterministic behaviour

which exists within the programming model.

In this section we elaborate a novel algorithm which delivers statement matching of MPI

programs whose control-flow can be described within the constraints of the PM.

5.4.1 Background and Related Work

Several researchers investigated the matching problem in various forms. Most of those

works were tailored for a specific constrained environment rather than a general analysis.

Those works can be classified into three different categories: static matching, dynamic

runtime matching, and dynamic post-mortem matching.

The majority of the approaches rely on post-mortem analysis of program traces to

determine communication patterns (e.g. [118–121]). The main idea behind these tools is

an automatic instrumentation of the original code and a tracing run on parallel system

at the desired scale. First, any result gathered with this analysis may not be sound since

it just represents one possible matching as opposed to all possible matchings that are

required for program transformations. A second major drawback is the huge resource

requirement because realistic executions often generate terabytes of tracing data which

has to be analyzed for patterns. FACT [122] uses program slicing [123] to obtain a

reduced program. Beside focusing on communication pattern detection, FACT also

statically analyses the input program to match communication statements using simple

heuristics.

Dynamic matching schemes commonly establish matches during runtime based on inspector-

executor principles [9]. The obtained matching is also just one possible matching and

it can only be used to transform the communication during the execution. We argue

that source-code transformations that can be performed after static matching analyses

are generally more powerful and incur less runtime overhead than dynamic matching

methods.

A purely static matching algorithm based on Diophantine inequalities is proposed by [17].

However, this approach requires source and destination of messages to be compile time

constants in order to correctly extract the system of inequalities. Since nearly all MPI

156

codes work with different numbers of processes where each process calculates communi-

cation partners based on the number of processes and its own process id, this method

is substantially limited.

Source-code annotations, as described by [124] can be used to specify matches explicitly.

However, they put an additional burden on the programmer and add a maintenance

risk due to the duplication of semantics (later updates to the code may not update the

annotations). Thus, such approaches are less effective in practice and deriving matches

automatically remains most desirable.

More recently, symbolic static matching was formalized by [18], who introduces the con-

cept of a parallel CFG (pCFG), defined as the Cartesian product of the CFGs of the

processes interacting in a distributed memory program. A dataflow iterative frame-

work which works on such pCFG enabling analysis of message passing programs using

an iterative fix-point solver. This framework is generic in the sense that it can be

used to discover several properties of distributed programs. As shown in [18], it can

be employed to solve some instances of the static matching problem. However, wild-

cards and asynchronous communications are not handled (even under the constraint of

interleaving-obliviousness) and communication statements inside loops pose an efficiency

problem.

The matching problem also plays a role in semantic analysis of message-passing pro-

grams using formal verifiers. SPIN-MPI [125] extracts communication statements from

an MPI source code and feeds it to the SPIN model checker. Since not all semantics of

MPI communication statements are fully supported by SPIN, some simplifications are

necessary (e.g., wildcards are not allowed). Another approach is ISP [126]. ISP builds a

model from program traces collected from a single execution of the input code. Succes-

sively the verification scheduler plays all possible interleavings. The main drawback of

formal verifiers is the exponential explosion of possible interleavings making them im-

practical to be used for large codes. This problem was investigated recently by [127] who

proposed a novel technique based on a formal definition of the matches-before relation

for MPI communications. By exploiting it, alternative non-deterministic matches can

be detected dynamically for large node sets with a modest overhead.

All previous approaches have limitations in various regards. The biggest problems in the

area of static matching are non-deterministic communication relations using wildcard

(any source) receives and non-blocking static analysis is able to compute static matches

in their presence. In this work, we propose a new method that uses the elements of the

PM in novel ways to determine static matches for practical message passing programs.

157

5.4.2 Preconditions and the Compiler Framework

In this work we consider the semantics of MPI’s point-to-point communication routines.

Sends and receives can be either blocking or non-blocking. Non-blocking communications

return a request object which can be used by the wait primitive to block until the data

transfer is completed. Through the rest of the paper we make no distinction between

the blocking and non-blocking semantics unless explicitly stated.

Our method relies on well-established analysis frameworks such as the PM and dataflow

analysis, available in many mainstream compilers. The approach has been partially

implemented within the Insieme compiler, see Appendix C, however it is presented in

a general way so it can be reproduced in any compiler framework. In this Section we

present the set of features that such compiler framework must provide. It is worth

noting that the internal representation of the Insieme compiler, called INSPIRE, is not

in Static Single Assignment (SSA) form, therefore the dataflow analyses here presented,

which are based on such “close-to-source” program representation, can be simplified if

the underlying compiler provides such abstraction.

Real message passing programs span across procedures and source files. In order to

precisely reconstruct the semantics, the complete control flow of the program must be

available to the compiler and thus to the analysis module. Therefore the underlying

compiler must support inter-procedural analysis across translation units. Whole program

analysis [102] is usually not supported by mainstream compilers for performance reasons.

In compilers like GCC and LLVM such code analyses can be optionally enabled by

means of Link Time Optimizations (LTO). Our source-to-source compiler infrastructure,

Insieme, links call expressions to the actual function definitions as part of the compiler

frontend which loads all translation units into memory and builds a single AST.

We require an iterative dataflow solver and a collection of classical dataflow analysis, e.g.,

constant propagation, points-to and alias analysis and reaching definitions. Since SCoP

analysis is limited to functions, a code inliner is responsible of removing any function

call from an input program. Recursion is therefore not supported. We propose the use

of inlining since it is implemented in many mainstream compilers and it is an easily

way to prepare the code for a successive legacy SCoP analysis. Additionally it is worth

noting that this process is only done for the sake of collecting cardinality information

associated to the communication statements, once the matching is established the inlined

code can be discarded. In Insieme the analysis module builds SCoPs for every procedure,

treating function calls as simple statements. Inlining is then performed by merging and

manipulating the polytopes within the call graph.

158

A common practice which could inhibit the inliner is the use of static storage variables

within functions. This problem is however solved in our compiler by a pre-processing

phase which performs the erasure of global and static variables which are redeclared as

regular variables in the main function.

We assume that PM support is available as part of the compiler. A SCoP analysis

determines the largest non-overlapping regions subject to the constraints imposed by

the PM. All statements in these regions are associated with information of their corre-

sponding iteration domains. If the entire program cannot be covered by a single SCoP,

then reaching definitions analysis is used to ensure the following: all read accesses of a

parameter p in a set of SCoP regions {R1, . . . , Rn} are all reached by def(p) - a unique

definition of p dominating those regions. Moreover, we use the ISL library [128] for

polytope analysis and manipulation and the Barvinok library [129] for computing the

cardinality of the iteration domains.

5.4.3 The Message Matching Algorithm

The matching algorithm we introduce in this paper is composed of two major phases

which are discussed in this section.

Phase 1 : The first phase, called rank propagation, makes sure that any variable v de-

pending on the process id, or any other input parameter, is replaced by an expres-

sion returning the value of v at that specific program point. This transformation

prepares the code to be analyzed for SCoPs and makes sure that the symbolic

cardinality expressions associated to communication statements are functions of

the process id and program input parameters only.

Phase 2 : The second phase of the analysis scans the input program for send and

receive statements to generate a bipartite graph such that sends and receives are

in different partitions. Each node of the graph is labeled with its cardinality

and the source and target domains associated to the communication operation.

Communication statements are then partitioned into independent program regions,

this is done using the following steps:

1. Statements are selected on the basis of their position within the program

control flow, a tentative region is formed.

2. Within this region a preliminary matching between communication state-

ments is established based on iteration domain and source/target expressions

of the communication statements.

159

3. Region boundaries are then verified by computing the maximum network flow

of the graph. If there exist at least one flow which allows every instance of

send statements to be matched by a receive operation, then we mark the

statements as belonging to this region and repeat the procedure (from step

1) with successive statements.

4. Otherwise additional communication statements are added to the region and

continue from step 2.

In general, a region may contain several valid flows, therefore they must be all considered

in successive transformation phases. The result is an over approximation of the actual

matches, however it guarantees that none of the existing matches are excluded.

5.4.3.1 Phase 1: Rank Propagation

In the first phase the value of every program variable v, which directly or indirectly

depends on the process id, is replaced at the program point p by an expression, i.e.,

exp(id, . . .). We call v a dependent variable. This transformation is a prerequisite to

recognize the control flow statements of an SPMD program which split the execution

flow according to the process id. Moreover the dependence to the process id of variables

utilized as source and target of communication statements is made explicit. As result, the

SCoP analysis determines the parallel control-flow as part of the polytope’s constraints.

Beside the process id, the analysis also covers any variable which is recognized to be

invariant with respect to the entire program, for example, the total number of processes,

np, and any input argument of the application. In Listing 5.12, we show a non-trivial

1-D mesh neighbour communication pattern, implemented in MPI, used to explain the

steps of the matching algorithm presented in this paper. To illustrate the concept of

dependent variables, let us consider even which is used in the IF expression in line

7. Without considering the context, the SCoP analysis tags even as a parameter of

the model meaning that its relation with the process id is not explicitly shown in the

extracted inequalities for the communication statements. Moreover since the value of

even is being written in line 3 and 4, the SCoP analysis fails to recognize the entire code

segment as a single SCoP.

The proposed technique is similar to program slicing [123], but instead of being expressed

as a backward analysis, which has to be repeated for every program variable within

control expressions and communication statements, we define it as a forward analysis

which focuses only on the subset of dependent variables. Moreover, if the program is

already in SSA form, the dataflow analysis can be simplified. We present the analysis

equations as implemented in the Insieme compiler.

160

1 MPI_Comm_rank(comm , &id);

2 MPI_Comm_size(comm , &np);

3 even = 0; // RankProp(n)={v2:<true ,even ,0>}

4 if (id %2==0) even = 1; // RankProp(n)={v3:<id %2==0 , even ,1>}

5 // meet: RankProp(n)={v4:<true ,even ,(id %2==0?1:0) >}

6 if (id >0 && id<np -1) {

7 int left = id -1, right = id+1;

8 if (even) {

9 MPI_Irecv(b, 1, MPI_INT , f(id), 0, MPI_COMM_WORLD , &req); S0

10 MPI_Send(b, 1, MPI_INT , g(id), 0, MPI_COMM_WORLD); S1

11 } else {

12 MPI_Irecv(b, 1, MPI_INT , left , 0, MPI_COMM_WORLD , &req); S2

13 if (right!=np -1)

14 MPI_Send(b, 1, MPI_INT , right , 0, MPI_COMM_WORLD); S3

15 }

16 MPI_Wait (&req , MPI_STATUS_IGNORE);

17 } else

18 if (np >1 && id==0)

19 MPI_Send(b, 1, MPI_INT , 1, 0, MPI_COMM_WORLD); S4

20 else if (np %2==0)

21 MPI_Recv(b, 1, MPI_INT , MPI_ANY_SOURCE , 0, MPI_COMM_WORLD); S5

Listing 5.12: MPI running example

The rank propagation analysis is formally defined on top of the classic iterative dataflow

framework [102]. Each block n of the CFG is associated with a dataflow variable struc-

tured in the following way RankPropn = 〈n,B, v, e〉. The first element, n, is the address

(or the identifier) of the CFG block producing this dataflow variable. The second el-

ement is the domain B, a generic a boolean conjunction of the control flow conditions

encountered within the program path connecting the main entry point to block n. The

third element of the tuple, v, is the variable identifier (i.e., v ∈ Var, where Var is the

set of program variables which are not loop iterators, i.e., Iter) which is defined within

block n. The last element, e ∈ {Expr,⊥,>} is an expression (with Expr being the set of

valid expressions) which computes the value of variable v at that specific program point,

i.e., v = e(id, . . .). Two auxiliary symbols are introduced to represent additional states

of the analysis. The > symbol represents the fact that the variable v is undefined. This

means that the initial value for that variable is generating an external function which

we represent in the analysis with read(). When instead an expression which solely relies

on the parameters of the input program (e.g., no loop iterators, i.e., Iter, are involved)

cannot be formed, the ⊥ value is utilized.

The dataflow problem for the rank propagation uses a semi-lattice L = (2RankProp,u)

defined by the power-set of the RankProp and a meet (or confluence), u, operator which

aggregates dataflow values at meet points of the CFG. The dataflow value of block n is

computed based on the dataflow information available at the exit point of the predecessor

161

nodes, pred(n), using the following formula:

Inn =

{
∅ if n is Start

d
p∈pred(n)Outp otherwise

Outn =fn(Inn)

Where Inn, Outn ∈ L correspond to the dataflow information which are associated,

respectively, to the entry and the exit of CFG block n. The framework iteratively solves

the dataflow equations until the maximum fix-point assignment (MFP) is found. fn(Inn)

is the transfer function which specifies which dataflow information is generated or killed

by a generic CFG block n. Because the definition of the transfer function for our problem

also depends on the value of the dataflow information at the entry of the block, we define

the analysis on top of a non-separable dataflow framework [102]. Therefore fn(Inn) is

defined as follows:

fn(x) = (x− (ConstKilln ∪DepKilln(x))) ∪ (ConstGenn ∪DepGenn(x))

Dependent parts in the Gen and Kill sets make it difficult to summarize the effect of

multiple statements in a flow function. Hence, basic blocks for non-separable analyses

consist of single statements. For our rank propagation analysis the components are

defined as follows:

ConstGenn =

{ 〈n, true, v, id〉 } n is MPI Comm rank(...,&v)

{ 〈n, true, v, np〉 } n is MPI Comm size(...,&v)

∅ otherwise

DepGenn(x) =

{ 〈n,B, v, eval(e, x)〉 } n is assignment v = e

{ 〈n,B, v,>〉 } n is v = read()

∅ otherwise

ConstKilln = ∅

DepKilln(x) =

{ 〈m,B, v, d〉 } n is assign. v = e, 〈m,B, v, d〉 ∈ x

{ 〈m,B, v, d〉 } n is read(v), 〈m,B, v, d〉 ∈ x

∅ otherwise

For each visited block the analysis has to build the expression B by logically combining

the control flow expressions within the dominator nodes. Since those expressions may

contain dependent variables, the eval function is applied to the condition of a node p

(where p dominates n) to replace every dependent variable with the dataflow information

computed for node p. Hence, B may contain ⊥.

The confluence operator, u, on elements in L is defined to propagate (as they are) the

162

dataflow values incoming from every CFG edge of a meet point. However, if the same

variable is assigned within multiple paths, the meet operation is defined as follows:

〈n1,B1, v, e1〉 u 〈n2,B2, v, e2〉 = 〈m,B1 ∨ B2, v, e1û e2〉

Where û is:

e1û e2 =

e1 if B1 = B2 ∧ e1 = e2

(B1? e1 : (B2? e2 : >)) if dom(n1) ∩ pdom(n2) 6= { }
(B2? e2 : (B1? e1 : >)) if dom(n1) ∩ pdom(n2) = { }

⊥ if either e1, e2,B1,B2 = ⊥

This states that the value of v after the meet point is computed by a conditional ex-

pression (i.e., ?:) combining contributions from incoming edges. The expression is built

taking into account the positions at which the two definitions of v appeared. This is

important since the order in which the conditions B1 and B2 should be evaluated changes

accordingly. If the set of dominators of block n1 (i.e., dom(n1)) intersects the set of post-

dominators of n2 (i.e., pdom(n2)) then block n2 precedes n1. In the other case either

n1 precedes n2 or variable v is defined in both conditional branches of an IF statement,

the latter makes the evaluation order of the boolean conditions not important.

An example of how the dataflow equations work for an actual code is shown, in Figure 5.9,

for the variables even, left and right. In line 2 of Listing 5.12, the dataflow analysis

generates the variable v2 : 〈true, even, 0〉. In line 3, even gets assigned the value 1 under

the constraint that the value of id is even. The dataflow analysis stores this information

in a new dataflow variable, v3, which contains the control flow condition for which this

block is executed, e.g., id%2==0. v2 is killed within this control flow path. In line 4,

at the meet point, the confluence operator is applied between v2 – coming from the

false path of the IF statement – and v3. The outcome is a new dataflow variable, v4, in

which the value of even is expressed as a conditional expression which is a function of the

process id. Since the value of even is not modified again, the variable v3 is propagated

to the succeeding blocks. Any use of even will be replaced by the generated expression.

The eval(e, x) function returns the expression which computes the value of v based on

other dependent variables (and constant values). A generic expression e = exp(. . . , ei, . . .)

is an abstraction for any right-hand side of an assignment statement in the input code

such that ei ∈ Opd(e) ⊆ (Var, Iter). The function Opd(e) extracts variables from any

163

even = 0

MPI_Comm_rank(comm, &id);
MPI_Comm_size(comm, &np);

T: id%2==0

even = 1;

T: id>0 && id<np-1

left=id-1; right=id+1;

T: even==0

B0

B1

B2

{ v0: <B0, true, id, id>, v1:<B0, true, np, np> }

{ v0, v1, v2: <B1, true, even, 0> }

{ v0, v1, v2 }

B3

{..., v3: <B3, id%2==0, even, 1>}

B4

{ v0,v1,v4:<B4,true,even,(id%2==0)?1:0> }

B5

{ v0,v1,v4,
 v5: <B5, (id>0&&id<np-1), left, id-1>,
 v6: <B5, (id>0&&id<np-1), right, id+1> }

B6

true false
{ v0, v1, v4, v5, v6}

true

false

Figure 5.9: CFG and dataflow variables generated by the rank propagation analysis
of Listing 5.12.

given expression e.

eval(e, x) =

⊥ if val(ei, x) = ⊥, ei ∈ Opd(e)

exp(. . . , ei, . . .) if val(ei, x) = >, ei ∈ Opd(e)

exp(. . . , val(ei, x), . . .) otherwise

eval uses val(ei, x) to denote the value of a variable ei (consisting of either a variable,

Var, or a loop iterator, Iter) in the context of the given dataflow information x:

val(ei, x) =

{
⊥ if ei ∈ Iter
d if ei ∈ Var, 〈m,B, ei, d〉 ∈ x, d ∈ (Expr,>)

164

Succeeding to this analysis, a transformation pass replaces every dependent variable,

which has been marked with neither > nor a ⊥ with the computed expression at that

program point. If any communication statement is within a control flow expression

marked as ⊥, then the analysis terminates since it will not be able to correctly compute

iteration domains for the enclosed statements. This also invalidates the next phase of

the matching analysis since a SCoP cannot be extracted. The effect of this phase to

the code in Listing 5.12 is depicted by the arrows forwarding the value of dependent

variables even, left, and right (omitted for readability reasons) through the various

uses.

5.4.3.2 Phase 2: Bipartite Graph and Network Flow

After the first phase, SCoP analysis labels each communication statement of the in-

put program with information of its iteration domain. If SCoP analysis is not able

to encapsulate all of the communication statements of the given program within affine

regions, then the matching algorithm gives up and stops here. Otherwise, we con-

tinue with the second phase during which we extract the communication statements

and reorganize them into a bipartite graph MG = (S,R,E) where S is the set of send

statements, R is the set of receive statements and E is the set of edges, e = (s, r), such

as ∀ e ∈ E | s ∈ S ∧ r ∈ R.

Each statement S has therefore three pieces of information attached:

• The iteration domain associated to S, i.e., DS.

• The expression used to address source process ids in a receive statement (i.e., src)

or target process ids in a send operation (i.e., trg). src and trg can be both

non-affine expressions.

• The cardinality of statement S, i.e., |DS|.

Since we want to represent data transfers in an homogeneous way, we use polyhedral

relations [128, 130] to express the exchange of data between two process groups. A

relation is a mapping from points of an input polytope to points in a target polytope.

Relations can be described by the conjunction of a set of affine constraints. For example,

a relation which maps every process id ∈ [0 . . . np) to a target process 0 can be expressed

as follows:

R : [np]⇒ {id→ 0 | 0 ≤ id < np}

where np is a parameter (or free variable) of the relation. Relations are often used to

represent data dependencies within the PM [128]. Two operations are available: dom(R)

165

returning the input domain to which the relation is applied (e.g., { id | 0 ≤ id < np }),
and range(R) returning the points in the target domain (e.g., {0}). Elements which

satisfy the relation are tuples mapping elements of the domain to the range, (e.g., {(0→
0), (1→ 0), . . . , (np−1→ 0)}. We continue by showing how send and receive statements

can be represented within this formalism.

Let us consider a number of send statements, S, surrounded by the following iteration

domain DS = { id | 0 ≤ id < 5 } (i.e., the dom(R)), meaning that S is executed by all

processes whose id is strictly smaller then 5. These data transfers can be represented in

our formalism as follows:

send(buff , 5) : { ids → idt | (0 ≤ ids < 5) ∧ idt = 5 }
send(buff , p) : [p]⇒ { ids → idt | 0 ≤ ids < 5 ∧ idt = p }

send(buff , id+ 1) : { ids → idt | 0 ≤ ids < 5 ∧ idt = ids + 1 }
send(buff , i:lb..ub) : [lb, ub]⇒ { ids → i | 0 ≤ ids < 5 ∧ lb ≤ idt < ub}
send(buff , fna(. . .)) : [np]⇒ { ids → idt | 0 ≤ ids < 5 ∧ 0 ≤ idt < np }

We identify with ids ∈ dom(R) the set of processes which issue the send operation.

idt ∈ range(R) is instead an iterator through the possible targets. Cases 1 and 2 are

quite straightforward. Case 3 represents a typical neighbour communication. Case 4

describes the situation in which a loop iterator is used to define the target process. The

semantics of the loop iterator is defined so that lb ≤ i < ub, a constant stride is also

allowed since it can be represented within the constraints of the PM. Case 5 shows the

use of a non-affine function for selecting the destination of a message, (e.g., A[B[i]] or

id*np).

Receives can can be modeled similarly. The main difference here is that receives can also

accept wildcards (i.e., any) enabling messages from any source. Let us consider receive

statements within an iteration domain (i.e., the dom(R)), such that DS = { id | 5 ≤ id <
np }. The relation for receives is defined in a way that ids refers to the process id of the

sender (or source) process whereas idt is the target of the data transfer.

recv(buff , 3) : [np]→ { ids → idt | ids = 3 ∧ 5 ≤ idt < np }
recv(buff , p) : [np, p]→ { ids → idt | ids = p ∧ 5 ≤ idt < np }

recv(buff , id− 1) : [np]→ { ids → idt | ids = idt − 1 ∧ 5 ≤ idt < np }
recv(buff , i:lb..ub) : [np, lb, ub]→ { ids → idt | lb ≤ ids < ub ∧ 5 ≤ idt < np }

recv(buff , any | fna(. . .))) : [np]→ { ids → idt | 0 ≤ ids < np ∧ 5 ≤ idt < np }

166

The considerations are similar to the send operation. We treat the wildcard any as a

possible match from any of the processes in the communicator (i.e., id ∈ [0 . . . np)).

For any pair of communication statements (s, r) ∈ S × R a relation Rm can be built

by logically combining the constraints of relations Rs and Rr. This can be easily done

since the mapping associated to the communication statements is always from ids to idt

(both for sends and receives). When the new relation Rm is not empty then it means

that there are values of ids and idt which satisfy the inequalities and therefore matching

between the two statements is possible.

Rm(s, r) = { ids → idt |Rs ∧Rr } 6= ∅

This relation is conservative in the sense that no existing match can be excluded. How-

ever, many spurious matches will be established making any result produced by the

algorithm useless. For example by the equations given above, any send statement, is-

sued by process p, targeting process id 0 will produce a match towards every receive

operation issued by process 0 whose source expression includes process p.

5.4.3.3 Detection of Communication Phases

The number of spurious matchings can be reduced based on the observation that many

real codes have a regular structure and they are usually divided into different indepen-

dent regions (or phases). The idea is that in each program phase, all communication

statements are only matched with others belonging to the same region. We define, for

this scope, a novel static analysis to determine the subset of sends and receives se-

mantically belonging to the same program phase and therefore restrict the preliminary

matches only within regions.

Scheduling functions are assigned to every program statement on the basis of their po-

sition within the AST as explained in [23]. However, since our approach focuses on

communication statements only, a different strategy is necessary. We compose the scat-

tering functions in a way that statements belonging to different branches of conditional

statements (e.g., IF and SWITCH) are set to be executed in parallel, and thus the same

execution time is assigned. The Algorithm 5 is used to assign scheduling functions to

a generic MPI program. While this is correct for blocking statements, the schedule for

non-blocking communications is slightly different. Indeed, we assign the schedule for

an asynchronous communication statement based on the location of the corresponding

wait statement which can be statically determined on the basis of dataflow def-use chains

analysis. A limitation of this approach is represented by the semantics of MPI Waitany,

167

S1
S0

S3
S2

{i
d s

→
id

t|0
<

id
t
<

np
−

1
∧
∃e

:i
d t
−

2e
=

0
∧

0
≤

id
s
<

np
}

S4
S5

e.
g.

np
=

6
:{

(2
→

∗)
,(

4
→

∗)
}

e.
g.

np
=

6
:{

(∗
→

2)
,(
∗→

4)
}

e.
g.

np
=

6
:{

(1
→

2)
,(

3
→

4)
}

e.
g.

np
=

6
:{
(0

→
1)
,(

2
→

3)
}

{i
d s

→
id

t|0
<

id
t
<

np
−

1
∧
∃e

:i
d t
−

2e
=

1
∧

id
s
=

id
t−

1}

{i
d s

→
id

t|i
d s

=
0
∧

id
t
=

1
∧

np
>

1}
e.

g.
np

=
6

:{
(0

→
1)
}

{i
d s

→
id

t|0
≤

id
s
<

np
∧

np
−

1
≤

id
t
<

np
∧
∃e

:n
p
−

2e
=

0}
e.

g.
np

=
6

:{
(∗

→
5)
}

S
R

np
=

2

{i
d s

→
id

t|0
<

id
s
<

np
−

1
∧
∃e

:i
d s
−

2e
=

0
∧

0
≤

id
t
<

np
}

{i
d s

→
id

t|0
<

id
s
<

np
−

2
∧
∃e

:i
d s
−

2e
=

1
∧

id
t
=

id
s
+

1}

F
ig
u
r
e
5
.1
0
:

P
re

li
m

in
ar

y
m

at
ch

es
fo

r
th

e
M

P
I

co
d

e
in

L
is

ti
n

g
5
.1

2
d

et
er

m
in

ed
o
n

th
e

b
a
si

s
o
f

p
o
ly

h
ed

ra
l

re
la

ti
o
n

s.

168

MPI Waitsome and MPI Test loops which are difficult to capture statically. Scheduling

for the communication statements of Listing 5.12 are the following:

θS0 = {1, 0} θS1 = {0, 0} θS2 = {1, 0} θS3 = {0, 0} θS4 = {0, 0} θS5 = {0, 0}

It is important to note that the statements S0 and S2, which are both non-blocking

receive operations, have the same schedule. The scattering refers to the position of

the wait statement in line 16. By ordering the statements based on the execution

date we obtain the following sequence: (S1 ||S3 ||S4 ||S5) ≺ (S0 ||S2). This means

that S1, S3, S4 and S5 are executed in parallel and before S0 and S2 which are also

independent on each others.

Once statements are labeled with a schedule, a second algorithm finds partitions of

statements which logically belong to the same program phase. The process is described

in Algorithm 6. Communication statements are ordered by their schedule. The phase

variable (defined as a set of statements) is initialized by statements with the same earliest

execution time (i.e., ‘0’). On these statements we perform the preliminary matching

returning a bipartite graph MG(S,R,E). In order for MG to be recognized as a region,

several properties have to be verified.

The idea is to guarantee that every instance of send statements in S is matched, in a

bijective way, to a receive operation in R. This problem is similar to computing the

maximum flow of a network [104]. Indeed, if we think of send statements as generators

(or sources) of the flow and receives as consumers (or sinks), a matching is valid only if

the maximum flow possible through the network equals the generated capacity. If just

one of the sends or receive instances is unmatched, then this set of statements cannot be

considered a program phase, hence a larger region has to be considered. In our context,

the flow is represented by the cardinality information available at the sources, sinks and

the edges of the bipartite graph MG.

In order to perform this check, the bipartite graph is transformed by introducing two

artificial vertices: s and t representing, respectively, the source and the sink of the

network. Edges are inserted into the graph MG connecting the source with every send

statement, ∀ v ∈ S | (s, v) ∈ E, and each receive with the target vertex ∀ v ∈ R | (v, t) ∈
E. The capacity of these edges is the value of | DS | associated to send and receive

statements. We use c(u, v) to represent the capacity of a generic edge (u, v); f(u, v) for

its flow. Moreover, for matching edges c(u, v) is the cardinality of the relation Rm(u, v).

The first property is that every process id is contributing to a region. Since the schedul-

ing time is always associated to blocking calls, a synchronization point is found if every

169

Algorithm 5 Scheduling for blocking comm. statements

1: Input: stmt . Root node of the program AST
2: Outpt: stack sched . Generated schedule for this program
3: procedure Visit(stmt : input, stmt : output) . AST Visitor
4: switch kind(stmt)
5: case IF: . Similar to SWTICH (omitted for space reasons)
6: proc id dep← contains(cond(stmt), id)
7: sched.push(0)
8: V isit(child(stmt, 0)) . Recur on the then body
9: sched.pop()

10: sched.push(proc id dep ? 0 : 1)
11: V isit(child(stmt, 1)) . Recur on the else body
12: sched.pop()

13: case FOR:
14: sched.push(iter(stmt))
15: V isit(child(stmt, 0)) . Recur on the for body
16: sched.pop()

17: case COMPOUND: . Any block of code: { . . . }
18: cur ← 0
19: for each child ∈ stmt do
20: sched.push(cur++)
21: V isit(child) . Recur on every child stmt
22: sched.pop()
23: end for
24: default: . Any other stmt which is not a control-flow stmt
25: if isCommunication(stmt) then
26: stmt.schedule← to vect(sched) . Assign schedule
27: end if
28: end procedure

process is in a communication routine.

⋃
v∈S

dom(Rv) ∪
⋃
v∈R

range(Rv) = {id | 0 ≤ id < np} (5.1)

This rule restricts our region detection scheme to program phases actively involving all

processes of a communicator; this is however the usual pattern for SPMD programs.

The second property is that the sum of the capacities leaving node s has to be equal to

the sum of capacities reaching node t:

TotalF low(MG(S,R,E)) =
∑
v∈S

c(s, v) =
∑
v∈R

c(v, t) (5.2)

We call this quantity the TotalF low. When this property holds, we proceed by com-

puting the maximum flow of the network. This condition is necessary but not sufficient

since within the network there might be not enough edges (or capacity associated to

them) to transfer the generated flow toward the sink. Unfortunately, in the generic case,

170

Algorithm 6 Detection of Communication Phases

1: Input: stmt . List of communication statements in the program
2: Output: set phases← {} . Detected standalone program regions
3: set phase← {}; int cur ← 0, idx← 0
4: procedure DetectPhases(stmts : input, phases : output)
5: sort(stmts, key = stmt.schedule) . Sort stmts by schedule
6: while cur < max(stmts.schedule) do
7: while idx < stmts.size ∧ stmts[idx].schedule = cur do
8: phase.insert(stmt[idx++])
9: end while

10: MG(S,R,E)← PreliminaryMatch(phase)
11: if CheckMaxNetworkF low(MG) then
12: phases.insert(MG)
13: phase← {} . start new phase
14: end if
15: cur++
16: end while
17: return phases
18: end procedure

cardinality information are parametric on the value of np and possibly any input of a

program. Therefore solving the parametric maximum network flow problem, in general,

may be difficult.

For our running example (in Listing 5.12), Algorithm 6 performs the following steps.

Initially statements with execution time equals to ‘0’ (i.e., S1, S3, S4, and S5) are

inserted into the set phase. It can be verified that condition (5.1) is met. Condition

(5.2) requires the cardinalities associated to the communication statements:

| DS0 | = | DS1 | = | DS3 | =
⌊
np− 2

2

⌋
| DS2 | =

⌊
np− 1

2

⌋
| DS4 | =

{
0 if np = 1

1 otherwise
| DS5 | =

{
1 if np is even

0 otherwise

Applying condition (5.2) yields that:

| recvs | = | sends | ⇒

2
⌊
np−2

2

⌋
+ 1 = 1 if np is even

2
⌊
np−2

2

⌋
+ 1 = 0 if np is odd

The system has a solution only for np = 2 since S4 and S5 matches and the cardinalities

of the other statements are zeros. However, a solution which holds for any value of

np cannot be found. This can be easily seen by the fact that statement S3, in this

configuration of the MG, has no outgoing edges meaning that none of its instances

171

S1 S0

S3 S2

S4 S5

S T

2/2

2/2

1/1

2/2

1/1

1/1

1/2

2/2

2/2

1/1

0/4np = 6

Figure 5.11: Maximum network flow for the example of Listing 5.12 for np = 6.

can be matched. Therefore the algorithm continues by adding to the phase variable

additional statements with a schedule equal to ‘1’. Both non-blocking receive statements

S0 and S2 are included. We again check whether (5.2) is verified:
2
⌊
np−2

2

⌋
+ 1 =

⌊
np−2

2

⌋
+
⌊
np−1

2

⌋
+ 1 if np is even

2
⌊
np−2

2

⌋
+ 1 =

⌊
np−2

2

⌋
+
⌊
np−1

2

⌋
ifnp is odd

When np is even the relation
⌊
np−2

2

⌋
=
⌊
np−1

2

⌋
holds, thus the first equality is confirmed

for every even value of np. For odd values
⌊
np−1

2

⌋
=
⌊
np−2

2

⌋
+ 1, hence (5.2) is verified

for any np. Since the checks are satisfied, we proceed on computing the value of the

maximum flow. Solving the parametric maximum network flow problem is beyond the

scope of this paper we therefore consider, for simplicity, a value of np = 6 and solve this

particular instantiation of the network. It can be proved, by induction, that the findings

hold for any value of np. The outcome is depicted in Figure 5.11.

Every edge (u, v) of the network in Figure 5.11 has been labeled with f(u, v)/c(u, v)

stating, respectively, the passing flow and the total capacity of an edge. The computed

maximum flow is 5 which equals the value of TotalF low = 2
⌊
6−2
2

⌋
+ 1.

Beside validating MG as a standalone phase, the maximum flow excludes (S1, S0) from

the matches. This is an important property, since the cardinality of S3 and S0 are the

same, the only way for dynamic instances of S3 to find a match is through instances

of statement S0. For the code in Listing 5.12, only one solution is produced by the

maximum flow algorithm, it can be verified that the same matching is established for

any np > 3. Precisely, for odd values of np edge (S1, S5) is removed as explained before.

In general, there might be several solutions, involving a different configuration of the

edges; in such cases the algorithm accepts only those with a flow equal to the TotalF low.

If MG is marked as a region, all found valid matches must be considered.

172

dependent
variables

of comm.
stmts

of
regions

valid
matches

Jacobi 2 4 1 1

ADI Solver 4 12 4 4

Particle [132] 0 10 5 5

Bitonic [133] 1 11 4 4

NPB-IS 0 2 1 1

NPB-CG 0 20 10 10

NPB-MG 0 16 2 30

NPB-BT 2 36 13 13

NPB-SP 0 24 7 7

NPB-LU* 12 24 9 9

NPB-DT – – – –

Table 5.4: Evaluation of the static matching algorithm for real MPI codes.

5.4.4 Experimental Evaluation

We manually evaluated our approach on a number of MPI codes and benchmarks from

the NAS Parallel Benchmark (NPB) suite [131]. We only considered codes using point-

to-point communications and excluded the ones which solely rely on collective commu-

nications (i.e., EP, FT). For each of them we determined the number of variables being

detected as dependent, the total number of point-to-point communication statements

(after inlining), the number of regions recognized by our detection algorithm, and at

last the number of valid matchings found by our analysis. Results of the analysis are

collected in Table 5.4. Tools from related work could not be considered for a comparison

since the majority of the chosen codes contain non-blocking communications which are

not supported.

The Jacobi and the ADI Solver are structured as neighbour communication. As we

examined in this paper, this kind of pattern is well handled by our approach. For both

cases we determine exactly one valid matching for every identified region. The Particle

Simulator [132] code is interesting since this code has not been extensively optimized

like the NPB. Also for this case our phase detection algorithm finds regions which are

composed by a pair of send/receive statements making the matching trivial. Beside the

matchings, we can determine the actual communication patterns within those regions

since the available information both at sender and receiver sides is complete. Moreover,

many of the phases identified in the Particle code contain collective communication

patterns similar to scatter and gather operations. A successive optimization phase could,

based on our analysis results, replace the original code with a call to more efficient

collective operations.

173

Another interesting example is NPB-MG. In this code send and receive communication

statements are within two distinct function calls which are being invoked multiple times.

In the order, a function containing a non-blocking receive is invoked twice followed by two

invocations of the function with blocking sends. These should be seen as two logically

distinct phases, but since they are overlapped, our algorithm recognizes them as a single

one. Within this phase we therefore obtain a number of spurious matchings (i.e., 15

instead of 1). Since this pattern is repeated twice in the program, we end up with 30

possible matchings instead of 2. However, this result is a cause of the inlining pass

which produces multiple instances for every communication statement inside functions.

By projecting the result on the original statement identifiers, the spurious matchings

can be eliminated.

Benchmarks NPB-BT and NPB-SP have a similar communication structure. One of the

issues in these codes is that target and source of communication statements are often

calls to non-affine functions. Interestingly in both benchmarks there is one particular

region, which is composed by 12 statements (6 sends and 6 receives), for which we are

able to determine the region boundaries thanks to the flow check. However for this

region, the amount of spurious matchings makes the number of valid matchings large

(i.e., 6!). Fortunately, by including the message tag in the inequalities our method can

eliminate all spurious matchings and validate a single match for that region.

NPB-LU represents one of the most complex codes. Many dependent variables are used to

guide the control flow. They are correctly propagated by our rank propagation analysis

however generated expressions are not always affine. This is due to the fact that commu-

nication is arranged as a grid and neighbors are computed using non affine expressions.

Differently from other benchmarks, these expressions are used also within control flow

statements and therefore this inhibits our approach from being applied since cardinality

information cannot be computed. However since the NPB are usually compiled for a spe-

cific communicator size, constant folding can be used to compute the value of all those

expressions statically and thereby making the code suitable for our approach. Under

this constraint we recognize the 9 phases all of them containing a single valid match.

The NPB-DT code cannot be handled by our approach because of the control flow struc-

ture non respecting the constraints of SCoPs. Many for loops contain continues,

furthermore several control-flow conditions surrounding communication statements are

based on comparisons of string literals. This prevents the iteration domains from being

computed therefore inhibiting the rest of the approach.

174

5.5 Summary

In this chapter we exploited compiler technology for optimizing distributed memory

programs. We proposed a transformation which can be delivered by a compiler to hide

communication costs by increasing the overlap between computation and communication

(see Section 5.2). Experiments shown this technique shows its benefits when a large

number of presses are being deployed since communication costs become predominant.

A second opportunity for optimization has been uncovered by analyzing cache behaviour

of point-to-point communication routines (see Section 5.3). We shown that for particular

sizes of the buffer being exchanged, code can be transformed to achieve a 40% perfor-

mance improvement. We proposed a set of simple rules to be considered while writing

a distributed memory code which is aware of cache behaviour. Beside being used by

developers, we believe those rules are simple enough to be automatically exploited by

compilers.

At last, we proposed a static analysis with the purpose of determining a match of

point-to-point communication routines (see Section 5.4). This analysis is of paramount

importance for allowing any compiler to safely manipulate a distributed memory pro-

gram.

This work, we believe, will be the basis for future compiler analyses and transformations

targeting distributed memory system. The work pursued in this thesis mostly focuses on

point-to-point communication statements but extension to collective routines is possible.

Chapter 6

Conclusion and Future Work

Message passing nowadays is wide-spread in the HPC community. However, the contin-

uous growth of computing units within workstations, made possible by multi-core chips

and the advent of General Purpouse Graphics Processing Unit (GPGPU) computing,

calls for a redesign of the model. Lightweight threads should be made first-class citizens

within the model and whether a thread is allocated on a CPU or a GPU, the way it is

addressed by the model should be the same. With libWater, presented, in Section 3.4,

we achieved that. A lightweight interface coupled by a powerful runtime system allows

programmers to address heterogeneous cluster systems hiding low level synchronization

characteristic of the message passing model. Thanks to the use of the OpenCL com-

putational model, access to sus are completely homogeneous. The distributed runtime

system realized within this thesis showed very good scalability on large production sys-

tems. The infrastructure allows for pluggable dynamic DAG-based optimizations which

make libWater easy to extend in order to address future challenges.

Runtime systems for message passing are quite complex and highly configurable. In

Chapter 3 we showed the measure of the performance improvement which can be achieved

by tuning a subset of the runtime parameters provided by the Open MPI library. Our

methods can improve performance up to 30% if parameters are tuned to match a par-

ticular application code. In order to deliver parameter settings which are suited for a

larger range of codes we used a statistical approach based on ANOVA. Results show

that applications running with these parameter see a 20% performance improvement

with respect to Open MPI’s default parameter setting.

Finally we showed how compilers can help in rewriting input programs to better match

the underlying architecture. We showed how the placement of message passing state-

ments impact on the cache utilization and we elaborated few intuitive rules, that can be

coded into a compiler, which can significantly improve program performance.

175

176

We proposed in this thesis an analysis which is able to deliver the matching of com-

munication statements. This is the corner stone for any compiler based transformation

of a message passing code. We expressed our analysis on top of well-established anal-

ysis techniques employed in several mainstream compilers. However the costs of the

proposed analysis, although we use heuristics to reduce the complexity, may be too

expensive for production compilers. This is nevertheless an improvement over current

techniques which can handle only a small subset of the message passing programming

model (i.e., no wildcards and no asynchronous communications).

At last we presented a method to encode the semantics of message passing routines within

the PM. This allows common loop transformations, such as strip mining, distribution

and fusion, to be applied to communication statements in an automatic way. In this

thesis, we use such method to extract fine grained dependence analysis information

which allows the compiler to better hide communication costs.

6.1 Contributions

We here list the peer-reviewed papers representing the contributions for each chapter of

the thesis.

6.1.1 Chapter 3

PDP12 : Simone Pellegrini, Radu Prodan, Thomas Fahringer, A Lightweight C++

Interface to MPI, Proceedings of the 20th Euromicro International Conference on

Parallel, Distributed, and Network-Based Processing (PDP), Garching, Germany,

15-17 February, 2012.

EuroMPI11 : Simone Pellegrini, Radu Prodan, Thomas Fahringer, Leveraging C++

Meta-Programming Capabilities to Simplify the Message Passing Programming

Model, Proceedings of the 18th EuroMPI Conference, Santorini, Greece, 18-21

September, 2011.

ICS13 : Ivan Grasso, Simone Pellegrini, Biagio Cosenza, Thomas Fahringer. libWater:

Heterogeneous Distributed Computing Made Easy. In 27th ACM International

Conference on Supercomputing (ICS), Eugene, Oregon, 10-14 June.

177

6.1.2 Chapter 4

Euro PVM/MPI09 : Simone Pellegrini, Jie Wang, Thomas Fahringer, and Hans

Moritsch, Optimizing MPI Runtime Parameter Settings by Using Machine Learn-

ing. Proceedings of the 16th Euro PVM/MPI Conference (EuroPVM/MPI 2009),

September 7–10, 2009, Espoo, Finland.

CF10 : Simone Pellegrini, Thomas Fahringer, Herbert Jordan, Hans Moritsch, Au-

tomatic tuning of MPI runtime parameter settings by using machine learning,

Proceedings of the 7th ACM international conference on Computing frontiers,

Bertinoro, Italy, May 17–19, 2010. [poster]

IWPAPS12 : Simone Pellegrini, Radu Prodan, Thomas Fahringer, Tuning MPI Run-

time Parameter Setting for High Performance Computing. Proceedings of the

IEEE Cluster Workshops IWPAPS 2012, Beijing, China, 24–28 September 2012.

6.1.3 Chapter 5

EuroMPI12 : Simone Pellegrini, Torsten Hoefler, Thomas Fahringer, Exact Depen-

dence Analysis for Increased Communication Overlap. In Proceedings of the 19th

EuroMPI Conference, Vienna, 23-26 September, 2012.

Cluster12 : Simone Pellegrini, Torsten Hoefler, Thomas Fahringer, On the Effects of

CPU Caches on MPI Point-to-Point Communications. In the IEEE International

Conference on Cluster Computing, Beijing, September 2012.

6.1.4 Other Contributions

The work behind this thesis also inspired and enabled other publications on topics on

not strictly related to the ones covered in this thesis.

In [134], the Insieme compiler has been used for optimizing runtime and efficiency of

OpenMP cache-sensitive parallel programs. The compiler relies on the polyhedral model

to combine valid loop transformations and to produce many semantically equivalent

versions from every OpenMP code region. A novel optimizer is then employed which

determines the set of pareto-front solutions – for a combination of number of threads

and input data – by running a small subset of generated code versions.

In [135], polyhedral model iteration domain information have been used to generate effort

estimation functions used by the Insieme runtime to derive the optimal loop schedule

for a given loop, workgroup size, iteration range and system state.

178

In [136], the IR employed within the Insieme compiler, called INSPIRE, is described.

The paper describes the basic infrastructure with a focus on the representation of the

parallel control flow of a program which is natively supported by the proposed IR. The

paper describes how several parallel paradigms (i.e., OpenMP, OpenCL and MPI) can

be represented by INSPIRE.

6.2 Future Work

There is certainly an effort that the research community has to make to improve the

programmability of distributed memory systems. OpenCL seems the right way to ad-

dress this problem. However distributed memory system should be made a first class

citizen within the model itself. We think in the future OpenCL is going to be used as the

backend of more sophisticated tools which will have to purpose to hide the underlying

complexities. This is similar to what we proposed with libWater, however more focus

on performance is needed in order to breach the HPC community.

Tuning of runtime parameters is an easy way of squeezing out performance of existing

codes for which the source code may be not available. Although this is a well-known

effect, MPI implementations expose different parameters with slightly similar semantics.

We believe that an effort should be made within the MPI forum to bring standardiza-

tion to those parameters. In this way, by having a common interface and a precisely

defined semantics, it would be possible to make optimal parameter settings portable

across implementations. Another interesting research aspect would be to open-up tun-

ing interfaces to make those runtime parameters adjustable at runtime. This will allow

a program to adapt to optimally address each of the program phases which may have

different requirements for what concerns optimal runtime parameters settings.

Compiler-enabled optimization of message passing programs is a field which we believe

has not been completely exhausted yet. In this thesis we propose a way of representing

the semantics of MPI programs within the PM. This enables many transformations (e.g.

message splitting, coalescing) to be applied automatically to a code. Furthermore, since

the PM allows for composability of transformations, iterative feedback-driven techniques

may be used in the future to determine the best transformation sequence that optimizes

a message passing programs.

In this thesis we focused primarily in improving the performance of a program, however

many of the methods presented here may be suitable to optimize other application non-

functional parameters like energy consumption and efficiency.

Appendices

179

Appendix A

The Message Passing Interface

The Message Passing Interface or MPI is the de-facto standard for programming dis-

tributed memory machines. Its development started in 1991 by an open, international

forum consisting of representatives from industry, academia, and government laborato-

ries. It has received widespread acceptance because it has been carefully designed to

permit maximum performance on a wide variety of systems. The standard [3] defines

the syntax and semantics of a core of library routines useful to a wide range of users

writing portable message-passing programs in Fortran or the C programming language.

The MPI interface is meant to provide essential virtual topology, synchronization, and

communication functionality between a set of processes in a language-independent way.

Typically, for maximum performance, each CPU (or core in a multi-core machine) will

be assigned just a single process. This assignment happens at runtime through the agent

that starts the MPI program, normally called mpirun or mpiexec.

MPI library functions include, but are not limited to, point-to-point rendezvous-type

send/receive operations, choosing between a Cartesian or graph-like logical process

topology, exchanging data between process pairs (send/recv operations), combining par-

tial results of computations (gather and reduce operations), synchronizing nodes (bar-

rier operation) as well as obtaining network-related information such as the number

of processes in the computing session and the current processor identifier. Point-to-

point operations come in synchronous, asynchronous, buffered, and ready forms, to

allow both relatively stronger and weaker semantics for the synchronization aspects of

a rendezvous-send. Since MPI version 3.0 [3], collective operations can also have non-

blocking semantics for better communication over computation overlap.

181

182

A.1 Structure

MPI programs must follow a precise structure. Before any communication is performed

the MPI Init routine must be invoked which initializes the communication context (the

communicator). Within an MPI program, the MPI Init routine must be invoked only

once by each process, successive invocations are either a no-operation or may cause the

program to abort. After the initialization of the communication context, MPI routines

can be invoked. Before the end of a program, in order to release resources, the function

MPI Finalize must be invoked. No communication routines can be invoked after the

release of the communication context. Additionally, a call to MPI Init is not allowed

after the MPI Finalize call.

A.2 Concepts

In this Appendix we show the mapping between the generic message passing program-

ming model presented in Section 2.2 and the MPI interface with is used throughout this

paper.

A.2.1 Communicator

A communicator object groups processes together within a communication context. Each

communicator assigns to each contained process an independent identifier and arranges

its contained processes in an ordered topology. Messages exchanged within a context

cannot be captured by others, therefore communicators are often used to encapsulate

the communication context used within parallel libraries.

Beside communicators, MPI also offers the concept of groups which are mainly used for

reorganizing a group of processes before a new communicator is created. This gives the

ability to split and merge communicators creating many communication contexts within

a program.

The message passing model presented in Section 2.2 does not explicitly define commu-

nicators since in many of the work presented a single communication context is needed.

In all of the code example used throughout this thesis a single communicator is often

used, i.e., MPI COMM WORLD, which is the communicator created after the initialization of

an MPI program which contains all the processes being spawned by the mpirun agent.

183

A.2.2 Point-to-Point routines

Semantics of point-to-point routines is covered by Section 2.2. In this section, we map

the semantics of the basic operations in our model with the concrete implementation

provided by the MPI standard.

The semantics of the send operation (see Definition 16) is implemented by:

int MPI_Ssend(void *buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

This routine sends count elements of type datatype (we will discuss datatypes in Section

A.2.4) starting from local address addr to process id dest through channel tag within

communicator comm. The routine is blocking waiting from a compatible receive operation

being posted by the dest process. It then issue the transfer and returns the control to

the caller.

The non-blocking semantics, i.e., isend (see Section 18), is implemented by the MPI

routine:

int MPI_Issend(void *buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request* req)

Differently from MPI Ssend this routine returns the control immediately to the caller

and its competition can be checked by testing the req handler using the wait routine,

see Definition 20, which in MPI corresponds to:

int MPI_Wait(MPI_Request* req, MPI_Status* status)

This function receive as input the handler object req and blocks until the corresponding

operation is completed. The result of the underlying transfer is then written to the

status object which contains information on the destination or source process, the tag

being used, amount of data exchanged and in case an error occurred, the corresponding

error code.

The recv and irecv primitives, see Definition 17 and Definition 19, have also correspond-

ing routines in MPI, one which implements the blocking semantics, i.e., MPI Recv, and

one which is non-blocking, i.e., MPI Irecv. Like for the send, the signature of the two

functions are similar:

184

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int src,

int tag, MPI_Comm comm, MPI_Status* status)

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int src,

int tag, MPI_Comm comm, MPI_Request* req)

The blocking version returns information associated with the received message. The

status object contains information described above concerning the source and the

amount of data being received. If the programmer is not interested in this information,

because it is already explicit in the call to the receive, then the value MPI STATUS IGNORE

can be used. As a matter of fact querying the status object is only meaningful when

the receive statement uses wildcards for selecting message sources, i.e., MPI ANY SOURCE,

and tags, i.e., MPI ANY TAG.

A.2.2.1 Send and Buffering

The MPI standard offers several versions of the send routine with different behaviours.

One of the most used, which is usually also utilized within code examples throughout

this thesis is the MPI Send. Differently from the MPI Ssend, presented above, MPI Send

directly pushes the content of the sent buffer to the receiver process, by storing it into

an internal (or kernel) buffer, without waiting for the posting of a matching receive. In

this way, when the MPI Recv is posted the data will be read from the kernel buffer.

This way of transferring data is called eager. However, since the amount of buffering

provided at the receiver side is limited, this mechanism alone is not sufficient. The

presence of implicit buffering can also cause portability problems since programs which

work fine on one architecture stops working (usually deadlocking) on a different setup.

For larger message sizes the behaviour of the MPI Send switches to a different protocol

called rendezvous. In this mode the sender sends to the receiver a request for transferring

the data. When the receiver is ready, which means the receive routine is being executed,

it sends back to the sender an acknowledgment. After that the transfer begins and the

content flows directly from the sender buffer to the receiver buffer without any additional

copy.

A.2.3 Collective Routines

Collective calls in MPI involve communication among all processes in a process group

or communicator, see A.2.1. The basic collective operations introduced in Section 2.2.2

have a concrete implementation in MPI. The main difference stays in the fact that while

185

out abstract operations always involve the whole set of processes in a parallel program,

the one provided by MPI can be invoked on a subset of processes.

The barrier defined in Definition 22, is implemented by the routine:

MPI_Barrier(MPI_Comm comm)

When the routine is invoked using the MPI COMM WORLD communicator its semantics is

to block the caller process until all processes have reached the synchronization point.

Immediately after the control is returned to the caller.

The bcast operation is implemented in MPI by the following routine:

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root,

MPI_Comm comm)

The signature and semantics is the same as the one presented in the model section, see

Definition 23. The difference is that here count number of datatype objects are sent

instead of simple bytes.

The scatter and gather operations, on the other hand, are slightly different from the

one presented in the Section 2.2.2.

int MPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype sendtype,

void *recvbuf, int recvcnt, MPI_Datatype recvtype,

int root, MPI_Comm comm)

int MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype sendtype,

void *recvbuf, int recvcnt, MPI_Datatype recvtype,

int root, MPI_Comm comm)

In both cases two buffers are provided, one send buffer and a receive buffer. For the

MPI Scatter the sendbuff is only meaningful for the root process, other processes can

just provide a NULL pointer. All the processes, root included, must allocate a recvbuff

(every process is collaborating with data). The sendcnt and recvcnt state how many

objects of the corresponding type are sent by the root process to each other process

and received by every process. If the same type is used, sendcnt must equal recvcnt,

however the library allows for more complex behaviours.

Similar discussion can be done for the MPI Gather routine. In this case the semantics is

inverted.

Last function defined in our model is the reduction primitive. For this, MPI provides

an implementation which is similar to our formal definition:

186

int MPI_Reduce(void* sendbuf, void* recvbuf, int count, MPI_Datatype datatype,

MPI_Op op, int root, MPI_Comm comm)

int MPI_Op_create(MPI_User_function *function, int commute, MPI_Op *op)

As for preceding collective operations, also the root process must contribute to the

sendbuf and provided operator op must be a binary function which is associative. Non-

commutative user-define functions are allowed and defined using the MPI Op create

function. The flag commute is utilized to provide the information whether the defined

function is commutative.

A.2.4 Derived Datatypes

MPI routines must specify the type of the data which is sent between processes. Prim-

itive types have special type definitions, e.g., the C/C++ int type is implemented by

the MPI INT datatype. These definitions have two main objectives, on the one hand they

are portable across programming languages (an MPI INT type uses the same amount of

bytes independently on the underlying programming language). On the other hand, they

automatically perform data conversions so that machines with different representations,

i.e., little-endian versus big-endian, can transparently interact with each other.

Beside contiguous blocks of data, MPI’s datatypes can be used to transfer noncontiguous

data. Instead of offload the burden to the programmer of packing noncontinuous data

into a contiguous buffer at the sender side and unpack it at the receiver side; MPI

provides mechanisms to specify more general, mixed and noncontiguous communication

buffers. It is up to the implementation to decide whether data should be first packed

in a contiguous buffer before being transmitted, or whether it can be collected directly

from where it resides. The general mechanisms provided by the MPI standard allow one

to transfer directly, without copying, objects of various shapes and sizes. Two datatypes

will be mostly used throughout this work.

The MPI Type vector datatype is a general constructor that allows replication of a

datatype into locations that consist of equally spaced blocks.

int MPI_Type_vector(int count, int blocklength, int stride,

MPI_Datatype oldtype, MPI_Datatype *newtype)

Each block is obtained by concatenating the blocklenght number of copies of the old

datatype (i.e., oldtype). The spacing between blocks, i.e., stride, is a multiple of the

extent of the old datatype. The number of blocks constituting this datatype is count.

187

The second datatype used is the defined by the function MPI Type create struct. This

is the most general type constructor. The function signature is the following:

int MPI_Type_create_struct(int count, const int array_of_blocklengths[],

const MPI_Aint array_of_displacements[], const

MPI_Datatype array_of_types[],

MPI_Datatype *newtype)

It creates a type composed of count blocks (or number of entries). The number of ele-

ments in block i is given by the value of array of blocklengths[i]. The type of the

elements in block i is provided by the value of array of types[i]. The displacement of

block i, in bytes, from the first block of the struct is given by array of displacements[i].

Appendix B

Open MPI’s Runtime Parameters

A description of the 27 Open MPI’s runtime parameters used in Chapter 4 as returned

by the ompi info --all command.

mpi_yield_when_idle Yield the processor when waiting for MPI commu-

nication (for MPI processes, will default to 1 when

oversubscribing nodes)

mpi_paffinity_alone If nonzero, assume that this job is the only (set of)

process(es) running on each node and bind processes

to processors, starting with processor ID 0

mpi_preconnect_mpi Whether to force MPI processes to fully wire-up

the MPI connections between MPI processes during

MPI INIT (vs. making connections lazily – upon the

first MPI traffic between each process peer pair)

mpi_leave_pinned Whether to use the “leave pinned” protocol or not.

Enabling this setting can help bandwidth perfor-

mance when repeatedly sending and receiving large

messages with the same buffers over RDMA-based

networks (0 = do not use ”leave pinned” protocol, 1

= use ”leave pinned” protocol, -1 = allow network to

choose at runtime)

COLL: Collective operation tuning (coll *)

sm_tree_degree Degree of the tree for tree-based operations (must be

≥ 1 and ≤ min(control size, 255))

189

190

sm_control_size Length of the control data – should usually be either

the length of a cache line on most SMPs, or the size

of a page on machines that support direct memory

affinity page placement (in bytes)

sm_fragment_size Fragment size (in bytes) used for passing data

through shared memory (will be rounded up to the

nearest control size size)

sync_barrier_after Do a synchronization after each Nth collective

sync_barrier_before Do a synchronization before each Nth collective

tuned_init_tree_fanout Initial fanout used in the tree topologies for each

communicator. This is only an initial guess, if a

tuned collective needs a different fanout for an op-

eration, it build it dynamically. This parameter is

only for the first guess and might save a little time

tuned_init_chain_fanout Initial fanout used in the chain (fanout followed by

pipeline) topologies for each communicator. This is

only an initial guess, if a tuned collective needs a

different fanout for an operation, it build it dynami-

cally. This parameter is only for the first guess and

might save a little time

SM: Shared memory communication tuning (btl sm *)

eager_limit Maximum size (in bytes) of ”short” messages (must

be ≥ 1)

max_send_size Maximum size (in bytes) of a single ”phase 2” frag-

ment of a long message when using the pipeline pro-

tocol (must be ≥ 1)

rndv_eager_limit Size (in bytes) of ”phase 1” fragment sent for all large

messages (must be ≥ 0 and le eager limit)

fifo_size –

num_fifos –

OpenIB: InfiniBand communication tuning (btl openib *)

eager_limit Maximum size (in bytes) of ”short” messages (must

be ≥ 1)

max_send_size Maximum size (in bytes) of a single ”phase 2” frag-

ment of a long message when using the pipeline pro-

tocol (must be ≥ 1)

191

rndv_eager_limit Size (in bytes) of ”phase 1” fragment sent for all large

messages (must be ≥ 0 and le eager limit)

use_message_coalescing If nonzero, use message coalescing

use_eager_rdma Use RDMA for eager messages (-1 = use device de-

fault, 0 = do not use eager RDMA, 1 = use eager

RDMA)

eager_rdma_num Number of RDMA buffers to allocate for small mes-

sages (must be ≥ 1)

use_async_event_thread If nonzero, use the thread that will handle InfiniBand

asynchronous events

ib_max_rdma_dst_ops InfiniBand maximum pending RDMA destination

operations (must be ≥ 0)

rdma_pipeline_send_lenght Length of the ”phase 2” portion of a large message

(in bytes) when using the pipeline protocol. This

part of the message will be split into fragments of

size max send size and sent using send/receive se-

mantics (must be ≥ 0; only relevant when the PUT

flag is set)

rdma_pipeline_frag_size Maximum size (in bytes) of a single ”phase 3” frag-

ment from a long message when using the pipeline

protocol. These fragments will be sent using RDMA

semantics (must be ≥ 1; only relevant when the PUT

flag is set)

min_rdma_pipeline_size Messages smaller than this size (in bytes) will

not use the RDMA pipeline protocol. Instead,

they will be split into fragments of max send size

and sent using send/receive semantics (must be

≥ 0, and is automatically adjusted up to at least

(eager limit+btl rdma pipeline send length);

only relevant when the PUT flag is set)

Appendix C

The Insieme Compiler Toolset

The Insieme project [137] comprises two major components – the Insieme Compiler

and the Insieme Runtime System (RS). The compiler’s task is to convert input codes

based on various languages (C, C++, OpenCL) into a C-based representation which,

combined with the RS, can be compiled into a binary for a target architecture. During

this process, the compiler analyzes, manipulates and restructures the code as long as

the intended semantic of the program is not lost.

The source-to-source compiler provides a set of libraries including algorithms and data

structures to parse, analyze, manipulate and synthesize programs. In order to render

compiler analyses and transformations independent on the input language, the Insieme

Compiler relies on a program representation which is independent on the input language

and paradigm used. The Insieme parallel intermediate representation (INSPIRE) [136],

or just IR, is realizing this central component. This formal language has been designed

to express both sequential and parallel concepts encountered within programming lan-

guages like OpenMP, OpenCL and MPI in a uniform way. As a consequence, analyses

and transformations designed to work on this IR can be reused among several formalisms.

The RS provides an abstract interface to the underlying hardware infrastructure. Fur-

ther, the RS offers interfaces for influencing the execution of parallel codes (runtime-

tuning) as well as for monitoring the execution of applications. The latter allows the

use of collected data for post-mortem analyses as well as for real-time decision making

processes during the execution.

193

194

C.1 Compiler Infrastructure

This thesis focuses prevalently on the Insieme Compiler which is composed of four main

building blocks:

Core: It contains the data structures and utilities for representing, building and ma-

nipulating the IR;

Frontend: It converts a generic input program into INSPIRE. Currently only C is

supported. The C frontend, realized as part of this thesis work, builds the INSPIRE

representation starting from the AST produced by the LLVM/Clang parser [138].

Within the frontend also the parallel semantics of the input codes is re-arranged

into INSPIRE constructs (e.g., pfor are generated out of OpenMP data sharing

loops and channels from MPI point-to-point communications).

Analyses: It realizes several modules used to extract static knowledge from an IN-

SPIRE representation. In particular, an analysis is provided which analyzes the

IR for SCoPs. Polyhedral representation extracted from these SCoPs provides

the core data structure for loop dependencies analysis and transformations. Fur-

thermore, this module implements the construction of a CFG from INSPIRE and

a basic dataflow framework was implemented to support the research presented

throughout this thesis.

Transformations: It implements support for program transformations based on IN-

SPIRE. It provides utilities for INSPIRE manipulation and navigation and loop

transformations based on the polyhedral representation. Loop transformations

currently supported in Insieme are: interchange, strip mining, tiling, unrolling,

fusion and distribution.

Backend: It generates C code from INSPIRE. The backend has the ability to produce

standalone code, or programs which rely on the RS. Throughout this thesis, we

used the former mechanism since the runtime still lacks the ability to run on a

distributed memory system.

C.2 INSPIRE Overview

INSPIRE provides the means for representing the structure and the relevant semantic

aspects of a program in a way which is independent on the input language [136]. IN-

SPIRE is composed by a minimal type system for representing parameterized abstract

types (e.g.,int〈8〉 or type〈bool〉), structs, unions, functions and closures. Expressions can

195

be variables, literals (e.g., string, integer and floating point values) and call expressions.

Special type of semantics is implemented through the use of built-in functions (or oper-

ators). For example, mutable state is modeled through the ref.assign operator which is

invoked providing an R-value as right-hand side argument and an L-value (represented

in INSPIRE by the ref〈α〉 extension) as left-hand side argument. The sequential control

flow is represented by 9 statements: if, for, while, switch, compound, declaration, return,

break, and continue.

One of the main contributions of INSPIRE is the explicit representation of the parallel

control flow done via constructs at the language level and not by means of external

library routine calls (as commonly done within mainstream compilers). The basic mean

to represent parallelism is represented by the job construct which represent computation

which is executed cooperatively by a group of threads (i.e., a thread group). A job is

spawned by any thread using the spawn function. Joining of the spawned group is done

using the merge function.

Information within a thread group is exchanged using 3 primitives. The pfor en-

ables work-distribution, it resembles the semantics of the OpenMP parallel for. The

redistribute routine allows data to be rearranged among the threads using an arbitrary

functor. This function is useful to implement collective operations like bcast, scatter,

gather and reduction operations. The third and last communication mean is represented

by channels which provide a mechanism for point-to-point communication.

C.2.1 MPI Semantics in INSPIRE

Of particular importance for this thesis is the way the semantics of MPI is represented

within INSPIRE. In MPI, the entire application is processed by multiple cooperating pro-

cesses, typically running on different nodes of a cluster. The whole-program parallelism

of an MPI application can be modeled using a top-level merge/spawn/job combination.

Within the executed job, an array of communication channels of type channel 〈msg, 1〉
is created (COM-array). The utilized msg type is a struct modeling MPI messages and

associated envelope, see Definition 14. The basic structure of an MPI program in the

IR is the following

1 merge(spawn(job[1-inf] {

2 array <channel <msg ,1>> com = redistribute(channel.create(msg ,1), id);

3 /* ... MPI program body ... */

4 channel.release(com[getThreadID (0)]);

5 }));

where id is the identity function of type (α) → α. This listing covers the obligatory

MPI Init and MPI Finalize calls (see Appendix A.1). In particular, in line 2 channels

196

are created to allow communication between each pair of processes (i.e., MPI Init). In

line 4, channels are released and spawned tasks are merged together (i.e., MPI Finalize).

Each channel within the COM-array is associated to one of the participating workers. If

one MPI worker is sending data to a peer using MPI Send or similar primitives, the data

is encapsulated into a message and submitted to the channel associated to the receiver

using the channel.send primitive. Consequently, MPI instructions receiving messages

(e.g.,MPI Recv) are based on the channel.recv operator accessing the channel associated

to the local thread. Only one channel is instantiated between each pair of processes,

this represents a simplification of the channel primitive presented in Definition 15, i.e.,

|CH(pi, pj)| = 1. A channel is created through the channel .create primitive. It accepts

a generic message type, i.e., msg, and the amount of buffering provided (in terms of

number of messages) by the channel. This allows the definition of both blocking and

non-blocking semantics for the send operation. However, differently from the point-to-

point primitives presented in Section 2.2, a channel cannot be queried for the completion

of a data transfer. In INSPIRE, it is assumed that a message is safely copied into the

internal buffer once the channel .send primitive completes; therefore there is no need for

a wait primitive.

Beside send/recv routines, MPI covers a rich set of collective operations. These kind

of operations have been generalized by the IR’s redistribute operator which can be

specialized for the particular cases. For instance, an MPI reduction operation summing

up the distributed values x and reporting the result exclusively to worker 0 can be

modeled by

1 redistribute(x,

2 (array <int <4>> data) {

3 if (getThreadID (0) != 0) { return 0; }

4 return sum(data);

5 });

where sum is an ordinary sequential function summing up the elements of an array. Sim-

ilar derived constructs can be used to represent broadcast, scatter and gather routines.

The redistribute only needs to preserve the I/O semantics of the collective operation.

The runtime, instructed by the compiler backend, is then responsible of choosing an

appropriate implementation optimized for the target architecture.

INSPIRE implementation of MPI covers a small, but relevant, portion of the standard.

Some of the unsupported features can be rewritten in terms of supported ones (e.g., non-

blocking semantics of point-to-point routines can be replaced by blocking behaviour).

However, some functionalities do not fit with the execution model imposed by the RS.

One example is represented by process groups which in MPI are used to define com-

municators, see Appendix A. Since the parallel model underlying INSPIRE is based on

197

a fork-join paradigm, no primitives are yet provided to regroup threads belonging to

a thread group. Another important feature of MPI which has not yet been integrated

in INSPIRE is the concept of user data-types. In MPI data-types are used to avoid

expensive packing/unpacking operations in the use code. In order to introduce a similar

mechanism in INSPIRE the concepts of blocking communication calls and buffering need

to be relaxed. Non-blocking semantics can be easily integrated though future objects

which resemble the semantics of handler objects returned by MPI non-blocking routines.

Furthermore, a mechanism to map MPI data-types to IR types is necessary.

Appendix D

The Iterative Dataflow Analysis

Framework

The CFG of a program is an important data structure which allows the compiler to

gather information on its dataflow. In particular, dataflow analysis attempts to obtain

particular information about a program at each point. For the sake of this thesis, a

program point corresponds to a basic block. An example of the type of information

which can be discovered by dataflow analysis are: the set of definitions reaching a

particular use of a variable (i.e., reaching definitions), or the set of variables that may

be potentially read before their next write (i.e., live variables).

Such information can be generally computed from the AST, however the CFG provides

a much easier data structure for this purpose. The analysis defines a so called dataflow

equation for each node of the CFG which is then solved by repeatedly calculating the

output values from the inputs locally at each node. Computed outputs are then prop-

agated through the CFG edges to be the input of the successor (in the case of forward

analyses) or the output of predecessor (for backward analyses) nodes. Since the CFG

can have loops, dataflow equations have to be solved iteratively until the whole system

stabilizes, i.e., it reaches a so called fixpoint.

Dataflow variables are associated with the entry and exit points of each basic block in

the CFG. Solving of the dataflow equations yields the new dataflow variable associated

with either the entry or the exit (depending on the direction of the analysis). In general,

in order for the iterative approach to converge, the value of a dataflow variable during

an iteration is always as subset of the value in the preceding iteration. In fact, an order

can be imposed on the entire space of dataflow values which can be assigned to variables

associated with basic blocks. This is often modeled using a mathematical abstraction

called lattice.

199

200

Definition 39 – Poset

Let us define a partial order, v on a set B as a relation over B × B that has the

following properties:

1. Reflexive. For all elements x ∈ B, x v x.

2. Transitive. For all elements, x, y, z ∈ B, x v y and y v z implies x v z.

3. Anti-symmetric. For all elements x, y ∈ B, x v y and y v x implies x = y.

A partially ordered set, or poset, is denoted by (B,v), is a set B and a partial order

v.

In the context of dataflow analysis, the relation x v y can be read as “x is a conservative

(safe) approximation of y”. If x v y, then the dataflow value x can be used in place of

y without effecting the correctness of the program. We use the v symbol as an abstract

relation which is then replaced by a concrete mathematical operation depending on the

analysis being performed (e.g., v is ⊇ for live variable analysis). Posets which are defined

by dataflow problems often have an element which is safer than any other element in

the poset. If exists, such element is called the least element, or bottom, and it is denoted

as the symbol ⊥. The greatest element, or top, defined similarly, is denoted by >.

In a poset two important elements may exist:

Definition 40 – join

Let us define the join, or the lower upper bound (lub) of a set B as an element x such

that (i) x is an upper bound of B and (ii) for all other upper bounds y ∈ B, x v y.

This element is denoted as
d
B. The lub of two elements can be also expressed as

x u y.

Definition 41 – meet

Let us define the meet, or the glb of a set B as an element x such that (i) x is a

lower bound of B and (ii) for all other lower bounds y ∈ B, y v x. This element is

denoted as
⊔
B. The glb of two elements can be also expressed as x t y.

Both the join and meet of a set, if they exist, are unique. In the context of data flow

analysis, the meet operator is used to merge data flow values along different paths and

reaching a join node of the underlying CFG. The result of the meet operation is the

most exhaustive safe approximation of data flow values along each of the paths.

Definition 42 – Meet semilattice

A poset (L,v) is a meet semilattice, if and only if for each non-empty finite B ⊆ L,
d
B ∈ L.

201

Since possible dataflow values are element of a meet semilattice several considerations

can be made on the convergence to a fixpoint solution. A fixpoint of a function f : L→ L

is a value v ∈ L that satisfies f(v) = v. In particular, if the function being applied to the

dataflow variables iteratively (also called flow function) is monotonic it can be proved

that the fixpoint solution will be reached [102].

A basic block, n, of the CFG has two variables associated: Inn, Outn ∈ L. The former

is the dataflow value available at the entry point of the block while the latter is the

value at the exit point. The dataflow value associated with Inn is computed based on

the dataflow information generated by preceding nodes, Pred(n), using the following

formula:

Inn =

{
BI if n is entry block

d
p∈Pred(n) fp(Inp) otherwise

(D.1)

Where fn(Inn) is the flow (or transfer) function which specifies which dataflow informa-

tion is generated or destroyed by a generic CFG block. The equation presented above is

characteristic of forward dataflow problems where information are propagated accord-

ingly to the direction of the CFG’s edges. However backward analysis can be defined by

replacing, in the equation, Inn with Outn.

In general, definition of the transfer function may depend on the value of the dataflow

information at the entry of the block. In literature this is known as a non-separable

dataflow framework [102]. Transfer functions of a non-separable dataflow analysis is

characterized by four components, a generic fn(Inn) for a non-separable framework is

defined as follows:

fn(x) = (x− (ConstKilln ∪DepKilln(x))) ∪ (ConstGenn ∪DepGenn(x))

Where:

ConstGenn: dataflow information generated by the basic block n;

ConstKilln: dataflow information killed (or destroyed) by the basic block n;

DepGenn(x): dataflow information generated by the basic block n which depends on

the dataflow value in input to block n;

DepKilln(x): dataflow information killed by the basic block n which depends on the

dataflow value in input to block n.

An example of forward dataflow analysis is the reaching definitions:

202

A definition di ∈ Defs of variable x ∈ Var reaches a program point u if

di occurs on some path from entry to u and is not followed by any other

definition of x on this path.

The lattice L for this problem is composed by the powerset of the set Defs. The initial

value associated to the entry block, BI, and as well to the other blocks in the CFG is

the empty set, ∅. The confluence, or meet operator
⊔

, is the set union operation
⋃

.

This captures the “any path” nature of the dataflow since join point of the CFG should

propagate information coming from every incoming edge. Genn contains downwards

exposed definitions in n whereas Killn contains all definitions of all variables modified

in n. Both DepGenn(x) and DepKilln(x) are not defined since there are no depen-

dent components. An instance of non-separable dataflow analysis will be presented in

chapter 5 of this thesis.

The dataflow iterative framework allows the definition of new analysis in a declarative

way. Its importance is well understood and almost every compiler integrates a dataflow

solver. As part of this thesis work, a dataflow solver has been integrated in the Insieme

compiler, presented in Appendix C.

Appendix E

Acronyms

ANN Artificial Neural Network. .xii

ANOVA Analysis of Variance. .xii

API Application Programming Interface . iv

AST Abstract Syntax Tree . xi

bps bits per second . 13

BSC Barcelona Supercomputing Center . xi

BTL Byte Transfer Layer . 86

ccNUMA Cache coherent NUMA . 11

CFG Control Flow Graph . xi

CICO copyin/copyout semantics . 127

CPU Central Processing Unit . 9

CUDA Compute Unified Device Architecture. .62

DAG Directed Acyclic Graph . xi

DCR Dynamic Collective Replacement. .xi

DDG Data Dependence Graph . xii

DMA Direct Memory Access. .20

DSL Domain Specific Language . 82

FIFO First In, First Out. .17

FLOPS FLoating-point Operations Per Second . 10

glb greatest lower bound .145

GPU Graphics Processing Unit . xi

203

204

GPGPU General Purpouse Graphics Processing Unit . 175

HPC High-Performance Computing . iv

IC Iterative Compilation. .85

IFT Iterative Feedback-driven Tuning . 85

ILP Instruction Level Parallelism. .9

IPS instructions per second . 10

IR Intermediate Representation . 27

LOOCV Leave-One-Out Cross Validation. .105

LTO Link Time Optimizations .157

lub lower upper bound .200

MCA Modular Component Architecture . 84

ML Machine Learning . xii

MLP Multi-Layer Perceptron . 105

MPI Message Passing Interface . iv

MPL Meta-Programming Library . 57

MPMD Multiple Program Multiple Data. .xiii

MPP MPI CPP Interface . xi

NiC Network interface Controller .12

NPB NAS Parallel Benchmarks. .xi

NUMA Non-Uniform Memory Access . 11

OOMPI Object-Oriented MPI . 3

OOP Object-Oriented Programming. .4

OpenCL Open Computing Language . iv

OpenMP Open Multi-Processing . 38

OPTO Open Tool for Parameter Optimization . 85

OPUB Observed Performance Upper-Bound . xii

OS operating system . 13

pCFG parallel CFG . 156

PGAS Partitioned Global Address Space . 3

PM Polyhedral Model . iv

RAW Read-After-Write .32

205

RDMA Remote Direct Memory Access . 52

SCoP Static Control Part . 31

SMP Symmetric Multiprocessor System . 1

SMT Symmetric Multi-Threading . 88

SoC System on Chip . 10

SPMD Single Program Multiple Data . xiii

SSA Static Single Assignment . 157

STL Standard Template Library . 41

TCP Transmission Control Protocol. .86

UPC Unified Parallel C . 39

VSC2 Vienna Supercomputing Cluster 2. .xi

WAR Write-After-Read. .32

WAW Write-After-Write . 33

Bibliography

[1] Matthias S. Müller, G. Matthijs van Waveren, Ron Lieberman, Brian Whitney,

Hideki Saito, Kalyan Kumaran, John Baron, William C. Brantley, Chris Parrott,

Tom Elken, Huiyu Feng, and Carl Ponder. SPEC MPI2007 – an application

benchmark suite for parallel systems using MPI. Concurrency and Computation:

Practice and Experience, 22(2):191–205, 2010.

[2] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles

and Paradigms (2nd Edition). Prentice-Hall, Inc., 2006.

[3] MPI Forum. MPI: A Message-Passing Interface Standard. Version 3, 2012. URL

http://www.mpi-forum.org.

[4] Jeff Squyres Bill, Bill Saphir Y, and Andrew Lumsdaine Z. The Design and Evo-

lution of the MPI-2 C++ Interface. In In Proceedings, 1997 Internantional Con-

ference on Scientific Computing in Object-Oriented Parallel Computing, Lecture

Notes in Computer Science. Springer-Verlag, 1997.

[5] Prabhanjan Kambadur, Douglas Gregor, Andrew Lumsdaine, and Amey

Dharurkar. Modernizing the C++ Interface to MPI. In Recent Advances in Par-

allel Virtual Machine and Message Passing Interface, Lecture Notes in Computer

Science, pages 266–274. Springer Berlin / Heidelberg, 2006.

[6] B. C. McCandless, J. M. Squyres, and A. Lumsdaine. Object-Oriented MPI

(OOMPI): A class library for the message passing interface. In Proceedings of

the Second MPI Developers Conference, pages 87–. IEEE Computer Society, 1996.

[7] UPC Consortium. UPC Language Specifications, v1.2. Tech Report LBNL-59208,

Lawrence Berkeley National Lab, 2005.

[8] Matthew J. Koop, Terry Jones, and Dhabaleswar K. Panda. Reducing Connection

Memory Requirements of MPI for InfiniBand Clusters: A Message Coalescing Ap-

proach. In Proceedings of the Seventh IEEE International Symposium on Cluster

Computing and the Grid, CCGRID ’07, pages 495–504, Washington, DC, USA,

2007. IEEE Computer Society. ISBN 0-7695-2833-3.

207

http://www.mpi-forum.org

208

[9] Torsten Hoefler and Timo Schneider. Runtime Detection and Optimization of

Collective Communication Patterns. In PACT, pages 263–272, 2012.

[10] Andreas Knüpfer, Dieter Kranzlmüller, and Wolfgang E. Nagel. Detection of

Collective MPI Operation Patterns. In PVM/MPI, pages 259–267, 2004.

[11] Mohamad Chaarawi, Je M Squyres, Edgar Gabriel, and Saber Feki. A Tool for

Optimizing Runtime Parameters of Open MPI. In Proceedings of the 15th European

PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine

and Message Passing Interface, pages 210–217, Berlin, Heidelberg, 2008. Springer-

Verlag.

[12] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. Optimizing for

reduced code space using genetic algorithms. In Proceedings of the ACM SIGPLAN

1999 workshop on Languages, compilers, and tools for embedded systems, LCTES

’99, pages 1–9, 1999.

[13] Zhelong Pan and Rudolf Eigenmann. Fast and effective orchestration of compiler

optimizations for automatic performance tuning. In CGO ’06: Proceedings of the

International Symposium on Code Generation and Optimization, pages 319–332,

Washington, DC, USA, 2006. IEEE Computer Society.

[14] R. P. J. Pinkers, P. M. W. Knijnenburg, M. Haneda, and H. A. G. Wijshoff.

Statistical selection of compiler options. In MASCOTS ’04: Proceedings of the

The IEEE Computer Society’s 12th Annual International Symposium on Modeling,

Analysis, and Simulation of Computer and Telecommunications Systems, pages

494–501, Washington, DC, USA, 2004. IEEE Computer Society.

[15] Anthony Danalis, Lori Pollock, Martin Swany, and John Cavazos. MPI-aware

compiler optimizations for improving communication-computation overlap. In Pro-

ceedings of the 23rd international conference on Supercomputing, ICS ’09, pages

316–325, 2009. ISBN 978-1-60558-498-0.

[16] Thomas Fahringer and Eduard Mehofer. Buffer-safe communication optimization

based on data flow analysis and performance prediction. In Proceedings of the 1997

International Conference on Parallel Architectures and Compilation Techniques

(PACT’97), pages 189–200. IEEE Computer Society Press, 1997.

[17] Beniamino Di Martino, Antonino Mazzeo, Nicola Mazzocca, and Umberto Villano.

Parallel program analysis and restructuring by detection of point-to-point interac-

tion patterns and their transformation into collective communication constructs.

Science of Comp. Prog., 40, 2001.

209

[18] Greg Bronevetsky. Communication-Sensitive Static Dataflow for Parallel Message

Passing Applications. In Proceedings of the 7th annual IEEE/ACM International

Symposium on Code Generation and Optimization, CGO ’09, pages 1–12, Wash-

ington, DC, USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3576-0.

[19] Erich Strohmaier. TOP500 - TOP500 supercomputer. In Proceedings of the

ACM/IEEE SC2006 Conference on High Performance Networking and Comput-

ing, November 11-17, 2006, Tampa, FL, USA, page 18. ACM Press, 2006.

[20] John L. Hennessy and David A. Patterson. Computer Architecture, Fourth Edition:

A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2006. ISBN 0123704901.

[21] Charles E. Leiserson. Fat-trees: universal networks for hardware-efficient super-

computing. IEEE Trans. Comput., 34(10):892–901, October 1985.

[22] Clark Robert G. Wilson, Leslie B. Comparative programming languages. Addison-

Wesley, 2001.

[23] Cédric Bastoul. Improving Data Locality in Static Control Programs. PhD thesis,

University Paris 6, Pierre et Marie Curie, France, December 2004.

[24] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul. The poly-

hedral model is more widely applicable than you think. In ETAPS CC, March

2010.

[25] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David Parello,

Marc Sigler, and Olivier Temam. Semi-automatic composition of loop transfor-

mations for deep parallelism and memory hierarchies. International Journal of

Parallel Programming, 34(3):261–317, June 2006. Classement CORE : A.

[26] Alexander I. Barvinok. A polynomial time algorithm for counting integral points in

polyhedra when the dimension is fixed. Math. Oper. Res., 19(4):769–779, Novem-

ber 1994.

[27] Nicolas Vasilache, Cedric Bastoul, Albert Cohen, and Sylvain Girbal. Violated

dependence analysis. In Proceedings of the 20th annual international conference

on Supercomputing, ICS ’06, pages 335–344, New York, NY, USA, 2006. ACM.

[28] Michael Joseph Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press,

Cambridge, MA, USA, 1990. ISBN 0262730820.

[29] Utpal Banerjee. Dependence analysis for supercomputing. Kluwer Academic,

Boston, MA, USA, 1988.

210

[30] MPI Forum. The MPI-1 Specification, . URL http://www.mpi-forum.org/docs/

docs.html.

[31] Anthony Skjellum, Diane G. Wooley, Andrew Lumsdaine, Ziyang Lu, Michael

Wolf, Jeffrey M. Squyres, Brian Mccandless, and Purushotham V. Bangalore.

Object-oriented analysis and design of the message passing interface, 1998.

[32] Henry C. Baker, Jr. and Carl Hewitt. The incremental garbage collection of pro-

cesses. In Proceedings of the 1977 symposium on Artificial intelligence and pro-

gramming languages, pages 55–59. ACM, 1977.

[33] Jarek Nieplocha, Bruce Palmer, Manojkumar Krishnan, Harold Trease, Edoardo

Aprá, Jarek Nieplocha, Bruce Palmer, Manojkumar Krishnan, Harold Trease, and

Edoardo Aprá. Advances, Applications and Performance of the Global Arrays

Shared Memory Programming Toolkit. Intern. J. High Perf. Comp. Applications,

20, 2005.

[34] Robert W. Numrich and John Reid. Co-array Fortran for parallel programming.

SIGPLAN Fortran Forum, 17:1–31, August 1998.

[35] UPC Language Specifications, v1.2. Technical Report LBNL-59208, Lawrence

Berkeley National Lab Tech Report, 2005.

[36] Ivan Grasso, Simone Pellegrini, Biagio Cosenza, and Thomas Fahringer. libwater:

Heterogeneous distributed computing made easy. In ICS, pages 161–172, 2013.

[37] C99 standard. URL www.open-std.org/JTC1/SC22/wg14/www/docs/n1124.pdf.

[38] Robert Ramsey. Boost Serialization Library. URL www.boost.org/doc/libs/

release/libs/serialization/.

[39] Simone Pellegrini. MPI C++ Interface, . URL https://github.com/

motonacciu/mpp.

[40] John Burkardt. QUAD MPI. URL http://people.sc.fsu.edu/~jburkardt/c_

src/quad_mpi/quad_mpi.html.

[41] Andrei Alexandrescu. Traits: The else-if-then of Types. In C++ Report, pages

22–25, 2000. URL http://erdani.com/publications/traits.html.

[42] David Abrahamsi and Aleksey Gurtovoy. C++ Template Metaprogramming.

Addison-Wesley, 2006.

[43] Robert W. Numrich and John Reid. Co-arrays in the next fortran standard.

SIGPLAN Fortran Forum, 24(2):4–17, August 2005.

http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/docs/docs.html
www.open-std.org/JTC1/SC22/wg14/www/docs/n1124.pdf
www.boost.org/doc/libs/release/libs/serialization/
www.boost.org/doc/libs/release/libs/serialization/
https://github.com/motonacciu/mpp
https://github.com/motonacciu/mpp
http://people.sc.fsu.edu/~jburkardt/c_src/quad_mpi/quad_mpi.html
http://people.sc.fsu.edu/~jburkardt/c_src/quad_mpi/quad_mpi.html
http://erdani.com/publications/traits.html

211

[44] B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel programmability and the

chapel language. Int. J. High Perform. Comput. Appl., 21(3), August 2007.

[45] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan

Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an

object-oriented approach to non-uniform cluster computing. In Proceedings of the

20th annual ACM SIGPLAN conference on Object-oriented programming, systems,

languages, and applications, OOPSLA ’05, pages 519–538, 2005.

[46] D. Bonachea. GASNet Specification, v1.1. Technical Report UCB/CSD-02-1207,

U.C. Berkeley, 2002.

[47] M.M. Strout, B. Kreaseck, and P.D. Hovland. Data-Flow Analysis for MPI Pro-

grams. In Parallel Processing, 2006. ICPP 2006. International Conference on

Parallel Processing, pages 175 –184, aug. 2006.

[48] PAPI: Performance Application Programming Interface. URL http://icl.cs.

utk.edu/papi/.

[49] Aleksey Gurtovoy and David Abrahams. The Boost Metaprogramming Library.

URL http://www.boost.org/doc/libs/1_46_1/libs/mpl/doc/index.html.

[50] Dan Bonachea Paul H. Hargrove Steven Hofmeyr Costin Iancu Seung-Jai Min

Katherine Yelick Yili Zheng, Filip Blagojevic. Getting Multicore Performance

with UPC. In SIAM Conference on Parallel Processing for Scientific Computing,

Seattle, Washington, February 2010.

[51] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo, and Jaejin Lee.

SnuCL: an OpenCL framework for heterogeneous CPU/GPU clusters. In ICS,

pages 341–352, 2012.

[52] A. Barak, T. Ben-Nun, E. Levy, and A. Shiloh. A Package for OpenCL Based

Heterogeneous Computing on Clusters with Many GPU Devices. In Workshop

PPAC, pages 224–231, 2010.

[53] Ryo Aoki, Shuichi Oikawa, Takashi Nakamura, and Satoshi Miki. Hybrid OpenCL:

Enhancing OpenCL for Distributed Processing. In ISPA, pages 149–154, 2011.

[54] Alves Albano, Rufino Jose, Pina Antonio, and Santos Luis Paulo. clOpenCL

- Supporting Distributed Heterogeneous Computing in HPC Clusters. In 10th

International Workshop HeteroPar, 2012.

[55] Magnus Strengert, Christoph Müller, Carsten Dachsbacher, and Thomas Ertl.

CUDASA: Compute Unified Device and Systems Architecture. In EGPGV, pages

49–56, 2008.

http://icl.cs.utk.edu/papi/
http://icl.cs.utk.edu/papi/
http://www.boost.org/doc/libs/1_46_1/libs/mpl/doc/index.html

212

[56] José Duato, Antonio J. Peña, Federico Silla, Rafael Mayo, and Enrique S.

Quintana-Ort́ı. rCUDA: Reducing the number of GPU-based accelerators in high

performance clusters. In HPCS, pages 224–231, 2010.

[57] Orion S. Lawlor. Message passing for GPGPU clusters: CudaMPI. In CLUSTER,

pages 1–8, 2009.

[58] Sameer Kumar, Gabor Dozsa, Gheorghe Almasi, Philip Heidelberger, Dong Chen,

Mark E. Giampapa, Michael Blocksome, Ahmad Faraj, Jeff Parker, Joseph Rat-

terman, Brian Smith, and Charles J. Archer. The deep computing messaging

framework: generalized scalable message passing on the Blue Gene/P supercom-

puter. In ICS, pages 94–103, 2008.

[59] Jehoshua Bruck, Ching-Tien Ho, Shlomo Kipnis, and Derrick Weathersby. Ef-

ficient Algorithms for All-to-All Communications in Multi-Port Message-Passing

Systems. In SPAA, pages 298–309, 1994.

[60] Jelena Pjesivac-Grbovic, Thara Angskun, George Bosilca, Graham E. Fagg, Edgar

Gabriel, and Jack Dongarra. Performance analysis of MPI collective operations.

Cluster Computing, 10(2):127–143, 2007.

[61] Peter Sanders, Jochen Speck, and Jesper Larsson Träff. Two-tree algorithms for

full bandwidth broadcast, reduction and scan. Parallel Computing, 35(12):581–

594, 2009.

[62] The Vienna Scientific Cluster 2, 2012. URL http://www.vsc.ac.at.

[63] The MinoTauro GPU Cluster, 2013. URL http://www.bsc.

es/marenostrum-support-services/\other-hpc-facilities/

nvidia-gpu-cluster.

[64] Wei Wang, Hanli Wang, Dong Guo, Haoyang Wei, and Guosun Zeng. Parallel

time-space processing model based fast N-body simulation on GPUs. In PMAM,

2013.

[65] Jeroen Bédorf, Evghenii Gaburov, and Simon Portegies Zwart. A sparse octree

gravitational N-body code that runs entirely on the GPU processor. J. Comput.

Physics, 231(7):2825–2839, 2012.

[66] Tsuyoshi Hamada and Keigo Nitadori. 190 TFlops Astrophysical N-body Simula-

tion on a Cluster of GPUs. In SC, 2010.

[67] Pritish Jetley, Lukasz Wesolowski, Filippo Gioachin, Laxmikant V. Kalé, and

Thomas R. Quinn. Scaling Hierarchical N-body Simulations on GPU Clusters.

In SC, 2010.

http://www.vsc.ac.at
http://www.bsc.es/marenostrum-support-services/\other-hpc-facilities/nvidia-gpu-cluster
http://www.bsc.es/marenostrum-support-services/\other-hpc-facilities/nvidia-gpu-cluster
http://www.bsc.es/marenostrum-support-services/\other-hpc-facilities/nvidia-gpu-cluster

213

[68] Ivan Grasso, Klaus Kofler, Biagio Cosenza, and Thomas Fahringer. Automatic

problem size sensitive task partitioning on heterogeneous parallel systems. In

PPoPP, 2013.

[69] Klaus Kofler, Ivan Grasso, Biagio Cosenza, and Thomas Fahringer. An automatic

input-sensitive approach for heterogeneous task partitioning. In ICS, 2013.

[70] Ma Kai, Li Xue, Chen Wei, Zhang Chi, and Wang Xiaorui. GreenGPU: A Holistic

Approach to Energy Efficiency in GPU-CPU Heterogeneous Architectures. In

ICPP, 2012.

[71] Dominik Grewe and Michael F.P. O’Boyle. A Static Task Partitioning Approach

for Heterogeneous Systems Using OpenCL. In CC, 2011.

[72] H. J. C. Berendsen, David van der Spoel, and R. van Drunen. GROMACS: a

message-passing parallel molecular dynamics implementation. Computer Physics

Communications, 91(1/3), September 1995.

[73] Joe Armstrong. Making Reliable Distributed Systems in the Presence of Software

Errors. PhD thesis, Royal Institute of Technology (KTH), Stockholm, December

2003.

[74] Martin Odersky and al. An overview of the scala programming language. Technical

Report IC/2004/64, EPFL Lausanne, Switzerland, 2004.

[75] MVAPICH Team. MVAPICH 1.0 User and Tuning Guide, 2008.

[76] Open MPI. Modular Component Architecture, 2000. URL http://www.

open-mpi.org/faq/?category=tuning.

[77] P. M. W. Knijnenburg, T. Kisuki, and M. F. P. O’Boyle. Iterative compilation.

pages 171–187, 2002.

[78] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle,

J. Thomson, M. Toussaint, and C. K. I. Williams. Using machine learning to

focus iterative optimization. In CGO ’06: Proceedings of the International Sym-

posium on Code Generation and Optimization, pages 295–305, Washington, DC,

USA, 2006. IEEE Computer Society. ISBN 0-7695-2499-0.

[79] Wolfgang Banzhaf, Frank D. Francone, Robert E. Keller, and Peter Nordin. Ge-

netic programming: an introduction: on the automatic evolution of computer pro-

grams and its applications. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1998. ISBN 1-55860-510-X.

http://www.open-mpi.org/faq/?category=tuning
http://www.open-mpi.org/faq/?category=tuning

214

[80] Douglas C. Montgomery. Design and Analysis of Experiments, Student Solutions

Manual. Wiley, August 2005. ISBN 0471733040.

[81] Rob F. Van der Wijngaart. Nas Parallel Benchmarks Version 3.3. Technical Report

NAS-02-007, Computer Science Corporation NASA Advanced Supercomputing

(NAS) Division, October 2002.

[82] Parallel Benchmarks Ahmad, Ahmad Faraj, and Xin Yuan. Communication char-

acteristics in the nas. In In Fourteenth IASTED International Conference on

Parallel and Distributed Computing and Systems (PDCS 2002, pages 729–734,

2002.

[83] H. S. Hall and S. R. Knight. Higher algebra. Reem Publications, 2011.

[84] Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical opti-

mization of software and the atlas project. PARALLEL COMPUTING, 27:2001,

2000.

[85] M. Frigo and S.G. Johnson. FFTW: an adaptive software architecture for the

FFT. In Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998

IEEE International Conference on, volume 3, pages 1381–1384 vol.3, 1998.

[86] Graham E. Fagg, Thara Angskun, George Bosilca, and Jack J. Dongarra. Decision

trees and mpi collective algorithm selection problem. 2006.

[87] K. D. Cooper, T.J. Grosul, A.and Harvey, S. Reeves, D. Subramanian, L. Torzon,

and T. Waterman. Exploring the structure of the space of compilation sequences

using randomized search algorithms. In In the Proceedings of the 2004 LACSI

Symposium, pages 295–305. IEEE Computer Society, 2004.

[88] David E. Goldberg and Kalyanmoy Deb. A comparative analysis of selection

schemes used in genetic algorithms. In Foundations of Genetic Algorithms, pages

69–93. Morgan Kaufmann, 1991.

[89] T. W. Anderson and Theodore W. Anderson. An Introduction to Multivariate

Statistical Analysis, 2nd Edition. Wiley, 2 edition, September 1984.

[90] Ethem Alpaydin. Introduction to Machine Learning (Adaptive Computation and

Machine Learning). The MIT Press, 2004. ISBN 0262012111.

[91] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford Univer-

sity Press, January 1996. ISBN 978-0198538646.

[92] Peter Dalgaard. Introductory Statistics with R (Statistics and Computing).

Springer, 2nd edition, August 2008.

215

[93] MPI Forum. Message Passing Interface (MPI) Forum Home Page.

http://www.mpi-forum.org/ (Dec. 2009), .

[94] Galen Mark Shipman, Tim S. Woodall, George Bosilca andRich L. Graham, and

Arthur B. Maccabe. High performance RDMA protocols in HPC. In Proceedings,

13th European PVM/MPI Users’ Group Meeting, Lecture Notes in Computer Sci-

ence, Bonn, Germany, September 2006. Springer-Verlag.

[95] Wei-Yu Chen, Costin Iancu, and Katherine Yelick. Communication optimizations

for fine-grained upc applications. In Proceedings of the 14th International Con-

ference on Parallel Architectures and Compilation Techniques, PACT ’05, pages

267–278, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-

2429-X.

[96] Kirk W. Cameron and Xian-He Sun. Quantifying Locality Effect in Data Access

Delay: Memory logP. In Proceedings of the 17th International Symposium on

Parallel and Distributed Processing, IPDPS ’03, Washington, DC, USA, 2003.

IEEE Computer Society. ISBN 0-7695-1926-1.

[97] A. Danalis, L. Pollock, and M. Swany. Automatic MPI application transformation

with ASPhALT. In Par. and Distr. Proc. Symp., IPDPS 2007, pages 1 –8, Mar.

2007.

[98] Anthony Danalis, Ki-Yong Kim, Lori Pollock, and Martin Swany. Transformations

to parallel codes for communication-computation overlap. In Proceedings of the

2005 ACM/IEEE conference on Supercomputing, SC ’05, pages 58–, Washington,

DC, USA, 2005. ISBN 1-59593-061-2.

[99] Andreas Knüpfer et al. The vampir performance analysis tool-set. In Tools for

High Performance Computing, pages 139–155. 2008. ISBN 978-3-540-68564-7.

[100] M.-W. Benabderrahmane et al. The polyhedral model is more widely applicable

than you think. In Proc. of the Intl. Conf. on Compiler Constr., LNCS, March

2010.

[101] Nicolas Vasilache, Albert Cohen, Cedric Bastoul, and Sylvain Girbal. Violated

dependence analysis. In In ACM ICS, 2006.

[102] Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow Analysis:

Theory and Practice. 2009.

[103] Thomas Fahringer and Eduard Mehofer. Buffer-safe and cost-driven communi-

cation optimization. Journal of Parallel and Distributed Computing, Academic

Press, 57, 1999.

216

[104] L. R. Ford and D. R. Fulkerson. Maximal Flow through a Network. Canadian

Journal of Mathematics, 8:399–404, 1956.

[105] Kevin London, Shirley Moore, Philip Mucci, Keith Seymour, and Richard Luczak.

The PAPI Cross-Platform Interface to Hardware Performance Counters. In De-

partment of Defense Users Group Conference Proceedings, pages 18–21, 2001.

[106] Ralf Reussner, Peter Sanders, and Jesper Larsson Träff. SKaMPI: a comprehensive

benchmark for public benchmarking of MPI. Sci. Program., 10(1):55–65, January

2002. ISSN 1058-9244.

[107] Duncan Grove and Paul Coddington. Precise MPI Performance Measurement

Using MPIBench. In In Proceedings of HPC Asia, 2001.

[108] P Coddington. Comparison of MPI Benchmark Programs on Shared Memory and

Distributed Memory Machines (Point-to-Point Communication). International

Journal of High Performance Computing Applications, 24(4):469–483, 2010.

[109] William Gropp and Ewing L. Lusk. Reproducible measurements of mpi perfor-

mance characteristics. In Proceedings of the 6th European PVM/MPI Users’ Group

Meeting on Recent Advances in Parallel Virtual Machine and Message Passing In-

terface, pages 11–18, London, UK, UK, 1999. Springer-Verlag. ISBN 3-540-66549-

8.

[110] Simone Pellegrini. The MPI Cache Benchmark, . URL https://github.com/

motonacciu/mpi-cache-bench.

[111] Hyun-Wook Jin, Sayantan Sur, Lei Chai, and Dhabaleswar K. Panda. Lightweight

kernel-level primitives for high-performance mpi intra-node communication over

multi-core systems. In Proceedings of the 2007 IEEE International Conference on

Cluster Computing, CLUSTER ’07, pages 446–451, Washington, DC, USA, 2007.

IEEE Computer Society. ISBN 978-1-4244-1387-4.

[112] Open MPI. URL http://www.open-mpi.org.

[113] T.S. Woodall, R.L. Graham, R.H. Castain, D.J. Daniel, M.W. Sukalski, G.E.

Fagg, E. Gabriel, G. Bosilca, T. Angskun, J.J. Dongarra, J.M. Squyres, V. Sahay,

P. Kambadur, B. Barrett, and A. Lumsdaine. TEG: A high-performance, scalable,

multi-network point-to-point communications methodology. In Proceedings, 11th

European PVM/MPI Users’ Group Meeting, pages 303–310, Budapest, Hungary,

September 2004.

[114] Darius Buntinas and Guillaume Mercier. Design and evaluation of nemesis, a

scalable, low-latency, message-passing communication subsystem. In Proceedings

https://github.com/motonacciu/mpi-cache-bench
https://github.com/motonacciu/mpi-cache-bench
http://www.open-mpi.org

217

of the International Symposium on Cluster Computing and the Grid, pages 521–

530. IEEE Computer Society, 2006.

[115] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI (2nd ed.):

portable parallel programming with the message-passing interface. MIT Press,

Cambridge, MA, USA, 1999. ISBN 0-262-57132-3.

[116] Ken Kennedy and John R. Allen. Optimizing compilers for modern architectures:

a dependence-based approach. San Francisco, CA, USA, 2002. ISBN 1-55860-286-0.

[117] Armin Grlinger. The Challenges of Non-linear Parameters and Variables in Au-

tomatic Loop Parallelisation. Lulu Enterprises, UK Ltd, 2010. ISBN 1445254212,

9781445254210.

[118] R. Preissl, T. Kockerbauer, M. Schulz, D. Kranzlmuller, B. Supinski, and D.J.

Quinlan. Detecting Patterns in MPI Communication Traces. In ICPP, pages 230

–237, 2008.

[119] Hu Chen, Wenguang Chen, Jian Huang, Bob Robert, and H. Kuhn. MPIPP: an

automatic profile-guided parallel process placement toolset for SMP clusters and

multiclusters. In ICS, pages 353–360, 2006.

[120] Sameer S. Shende and Allen D. Malony. The Tau Parallel Performance System.

Int. J. High Perform. Comput. Appl., 20:287–311, May 2006.

[121] Robert Preissl, Martin Schulz, Dieter Kranzlmüller, Bronis R. Supinski, and

Daniel J. Quinlan. Using MPI Communication Patterns to Guide Source Code

Transformations. In ICCS, pages 253–260, 2008.

[122] Jidong Zhai, Tianwei Sheng, Jiangzhou He, Wenguang Chen, and Weimin Zheng.

FACT: fast communication trace collection for parallel applications through pro-

gram slicing. In SC, pages 27:1–27:12, 2009.

[123] Mark Weiser. Program slicing. In ICSE, pages 439–449, 1981.

[124] Valérie Pascual and Laurent Hascoët. Native Handling of Message-Passing Com-

munication in Data-Flow Analysis. In Recent Advances in Algorithmic Differenti-

ation, pages 83–92. 2012.

[125] Stephen F. Siegel and George S. Avrunin. Modeling wildcard-free MPI programs

for verification. In PPoPP, pages 95–106, 2005.

[126] Anh Vo, Sarvani Vakkalanka, Michael DeLisi, Ganesh Gopalakrishnan, Robert M.

Kirby, and Rajeev Thakur. Formal verification of practical MPI programs. In

PPoPP, pages 261–270, 2009.

218

[127] Anh Vo, Ganesh Gopalakrishnan, Robert M. Kirby, Bronis R. de Supinski, Martin

Schulz, and Greg Bronevetsky. Large Scale Verification of MPI Programs Using

Lamport Clocks with Lazy Update. In PACT, pages 330–339, 2011.

[128] Sven Verdoolaege. isl: an integer set library for the polyhedral model. In ICMS,

pages 299–302, 2010.

[129] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and Maurice

Bruynooghe. Counting integer points in parametric polytopes using Barvinok’s

rational functions. In Algorithmica, 2007.

[130] Wayne Kelly and William Pugh. A unifying framework for iteration reordering

transformations. In ICA3PP, 1995.

[131] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, R. A. Fatoohi,

P. O. Frederickson, T. A. Lasinski, H. D. Simon, V. Venkatakrishnan, and S. K.

Weeratunga. The NAS Parallel Benchmarks. Technical report, 1991.

[132] John Tramm. MPI Particle Simulator, 2012. URL https://github.com/jtramm/

particle-mpi.

[133] Dimitrios Vitsios. MPI Bitonic Sort, 2009. URL https://github.com/dvitsios/

biSort_mpi.

[134] Herbert Jordan, Peter Thoman, Juan J. Durillo, Simone Pellegrini, Philipp

Gschwandtner, Thomas Fahringer, and Hans Moritsch. A multi-objective auto-

tuning framework for parallel codes. In Proceedings of the International Conference

on High Performance Computing, Networking, Storage and Analysis, SC ’12, pages

10:1–10:12, 2012.

[135] Peter Thoman, Herbert Jordan, Simone Pellegrini, and Thomas Fahringer. Auto-

matic openmp loop scheduling: A combined compiler and runtime approach. In

OpenMP in a Heterogeneous World, volume 7312 of Lecture Notes in Computer

Science, pages 88–101. 2012.

[136] Jordan Herbert, Pellegrini Simone, Thoman Peter, Kofler Klaus, and Thomas

Fahringer. INSPIRE: The Insieme Parallel Intermediate Representation. In 22th

International Conference on Parallel Architectures and Compilation Techniques

(PACT), Edinburgh, Scotland, sept. 2013.

[137] DPS University of Innsbruck. The INSIEME Compiler System. URL http://

www.dps.uibk.ac.at/projects/insieme.

[138] LLVM Team. Clang: A C language family frontend for LLVM, 2009. URL http:

//clang.llvm.org/.

https://github.com/jtramm/particle-mpi
https://github.com/jtramm/particle-mpi
https://github.com/dvitsios/biSort_mpi
https://github.com/dvitsios/biSort_mpi
http://www.dps.uibk.ac.at/projects/insieme
http://www.dps.uibk.ac.at/projects/insieme
http://clang.llvm.org/
http://clang.llvm.org/

	Eidesstattliche Erklärung
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 State of the Art
	1.3 Thesis Goals
	1.4 Thesis Organization

	2 Model
	2.1 Hardware Model
	2.2 The Message Passing Model
	2.2.1 Point-to-Point Primitives
	2.2.2 Collective Primitives

	2.3 The Program Model
	2.3.1 The Program Abstract Syntax Tree (AST)
	2.3.2 The Polyhedral Model (PM)
	2.3.3 Data Dependencies
	2.3.4 Control Flow Graph (CFG)

	3 Simplification of Distributed Memory Programming
	3.1 Introduction
	3.1.1 A Lightweight Programming Interface
	3.1.2 Towards a Simplified Message Passing Programming Model for C++
	3.1.3 A Uniform Approach for Heterogeneous Distributed Memory Programming

	3.2 A Lightweight Interface for MPI
	3.2.1 Background and Motivation
	3.2.2 MPP: C++ Interface to MPI
	3.2.3 Performance Evaluation

	3.3 Towards a Simplified Message Passing Programming Model for C++
	3.3.1 Motivation
	3.3.2 The PGAS Programming Model
	3.3.3 Overview
	3.3.4 The mem_wrap Object
	3.3.5 Jacobi Relaxation

	3.4 LibWater: A Uniform Approach for Heterogeneous Distributed Memory Programming
	3.4.1 The OpenCL Programming Model
	3.4.2 Related Work
	3.4.3 The LibWater Programming Interface
	3.4.4 The LibWater Distributed Runtime System
	3.4.5 Experimental Evaluation

	3.5 Summary

	4 Runtime Parameter Tuning of Message Passing Programs
	4.1 Introduction
	4.2 The Modular Component Architecture
	4.3 Motivation
	4.3.1 Experimental Setup
	4.3.2 Performance-Oriented Runtime Parameters
	4.3.3 Random Space Exploration

	4.4 Related Work
	4.5 Auto-Tuning with Evolutionary Techniques
	4.5.1 Tournament Selection
	4.5.2 Crossover and Mutation Operators
	4.5.3 Experimental Evaluation

	4.6 Auto-Tuning with Machine Learning
	4.6.1 Parameter Selection and Experimental Setup
	4.6.2 The Prediction Model
	4.6.3 Feature Extraction
	4.6.4 Training Prediction Models with Machine Learning Techniques
	4.6.5 Experimental Evaluation

	4.7 Auto-Tuning with ANOVA
	4.7.1 Parameter Selection
	4.7.2 Parameter Optimization
	4.7.3 Experimental Evaluation

	4.8 Summary

	5 Message Passing-Aware Compiler Analyses and Transformations
	5.1 Introduction
	5.1.1 Message- and Cache-Aware Compiler Optimizations
	5.1.2 Exact Dependence Analysis for Increased Communication Overlap
	5.1.3 Static Matching of Communication Statements

	5.2 Message- and Cache-Aware Compiler Optimizations
	5.2.1 Analyzing MPI Cache Behaviour
	5.2.2 Benchmark results
	5.2.3 Considerations and Optimization Guidelines
	5.2.4 Beyond the Last Level Cache Size
	5.2.5 A Case Study: 3-point Stencil

	5.3 Exact Dependence Analysis for Increased Communication Overlap
	5.3.1 Motivation and State of the Art
	5.3.2 MPI Semantics in the PM
	5.3.3 Implementation and Evaluation
	5.3.4 Evaluation

	5.4 Static Matching of Communication Statements with Affine Domains
	5.4.1 Background and Related Work
	5.4.2 Preconditions and the Compiler Framework
	5.4.3 The Message Matching Algorithm
	5.4.4 Experimental Evaluation

	5.5 Summary

	6 Conclusion and Future Work
	6.1 Contributions
	6.1.1 Chapter 3
	6.1.2 Chapter 4
	6.1.3 Chapter 5
	6.1.4 Other Contributions

	6.2 Future Work

	Appendices
	A The Message Passing Interface
	A.1 Structure
	A.2 Concepts
	A.2.1 Communicator
	A.2.2 Point-to-Point routines
	A.2.3 Collective Routines
	A.2.4 Derived Datatypes

	B Open MPI's Runtime Parameters
	C The Insieme Compiler Toolset
	C.1 Compiler Infrastructure
	C.2 INSPIRE Overview
	C.2.1 MPI Semantics in INSPIRE

	D The Iterative Dataflow Analysis Framework
	E Acronyms

