
Analysis and Optimization of
Parallel Programs under the

Insieme Compiler and Runtime System

PhD thesis in computer science

by

Klaus Kofler

submitted to the Faculty of Mathematics, Computer
Science and Physics of the University of Innsbruck

in partial fulfillment of the requirements
for the degree of doctor of philosophy

advisor : Univ.-Prof. Dr. Thomas Fahringer, Institute of Computer Science
second advisor : Univ.-Prof. Dr. Dr. h.c. Michael Oberguggenberger

Innsbruck, February 16, 2017

Certificate of Authorship and Originality

I certify that the work in this thesis has not previously been submitted for a degree nor
has it been submitted as part of requirements for a degree except as fully acknowledged
within the text.

I also certify that the thesis has been written by me. Any help that I have received
in my research work and the preparation of the thesis itself has been acknowledged. In
addition, I certify that all information sources and literature used are indicated in the
thesis.

Klaus Kofler, Innsbruck, February 16, 2017

iii

Abstract

Recent developments in computer hardware have resulted in increasingly parallel and often
heterogeneous computing systems combining several processing units of different kinds.
Such systems impose new challenges to the programmers, as writing parallel, heteroge-
neous programs is not only more error prone and typically also more time consuming than
writing programs for sequential systems, but a programmer must also take into account all
levels of parallelism to obtain high performance. Not only do the different processing units
in a heterogeneous system favor different code optimizations, the workload distribution
among the available computational resources is also crucial.

To support the programmer and making the creation of parallel heterogeneous pro-
gramming more efficient, it is desirable to automate the program optimization process as
much as possible. However, current compiler and runtime systems still have a large po-
tential for improvements in that regard. The purpose of this thesis is to advance the state
of the art in automatic optimization of parallel heterogeneous programs. It presents a de-
tailed survey of modern parallel and heterogeneous systems and describes the challenges
that programmers need to overcome to achieve good performance. It introduces several
novel approaches to automate parts of the optimization process, thereby making program-
ming parallel, heterogeneous system easier and more efficient. To perform automatic code
analysis and transformations, we use the Insieme compiler and runtime system which has
been extend with new features as part of the research described within this thesis.

To guide our research and help programmers understand what design patterns work
best for which processing unit, we analyze the different performance characteristics of var-
ious OpenCL devices using a set of microbenchmarks. Additionally, we present two novel
techniques to speed up the execution of OpenCL programs. The first technique automati-
cally distributes the workload of OpenCL programs over several processing units while the
second one automatically determines the tile size for a given OpenCL program/GPU com-
bination. Furthermore, we introduce an auto-tuner which optimizes OpenMP programs
with regard to several objectives using iterative compilation. Finally, we demonstrate
the benefits of GPGPU computing using OpenCL to execute scientific simulations on the
example of two domain applications.

v

Acknowledgements

During the years of study for my PhD degree, I enjoyed the support of many people, both
study related and in my private life. I would like to thank all of them in the following
paragraphs. Foremost, my advisor Univ.-Prof. Dr. Thomas Fahringer, for his support
and guidance as well as for providing the funds to make my studies possible. I would also
like to thank my second advisor Univ.-Prof. Dr. Dr. h.c. Michael Oberguggenberger as
well as the thesis committee, and in particular the external reviewers.

I am also thankful for the support I received from my family, my parents Josef and
Notburga, and my siblings Helga, Peter, Siegfried, and Maria, who always believed in
me. Special thanks also go to the current and former members of the Distributed and
Parallel Systems group, mainly the members of the Insieme team, with whom I have been
working and therefore spent a lot of my time in the last few years. Among them I would
like to highlight, sorted by seniority, Dr. Peter Thoman, Herbert Jordan PhD, Philipp
Gschwandtner, and Ivan Grasso. They have been a big help for me when I needed advices
of any kind and provided a great working environment. The Postdoctoral researchers on
our institute, Dr. John Thomson, Dr. Biagio Cosenza, and Dr. Juan J. Durillo, who
consecutively acted as my mentor during the various stages of my PhD studies have also
been a great support for me and enriched my research and studies. I also appreciate the
support I received from my colleges during my research visit at the University of Notre
Dame, especially from Jarek Nabrzyski PhD and Gregory Davis PhD who advised me
during that time.

I gratefully acknowledge my roommate throughout my entire PhD studies and co-
author of my interdisciplinary publication, Dominik Steinhauser who played a non-negligible
role in my decision to try to acquire a PhD degree. I would also like to thank the mem-
bers of the IT-Boyz IBK, mostly for their support throughout my Bachelor and Master
studies, but also for interesting discussions and shared information, even though it was
mostly over mailing list, in the recent years. Furthermore, I would like to thank some
friends with whom I spend some quality time with and who often cheered me up when
I was in need, namely (in alphabetic order) Cen Wenkai, Florian Gatterer, Iẃı Leskovec,
Johann Voppichler, Julia Bezrukova (a.k.a. Julez Photos), Klaus Brugger, Markus Vop-
pichler, Meinhard Oberhollenzer, Rachel Mazurek, Thomas Ennemoser, Ulrich Leiter and
Zoe Yang.

vii

Contents

Certificate of Authorship iii

Abstract v

Acknowledgements vii

Table of Contents ix

1 Introduction 1

1.1 Open Problems . 2

1.2 Organization . 3

2 Model 5

2.1 Hardware Model . 5

2.1.1 Levels of parallelism . 8

2.2 Software Model . 10

2.2.1 Program Model . 10

2.2.2 Data Model . 11

3 Background 13

3.1 OpenCL . 13

3.1.1 OpenCL Hardware View . 14

3.1.2 The OpenCL NDRange . 15

3.1.3 OpenCL Address Spaces . 16

3.2 OpenMP . 17

3.3 Insieme . 18

3.3.1 Insieme Compiler . 18

3.3.2 Insieme Compiler Frontend . 20

3.3.3 Insieme Backend . 29

3.3.4 Insieme Runtime System . 33

3.4 Summary . 33

ix

x CONTENTS

4 OpenCL Device Characterization 35

4.1 Benchmark Design and Methodology . 36

4.1.1 Arithmetic Throughput . 36

4.1.2 Memory Subsystem . 37

4.1.3 Branching Penalty . 39

4.1.4 Runtime Overheads . 40

4.2 Device Characterization – Results . 40

4.2.1 Arithmetic Throughput . 42

4.2.2 Memory Subsystem . 43

4.2.3 Branching Penalty . 48

4.2.4 Runtime Overheads . 49

4.3 Related Work . 50

4.4 Summary . 50

5 Heterogeneous Task Partitioning 51

5.1 Framework Overview . 55

5.1.1 Architecture . 56

5.1.2 Implementation . 56

5.1.3 Limitations . 57

5.2 Partitioning Data-Parallel Task . 57

5.2.1 Predicting the Optimal Partitioning . 58

5.2.2 Extracting Features . 58

5.2.3 Generating Training Data . 61

5.2.4 Building the Model . 62

5.3 Experimental Methodology . 62

5.3.1 Test Cases . 62

5.3.2 Experimental Setup . 63

5.4 Experimental Results . 64

5.4.1 Performance Results . 64

5.4.2 Comparison of Different Models/Techniques . 64

5.4.3 Analysis of the Results . 69

5.5 Related Work . 69

5.6 Summary . 71

6 Data Layout Optimization 73

6.1 Method . 75

6.1.1 Kernel Data Layout Graph Model . 76

6.1.2 Per-Cluster Layout Selection . 79

6.1.3 Final Algorithm . 80

6.2 Experimental Results . 80

6.3 Discussion . 84

6.4 Related Work . 85

6.5 Summary . 86

CONTENTS xi

7 A Region-Aware Multi-Objective Auto-Tuner for Parallel Programs 87
7.1 Motivation . 88
7.2 Multi-objective Tuning of Multi-Region Programs . 89

7.2.1 Background on Multi-Objective Auto-Tuning 89
7.2.2 Challenges in Tuning Multi-Region Programs 90
7.2.3 Method . 91

7.3 Implementation . 93
7.3.1 Regions . 94

7.4 Testing Methodology . 95
7.5 Experimental Results . 95
7.6 Discussion . 99
7.7 Related Work . 100
7.8 Summary . 101

8 Applications 103
8.1 SAMPO . 103

8.1.1 Implementation . 105
8.1.2 Correctness . 112
8.1.3 Performance . 114
8.1.4 Summary . 117

8.2 KD-tree based N-body simulations . 119
8.2.1 Parallel Kd-tree building . 120
8.2.2 Volume-Mass Heuristic (VMH) . 123
8.2.3 Force calculation with Kd-trees . 125
8.2.4 Time Integration . 126
8.2.5 Results and Evaluation . 127
8.2.6 Related Work . 130
8.2.7 Summary . 132

9 Conclusion 133
9.1 Contributions . 133
9.2 Future Work . 134

List of Figures 141

List of Tables 143

List of Definitions 145

List of Algorithms 147

Bibliography 149

Chapter 1

Introduction

Since the advent of computers, researchers have desired for more powerful machines in order to let
their simulations scale to bigger sizes or make them more accurate. Over the last years, mainly due to
the limits introduced by the power wall and frequency wall [88], sequential performance increases been
very limited. Therefore, parallelism has evolved as the main source for performance increases. This
lead to supercomputers with large numbers of connected compute nodes, each of them housing several
processors, as well as to the advent of highly parallel processors, such as multi-core CPUs, massively
parallel GPUs and CPU-like many core accelerators. As each of the aforementioned processing units
has their own advantages and disadvantages, processors of different kind are often combined within
a single compute node, forming heterogeneous systems. The list of the 500 fastest supercomputers of
the world from November 2016 [6] lists 86 supercomputers that are based on heterogeneous compute
nodes.

This hardware development led to several levels of parallelism in modern supercomputers as de-
scribed in Section 2.1.1. Programming modern parallel computers is far from trivial, as a programmer
has to take all levels of parallelism into account in order to achieve good performance. This makes
programming and optimizing programs very complex and time consuming. New tools such as opti-
mizing compilers (see Definition 1.1) and runtime systems (Definition 1.2) are needed to minimize
the complexity for the programmers and maximize their productivity. The research presented in this
thesis aims at improving the state of the art of such optimizing compilers and runtime systems.

There exist a number of different programming languages that target one or several parallel
architectures [22, 118, 3, 123, 89]. MPI has been established as a quasi-standard for programs that
are distributed over several compute nodes (see Section 2.1). It is a low level library defining a message
passing interface, supporting point-to-point communications.

OpenMP (see Section 3.2) has been established as a quasi-standard for shared memory parallel
programming on CPUs (defined in Section 2.1). Hence, part of this thesis is dedicated to the opti-
mization of OpenMP programs. It uses pragma directives to control the parallel execution of shared
memory programs, which makes it easy to use.

OpenCL (see Section 3.1) is probably the most versatile of the aforementioned languages. It
supports a large number of architectures and offers a high level of control over the hardware. Therefore,
this thesis will target mostly OpenCL programs. The primary use case of OpenCL is programming
GPUs (as described in Section 2.1), as well as heterogeneous systems consisting of CPUs and GPUs.

1

2 CHAPTER 1. INTRODUCTION

Definition 1.1 (Compiler). The term compiler describes a computer program that is designed to
read and process a program p and generate a semantically equivalent program p′. The program p can
be transformed from one language to another language (in most cases from a programming language
to a machine language), p can be restructured to improve its non-functional behavior, or a combina-
tion of both.

Definition 1.2 (Runtime System). A runtime system is a computer program that implements con-
trol over the order in which a program p is executed to optimize the non-functional behavior of p.
In some cases, the runtime system is also responsible for an efficient distribution of the data. A
runtime system dynamically collects information during the execution of p and uses this information
to optimize its non-functional behavior.

Writing high performance OpenCL programs can be especially challenging as the language offers
a very detailed level of control to the user. This level of control is needed to leverage the full potential
of the various supported processing units which feature very different performance characteristics.
However, this high level of control results in a rather low level language that makes writing programs
which fully exploit the performance of a single, or even more complex, several target architectures
very complex. The goal of this thesis is to simplify parallel programming by adding a source-to-source
compiler and a sophisticated runtime system to the programming framework. The source-to-source
compiler in combination with the runtime system should be responsible for low level optimizations
and applying sophisticated scheduling techniques in order to achieve good performance while freeing
the programmer from the labor intensive and error prone task of program optimization and thereby
raising the programmers productivity.

Among the most important decisions in order to reach high performance on modern, heteroge-
neous architectures are data placement and work distribution over multiple processing units, the
degree of parallelism, as well as assigning the workload to the most suitable processing unit. This
thesis introduces automatic techniques to provide solutions for these problems for both OpenMP and
OpenCL applications.

1.1 Open Problems

The aforementioned challenges result in several problems, many of them still unsolved. To provide a
solution to these problems, we need advancements in current compiler and runtime systems. Parallel
constructs should be made first class citizens of compilers in order to enable sophisticated analysis
and transformations that unleash the full potential of modern, parallel processing units. As many
decisions cannot be made at compile time, current runtime systems need to be adapted in order to
optimize the parallel execution of programs. The following paragraphs describe in more detail the
problems that we are trying to solve as part of this thesis.

Characterization of Heterogeneous Processing Units One problem arises from the differences
between the parallel processing units. Each of them has different characteristics and shows best
performance with different code optimizations. It is hard for the programmer to determine what
code is most suitable for a certain processor. A set of tools (e.g. a processing unit characterizing

1.2. ORGANIZATION 3

benchmark suite), that provides information about the performance characteristics of a given
processing unit is desirable. This problem will be addressed in Chapter 4.

Heterogeneous Task Partitioning Another problem in heterogeneous parallel processing is the
distribution of the workload among the available computational resources. The traditional ap-
proach is to manually select one processing unit for each task during the program design phase.
This approach does not only increase the complexity for the programmer, it also ignores the
influence of changing machines and varying input sizes. Furthermore, it is very complex for
a programmer to distribute the workload among several heterogeneous processing units con-
currently, mostly because a uniform workload distribution among all available processing units
often leads to sub-optimal performance in heterogeneous systems. There is a need for a frame-
work that can automatically distribute the workload among several heterogeneous processing
units, taking into account also the impact of the problem size. In Chapter 5 we introduce
a system that can automatically distribute the workload of a program over all the available
computational resources.

Data Layout Optimization An important decision when designing a program regards the data
layout (described in Chapter 6) of the data to be processed. The ideal data layout may vary
with the used processing unit as well as with the program. To aid the programmer in finding a
suitable data layout for a given program/processing unit combination Chapter 6 introduces an
automated system to deduce such data layout.

Multi-Objective Optimization of Parallel Programs Due to recent interest in objectives other
than execution time, like for example energy consumption of a program, modern program op-
timization should be able to deal with multiple objectives. Since these objectives may be
conflicting, it is often impossible to find a single program configuration that maximizes the
performance in every objective. To solve this dilemma, a set of program configurations which
represent the best trade-offs between the objectives must be found. This complex and time
intensive task should be automatized by a system that can find the best trade-offs between the
different objectives and provide them to the user to select the most suitable configuration. An
approach to solve this problem using auto-tuning is presented in Chapter 7.

1.2 Organization

This thesis is structured into nine major chapters as follows: The next chapter formally defines
the hardware and software model used throughout this thesis. Chapter 3 gives an overview of the
programming languages and frameworks used for the research presented in this thesis. In Chapter 4
we introduce a set of microbenchmarks which are designed to identify the most performance relevant
features of various processing units. A system to automatically distribute OpenCL kernel functions
over a set of devices is presented in Chapter 5, while Chapter 6 shows how a well performing data
layout can be determined automatically for a given pair of OpenCL program and device. Chapter 7
presents a multi-objective auto-tuning system for OpenMP programs based on iterative compilation.
Finally, Chapter 8 shows how two domain applications were accelerated using OpenCL and GPUs.
Chapter 9 concludes the thesis and presents future work.

Chapter 2

Model

This chapter describes the hardware and software model as well as the associated technical terms
used throughout this thesis. Section 2.1 presents about the architectures which have been used to
run the experiments for this thesis. Section 2.2 outlines the programs targeted by this work.

2.1 Hardware Model

The target architecture for the work in this thesis are all systems whose devices can execute OpenCL
and/or OpenMP code. This includes mobile systems on a chip with their embedded CPUs and GPUs,
modern laptops, desktops and workstations as well as supercomputers with their multi-socket CPUs
and the connected GPUs and other accelerators. The different levels of parallelism of the target
hardware are described in Section 2.1.1 while the basic hardware components are detailed in the
following paragraphs.

Processing Unit (PU) In this work, a Processing Unit designates a set of homogeneous cores that
have access to the same DRAM. The caches and scratchpad memory associated with those cores
are also part of the PU. Heterogeneous PUs may share the same DRAM. In OpenCL, a PU is
called a device. Examples for a processing unit are Intel Xeon X5650, AMD FirePro S9000 and
NVIDIA Tesla k20.

Chip A chip designates an integrated circuit, i.e. a physical microchip [154]. Some PUs are composed
of multiple chips and other chips house more than one PU. Examples for a PU with multiple
chips are Intel Xeon X5650 and AMD Opteron 2435 whereas AMD FirePro S9000 and NVIDIA
Tesla k20 are PUs that consist of a single chip. The case of the IBM PowerXCell 8i, a single
chip contains two PUs, the PPE and the SPEs.

CPU The central processing unit (CPU) is the PU which executes the operating system [157] and
can also be used to perform calculations. CPUs have a sophisticated, multi-level cache hierarchy
(three levels in most cases) with relatively large caches (several MB in total). CPUs do not
have a scratchpad memory. Examples for a CPU are Intel Xeon E5-2690 v2, AMD Opteron
2435 and Intel Xeon X5650.

5

6 CHAPTER 2. MODEL

GPU A graphical processing unit (GPU) is a PU designed for accelerated graphics processing and
display output. However also general purpose computing can be done on the GPU (GPGPU).
In this work, GPUs are used to execute kernels which are offloaded to them by a CPU using
the OpenCL programming language (as described in Section 3.1). Some GPUs have no caches,
others have a relatively small cache hierarchy (below 1 MB in size and a maximum of two levels).
GPUs always have a scratchpad memory of several KB per core. Examples for GPUs are AMD
FirePro S9000, NVIDIA GeForce GTX 480 and Tesla k20.

Accelerator Accelerators are PUs designed for special tasks (e.g. highly parallel computational
kernels). Typically they deliver a much higher performance than CPUs in the task they are
designed for. Similarly to GPUs, work is offloaded to them by the CPU. The cache hierarchy is
not as complex as the one of CPUs and has a maximum of two levels. Scratchpad memory is
optional. An Example for an accelerator is the SPEs in the IBM PowerXCell 8i.

Core A core is one of the building blocks of a PU. Most modern PUs consist of multiple cores.
Each core houses functional units like arithmetic-logic units (ALUs), vector units, and one or
more program counters (PC) [156]. A core can execute one or more threads independently. In
OpenCL terminology, a core is called a compute unit.

Memory Controller The memory controller is a PU’s connection to its DRAM. All data that is
processed (both application data and the program itself) has to be loaded/written from/to
the DRAM via the memory controller. The data loaded by the memory controller is usually
automatically buffered in caches for faster data reuse.

Arithmetic-Logic Unit (ALU) An ALU is a basic building block of a core that can perform
arithmetic and bitwise logical operations [155].

Vector Unit A vector unit is a special form of an ALU that can execute one instruction on several
data elements concurrently either using multiple slots in vector registers (SIMD) or executing
the same instructions on different data using multiple threads (SIMT).

Cache The cache is a small, low latency, high bandwidth memory which is used to buffer data
from the DRAM. Caches are managed automatically by the hardware. An application cannot
directly influence which part of its data is buffered in the cache. However, it can arrange the
memory accesses in such a way that the caches can be used more effectively. Often several
caches are arranged in multiple levels, usually numbered in ascending order. Lower level caches
are smaller and faster and offer higher bandwidth and lower latency. The latency and size of a
cache increases with its level, while the bandwidth decreases. Each core always has an exclusive
first level cache, while higher level caches may be shared among multiple cores.

Scratchpad Memory In contrast to caches, scratchpad memory does not provide cache coherence
and must be managed by the application, which makes their hardware implementation much
easier. Furthermore, their ability to be fully controlled by the programmer can lead to better
performance compared to automatically managed caches in certain situations. In terms of size,
latency, and bandwidth scratchpad memories are similar to caches.

2.1. HARDWARE MODEL 7

DRAM DRAM is a comparably large off-chip memory with significantly higher latency and lower
bandwidth than caches and scratchpad memory. It is used to temporarily store programs and
data that is too big to fit into the caches. The DRAM of CPUs is usually referred to as main
memory.

Definition 2.1 (Compute Node). A compute node is an entity that runs exactly one instance of
an operating system [157]. It comprises one or more processing units as well as one or more main
memories.

Figure 2.1 depicts a generic compute note and its components. It consists of an arbitrary number
of PUs which can be homogeneous or heterogeneous. Each PU has one or more cores. Every core has
one or more program counters (PCs) as well as several ALUs. In addition to them, many cores also
feature vector units for high-throughput computations. In some cases, each of those cores has access
to a dedicated scratchpad memory. Typically there are one or more cache levels which are shared
among some or all cores of the PU (cache level N+1 to M in Figure 2.1), while there also exist some
(lover level) caches with exclusive access of a single core (cache level 1 to N in Figure 2.1). Some PUs
share the DRAM (PU 0 to N in Figure 2.1) while others have a dedicated memory (PU N+1 to M in
Figure 2.1). Figure 2.2 exemplary shows three PUs that are used for experiments in this thesis. The
Intel Xeon X5650 in Figure 2.2a is a CPU while Figure 2.2c and Figure 2.2b show an AMD FirePro
S9000 and NVIDIA Tesla k20 GPU, respectively.

Processing Unit 0

Core 0

ALU 0

ALU 1

Vector Unit 0

L1
 C

ac
he

PC 0

ALU N

Vector Unit 1

Vector Unit N

... ... L2
 C

ac
he

LN
 C

ac
he

...
PC N

...

Core 1

Core N

...

LN
+

1
C

ac
he

LN
+

2
C

ac
he

LN
+

M
 C

ac
he

...

Processing Unit 1

Processing Unit N

...

PC 1

S
cr

at
ch

pa
d

M
em

or
y

D
R

A
M

Processing Unit N+1 DRAM

...

Processing Unit N+M DRAM

LN
+

1
C

ac
he

Figure 2.1: Generic compute node

8 CHAPTER 2. MODEL

Intel Xeon X5650

Core 0

ALU 0

ALU 1

Vector Unit 0

L1
 C

ac
he

PC 0

ALU 3

Vector Unit 1

Core 1

Core 5

...

L3
 C

ac
he

PC 1

M
ai

n
M

em
or

y

L2
 C

ac
he

Core 6

Core 11

...

L3
 C

ac
he

(a) Intel Xeon X5650

NVIDIA Tesla k20

Core 0

Vector Unit 0

L1
 C

ac
he

PC 0

Vector Unit 1

Vector Unit 3PC 3

Core 1

Core 12

...

L2
 C

ac
he

PC 1

S
cr

at
ch

pa
d

M
em

or
y

D
R

A
M

PC 2 Vector Unit 2

Vector Unit 4

Vector Unit 5

(b) NVIDIA Tesla k20

AMD FirePro S9000

Core 0

ALU Vector Unit 0

L1
 C

ac
he

PC

Vector Unit 1

Vector Unit 3

Core 1

Core 27

...

L2
 C

ac
heS
cr

at
ch

pa
d

M
em

or
y

D
R

A
M

Vector Unit 2

(c) AMD FirePro S9000

Figure 2.2: Examples for PUs used in this thesis

2.1.1 Levels of parallelism

As mentioned earlier, modern computers have several levels of parallelism. Some of those levels involve
multiple processing units while others can be found within a single processing unit. The following
enumeration lists the most important levels of parallelism in modern computers:

• Multi-PU parallelism

– Inter-compute node parallelism

– Intra-compute node parallelism

2.1. HARDWARE MODEL 9

• Single-PU parallelism

– Multi-core parallelism

– Vector parallelism

Multi-PU parallelism involves multiple PUs. Those PUs can either be housed in the same com-
pute node (in case of intra-compute node parallelism) or connected via a network (in case of inter-
compute node parallelism). In both cases, the PUs can be either homogeneous or heterogeneous.
As neither OpenCL nor OpenMP are able to address inter-compute node parallelism it will not be
discussed in this thesis. In case of intra-compute node parallelism over multiple PUs, OpenCL ad-
dresses each PU as a separate device. The task of distributing work among them is solely left to the
programmer. Therefore part of this thesis is dedicated to develop an automated system to find a high
performing work distribution over several devices in a heterogeneous system (see Chapter 5).

Single-PU parallelism exploits the parallelism inside a single PU. Most modern PU consist of
several cores, which can operate independently and only share the DRAM and some parts of the cache
hierarchy. In most architectures each core has one or more dedicated caches, where some higher level
caches are shared among several or all cores. The DRAM is always shared among all cores of a PU
(and in some cases even among several heterogeneous PUs). The decision which part of the DRAM
is buffered in the various caches is taken automatically by the hardware. The programmer-managed
scratchpad memory is always exclusive for each core.

In OpenCL, cores are called compute units. The individual cores often feature some form of
vector unit which performs the same instruction multiple times, either on different slots of vector
registers (SIMD) or in different threats (SIMT), operating on different data elements. How these
hardware units are addressed by an OpenCL program is not specified by the standard and varies
between different hardware and sometimes even between different compiler/runtime versions for the
same hardware. The two most common ways are:

• Bundling a set of work items (described in Section 3.1) together and map their instructions to
the vector unit. Only work items within the same work group (see Section 3.1) can be run in
parallel on one vector unit. Divergent branches within one work group may further reduce the
vectorization potential. Therefore, this technique requires sufficient number of non divergent
work items in each work group.

• Mapping OpenCL operations based on vector types [89] to the vector units. In this case, the
programmer is required to use vector types in order to take advantage of the vector units.

OpenMP can only address the CPUs in a system. The default behavior is to assign equally sized
chunks of work to each CPU core. However, the number of those chunks doesn’t have to match the
number of cores and using less chunks, and therefore, utilizing only a subset of the available cores,
can be advantageous in terms of energy consumption and resource usage, as it will be discussed in
Chapter 7.

10 CHAPTER 2. MODEL

2.2 Software Model

This thesis presents methods and techniques to transform parallel programs in order to minimize
their execution time. To achieve this, we use the Insieme source-to-source compiler/runtime system
as described in Section 3.3. The Insieme compiler takes a parallel program as input and outputs
an optimized version of it. The resulting program is then mapped to the hardware by the Insieme
Runtime System. The software model comprises the program and data model as described in the
following sections.

2.2.1 Program Model

A program p can be modeled as a graph (S, E) where S is a set of statements (e.g. arithmetic
operations, I/O operations, branches, function calls, etc.) and E consists of directed edges between
those statements that model the control flow. The number of outgoing edges #{(s0, s1) ∈E} is called
the out-degree of the statement s0, the number of incoming edges #{(s1, s0) ∈E} is called in-degree
of the statement s0. A program has exactly one statement with an in-degree equal to 0, the so called
entry point. This is where the program execution starts. A program has one or more statements with
an out-degree of 0, the so called exit points. When the program flow reaches such a statement, the
program terminates.

Definition 2.2 (Program).

S = {s0, s1, ..., sn} (2.1)

E ⊆ S2 (2.2)

p = (S,E) (2.3)

S is a set of statements, E are directed edges between statements and p a program that is represented
by a graph formed by the statements (i.e. vertices) S and the edges E. P is the set of all programs p.

Parallel Program Model

The set of parallel programs Pp is a subset of all programs P where the set S also contains the
statements fork and merge. A fork statement f starts a parallel execution, as all its direct successors
{s ∈S|(f, s) ∈E} are executed concurrently. This parallel execution continues along the graph until
a merge statement is reached. A merge statement m waits until all its (parallel) predecessors {si ∈
S|(si,m) ∈E} complete their executions. After the merge statement, the program continues to run
sequentially. The sub-graph between a fork statement and the corresponding merge statement is
called a parallel region. Figure 2.3 shows an example for a parallel program. The three paths between
the fork and the merge node can be executed in parallel. This thesis focuses on the optimization
of parallel programs. For those programs, the parallel regions are defined either using OpenMP
(described in Section 3.2) or OpenCL (see Section 3.1).

In the OpenMP programs which are covered in this thesis, parallel regions are defined using the
pragma #pragma omp parallel. OpenCL programs consist of a host and a device part as described in
Section 3.1. The device part is inherently parallel and always starts with two nested fork instructions
to represent its implicit, two level parallelism as described in Section 3.3.2.

2.2. SOFTWARE MODEL 11

Fork Node

Merge Node

Other Nodes

Parallel region

Figure 2.3: A parallel program represented as a graph.

2.2.2 Data Model

The basics of the type system in C, OpenCL and also INSPIRE (as described in Section 3.3.1) are
scalar types such as integer and floating point numbers. In addition to scalar types we define array,
struct and tuple types. Array types are formed by a tuple of a data type and a natural number
specifying the array’s dimensionality. An array contains an unspecified number of elements of the
given data type, arranged in the given number of dimensions. The elements in the array can be
accessed via an index vector that specifies the element’s position in each dimension. A special case
are one dimensional arrays as their elements can be accessed using a scalar as index. Struct types
consist of an arbitrary number of tuples, each of them containing a name and a data type. Tuple
types are similar to struct types, however their elements do not have a name and are differentiated
solely by their position. Array, struct, and tuple types can be nested in an arbitrary way.

Definition 2.3 (Types).

T ::= Ts|Array|Struct (2.4)

Ts ::= scalar(signed integer|unsigned integer|real, l ∈ {1, 2, 4, 8}) (2.5)

Array ::= array(t ∈ T, d ∈ N+) (2.6)

Struct ::= struct{(t ∈ T, name)∗} (2.7)

Tuple ::= tuple{(t ∈ T)∗} (2.8)

Ts is the set of all scalar types which can be signed integer, unsigned integer or real numbers and
have a size of l ∈ {1, 2, 4, 8} bytes. Array is a collection of an arbitrary number of elements of type
t ∈ T arranged in d dimensions with d ∈ N+. Struct designates a collection of tuples consisting of a
name and a data field of type t ∈ T . Tuple defines a collection of data fields with varying types t ∈
T with T denoting the set of all types.

Figure 2.4 shows examples for scalar types, an array, a struct as well as nested type called an
array of structs (AoS). Especially when data types with nested arrays and structs are used, the data
layout has a significant impact on the performance as it will be discussed in Chapter 6.

12 CHAPTER 2. MODEL

1 i n t := s c a l a r (s igned in t ege r , 4)
2 double := s c a l a r (r ea l , 8)
3 oneDimensionalArray := array (int , 1)
4 twoElementStruct := s t r u c t {(int , member0) , (double , member1) }
5 AoS := array (twoElementStruct , 1)

Figure 2.4: Examples for scalar types, an array, a struct and an array of structs (AoS).

Chapter 3

Background

This chapter introduces the parallel programming languages and frameworks used for the experiments
in this thesis. These tools comprise the programming languages used for the applications that we
are optimizing as well as the Insieme compiler and runtime system that is used to perform code
analysis and transformations. While OpenCL and OpenMP, described in the following sections, are
industry standards for parallel programing, the Insieme framework is a research compiler and runtime
system designed and implemented by the Distributed and Parallel Systems group at the University
of Innsbruck.

3.1 OpenCL

OpenCL (Open Compute Language) is a parallel programming language, introduced by the Kronos
Group [158] as an open standard for cross-platform parallel computing. Several hardware vendors
such as AMD, ARM, IBM, Intel, and NVIDIA provide an OpenCL capable compiler/runtime infras-
tructure, thus OpenCL supports a wide range of hardware. This has the advantage that OpenCL code
can be executed on almost any existing hardware. However, it also comes with the disadvantage, that
OpenCL doesn’t support any low level access routines to the hardware, as the supported hardware
varies a lot.

The OpenCL programming model splits the programs in two parts: a host part and a device
part [89]. The host part is a ”normal” C-program that uses a specific runtime API to access the
devices. A device can be any processing unit that supports OpenCL. The host part is executed by
the operating system and therefore it runs on the CPU, sometimes referred to as host in this context.
It is responsible for setting up the devices, loading the program code to be executed on the device,
distributing the data to the devices and starting the device part of the program. It is also responsible
for collecting the results after the devices finish their computations.

The device part of the program is represented by so called kernel functions. For those kernel
functions, OpenCL defines a C99-based language with OpenCL specific keywords. These functions
are executed on the devices in parallel and should therefore contain all computational expensive parts
of the program. To be executed in parallel, the kernel functions are mapped to a three dimensional
grid of independent threads, called the NDRange. Every element of the NDRange, called a work item,
executes one instance of the kernel function. Devices are not capable of dynamically changing the

13

14 CHAPTER 3. BACKGROUND

NDRange, allocate and free memory, or transfer data from/to the host or other devices. These tasks
have to be performed by the host.

A kernel function can be executed by any device available, whether it is a CPU, a GPU or an
accelerator. The characteristic that any kernel function can be executed by devices of any kind is
called code portability. To enable this characteristic, the OpenCL kernel code has to be compiled by
a compiler provided by the device’s manufacturer. This compiler is different from the one used to
compile the host code (which can be compiled with any C-compiler). To maintain maximum flexibility,
the kernel code is usually compiled at run-time. This means, that the host and device code is compiled
by different compilers at different points in time. Obviously, this makes optimizations that incorporate
changes in both, the host and the device part of a program, very challenging. Furthermore, OpenCL
is not ideal for performance portability, as different devices often require very different parallelization
strategies and memory access patterns in order to achieve their maximal performance. This will be
discussed in detail in Chapter 4.

In order to maximize the throughput for a given task it can be beneficial to distribute it over
all available devices. OpenCL does not provide any built-in functionality to distribute work over
multiple devices, hence this task is left to the programmer. Modern compute nodes with accelerators
typically offer a heterogeneous set of devices. This makes an ideal work distribution over the given
devices challenging. In Chapter 5 we present a system that not only simplify the work distribution
over multiple devices, but also automatically finds good work distribution for a given kernel/devices
combination.

Another important factor for the performance of OpenCL programs, especially when executed on
GPUs, is the data layout. However, OpenCL does not provide any utilities that facilitate the selection
of the best suited data layout. Chapter 6 presents a system that helps the programmer to select a
well suited data layout for a given kernel/device combination.

3.1.1 OpenCL Hardware View

Due to the large variety of the supported hardware, the OpenCL hardware view is rather abstract.
This abstract view allows the use of the same hardware model for all supported devices. As mentioned
in Section 3.1, OpenCL distinguishes between the host and the device. The host runs a standard
C-program and is not intended to do any computational expensive tasks. Therefore, from an OpenCL
point of view, the host is sequential (although the host part may be parallelized by some programming
models other than OpenCL) and has access to the host memory. The host also can access all the
devices attached to the system and provide them with data or computational tasks. A single host
can control an arbitrary number of devices. Each device has its own memory, which is subdivided
in three address spaces as described in Section 3.1.3. Each Device consists of several compute units,
which can execute different instructions independently. Depending on the actual device, they may be
able to execute different kernel functions at the same time. Each compute unit has a local memory
and consists of several processing elements, which can execute a single work item at a time and have
access to a small amount of fast private memory. Figure 3.1 illustrates the hardware view of OpenCL.

3.1. OPENCL 15

Device 0

Compute Unit 0

Private Memory 0Processing Element 0

Private Memory 1

Private Memory N

...
Processing Element N

...

Compute Unit 1

Compute Unit N

...
Processing Element 1

G
lo

ba
l M

em
or

y
0

Device 1 Global Memory 1

...

Device N Global Memory N

Lo
ca

l M
em

or
y

Host Host Memory

Figure 3.1: OpenCL view of the underlying hardware

3.1.2 The OpenCL NDRange

As mentioned above, OpenCL kernels are mapped to a three dimensional grid of work items, the
NDRange. The NDRange consists of several work groups. These work groups are further subdivided
into a predefined number of work items. These two levels of parallelism influence how the individual
work items are mapped to the hardware. One important property of OpenCL is, that synchronizations
in the kernel using the barrier function only synchronize the work items within the same work
group, not the entire NDRange. The entire NDRange is only synchronized when the kernel function
terminates.

All work items of the same work group are always executed on the same compute unit. The
mapping of work groups and work items to the hardware depends on the actual hardware and the used
OpenCL runtime system. The number of work groups and work items in the NDRange is determined
by the parameters of the OpenCL library function clEnqueueNDRangeKernel, which generates a new
NDRange and executes a kernel function within it. The parameter global work size determines the
total number of work items, while the parameter local work size prescribes how many of them form
one work group. Figure 3.2 shows an example for an NDRange. In this case the global work size

is 4,8,8 and the local work size is 2,4,4. The work groups are labeled with the group id the
dimensions 0, 1, and 2 while the labels on the two highlighted work items are the local ids in the
various dimensions. The global id of the highlighted work item in work group 0,1,1 is 0,7,7; for the
work item in work group 1,1,1 it is 2,6,5.

16 CHAPTER 3. BACKGROUND

ND Range

Work Group 0,0,0

Work Group 0,0,1

Work Group 0,1,0

Work Group 0,1,1

Work Group 1,0,0

Work Group 1,0,1

Work Group 1,1,0

Work Group 1,1,1

<
Work
Item
0,3,3

<
Work
Item
0,2,1

Figure 3.2: Example for an OpenCL NDRange with 256 work items, arranged in 2×2×2 work groups
with 2× 4× 4 work items each.

3.1.3 OpenCL Address Spaces

OpenCL distinguishes three address spaces in the device code: private, local, and global. The address
space of a variable is selected by using the corresponding qualifier at variable declaration. If no qualifier
is used, the variable resides in the private memory space. These three address spaces are accessible
from the device code. In addition to that, the main memory (see Section 2.1) of the CPU acting as the
host is a fourth address space, often called the host memory. Out of the three device address spaces,
the host can read/write data only from/to the global memory using the corresponding OpenCL library
functions. The relationship between the four address spaces is illustrated in Figure 3.3.

Kernel
CopyBuffer

Kernel

Kernel

Device

Local

Global

Private
Host

Host Memory WriteBuffer

MapBuffer

Figure 3.3: OpenCL memory architecture, taken from [161]

3.2. OPENMP 17

How the three device address spaces are mapped to the various available memories of a device
depends on the used hardware and OpenCL implementation. However, the accessibility of the address
spaces is defined by the OpenCL standard:

Private memory is exclusive to each work item. Arrays (see Definition 3.1) in private memory can
only be allocated statically. It is usually mapped to registers or a fast cache (described in Section 2.1).

Local memory is shared among the work items of one work group. Arrays have to be allocated
statically when they are declared inside the kernel function or dynamically when passed as an argu-
ment to the kernel function. If the device features a scratchpad memory (described in Section 2.1),
the scratchpad memory is used for local memory, otherwise the local memory is mapped to the cache.

Global memory is shared among all work items of a kernel. All global memory variables are
pointers (see Definition 3.2) . Global memory cannot be allocated in the device code, it has to be
allocated in the host code using the corresponding OpenCL library call and then passed to the kernel
function as an argument. All data that is exchanged between host and device has to be stored in
global memory. Global memory uses the DRAM (described in Section 2.1) of the device.

Definition 3.1 (Array). An array describes a regular arrangement of storage locations for a fixed
number of values. All these values are of the same type and can be accessed via an integral index.

Definition 3.2 (Pointer). The term pointer defines a variable whose value is a reference to a memory
location. Pointers are often used to indicate the starting point of a series of values of the same type,
i.e. arrays.

3.2 OpenMP

OpenMP (Open Multi-Processing) describes an open interface to create parallel programs for shared
memory parallel architectures [123]. It is an extension for existing programming languages, mainly
being used for C, C++ and Fortran. It mostly consists of a set of directives, called pragmas, which
are added to programs written in a supported language, in order to instruct the compiler how to
parallelize certain parts of that program. Important OpenMP directives are:

omp parallel starts a parallel section of the program. The code block following an omp parallel

is executed by all available threads concurrently.

omp for is used to mark for-loops inside an omp parallel. The iterations of such a loop are
distributed among all threads. Each iteration is executed by exactly one thread, where the execution
order of the individual iterations is not defined.

omp barrier causes all threads of a parallel region to synchronize. When a thread executing a
parallel region reaches the barrier, it waits until all threads executing the parallel region have reached
the barrier before progressing.

18 CHAPTER 3. BACKGROUND

3.3 Insieme

The main goal of the Insieme project [1] is to optimize parallel programs, relying on a source-to-
source compiler and a parallel runtime system which will be described in more detail in the following
sections. This thesis is based on the Insieme branch inspire 1.3 which is freely available at [2]. My
main contribution to the Insieme compiler is the Insieme OpenCL frontend extension.

3.3.1 Insieme Compiler

The Insieme Compiler is implemented in C++. It accepts C and several of its derivatives (including
OpenCL) as an input language.It consists of three major components:

• The frontend, translating a program from the input language to the Insieme parallel intermediate
representation (INSPIRE described in Section 3.3.1).

• The core, performing analysis and transformations on the program in INSPIRE representation

• The backend, translating the program from INSPIRE to the output language.

Figure 3.4 shows how these three parts interact during a program compilation using the Insieme
Compiler. As all analysis and transformations are performed on code in INSPIRE representation, it
did not have to be adapted in order to process OpenCL programs. The frontend on the other hand,
had to be extended in order to translate OpenCL code to INSPIRE. In a similar way, the backend
had to be adapted in order to translate INSPIRE back to OpenCL code, especially in order to create
OpenCL code in which the kernel can be distributed among several devices as described in Chapter 5.

Frontend

Core

1

34

52 6Input
Code

INSPIRE
Code Backend

Output
Code

Analysis Transformations

Figure 3.4: Interactions of the Insieme Compiler’s main components

Insieme Parallel Intermediate Representation
(INSPIRE 1.3)

As mentioned in the previous paragraphs, the Insieme compiler works on programs in INSPIRE rep-
resentation. INSPIRE is a high-level, unified, language and API independent program representation.

3.3. INSIEME 19

INSPIRE was developed to simplify analysis and code transformations within the Insieme compiler.
INSPIRE represents a program as a directed acyclic graph (DAG). In order to minimize the memory
footprint of the intermediate representation, nodes in this graph may be shared. For example, every
type is present only once in the DAG, and every node in the entire program which refers to the corre-
sponding type (e.g. a variable of this type) will refer to this single node. However, this representation
may cause troubles when analyzing or transforming the code. For example, when replacing the type
of a variable, replacing the node representing the variable’s type would change also the type of all
other variables, functions, etc. of the corresponding type. Therefore, the so called Address View
of the DAG exists. The nodes in the address view refer to one node in the DAG and additionally
contain an address, where shared nodes are referenced multiple times. Thereby, the Address View
unfolds the DAG to an abstract syntax tree (AST). An address is always relative to its root node and
is represented by the path from the root to the corresponding node (the address of the root node is
always 0). Every node in the DAG can be used as root for addresses for all its child nodes.

Figure 3.5 shows an example of the DAG of a program as well as a possible AST created from it.
The AST in Figure 3.5b shows a possible INSPIRE address view of the DAG in Figure 3.5a, where
node A acts as a root address. The nodes in the AST in Figure 3.5b are formed by pairs containing
the address, which is determined by the path from the root to the corresponding node, and a reference
to a node in the INSPIRE DAG in Figure 3.5a. As this example shows, nodes with multiple input
edges in the DAG are referenced multiple times in the address AST.

A

B C

D E

F G H

0, *A

0-1, *B 0-2, *C

0-2-0, *D 0-2-1, *E

0-2-1-0, *F0-2-0-0, *G 0-2-0-1, *H

0-0, *F

0-1-0, *F 0-1-1, *G

(a) INSPIRE node DAG

A

B C

D E

F G H

0, *A

0-1, *B 0-2, *C

0-2-0, *D 0-2-1, *E

0-2-1-0, *F0-2-0-0, *G 0-2-0-1, *H

0-0, *F

0-1-0, *F 0-1-1, *G

(b) INSPIRE address AST

Figure 3.5: Example program representation in INSPIRE

INSPIRE defines its own language and provides a large set of primitives. The following primitives
are relevant for this thesis:

parallel The primitive parallel starts a new thread group i.e. a set of newly created threads. It
initiates a parallel section.

20 CHAPTER 3. BACKGROUND

job A job takes a function as argument. This function is then executed by each thread of the current
thread group. It also specifies the lower and upper bound of the number of threads that execute
the given function in parallel. The primitive job is often used in conjunction with the primitive
parallel, to specify that a function should be executed concurrently by a newly create thread
group.

pfor A pfor is a for loop within a job. Each iteration of it is executed once by any thread within
the thread group in arbitrary order.

redistribute The blocking primitive redistribute collects information from each thread and
passes this information to a user defined function, aggregated in an array. As redistribute is a
blocking primitive, it can be used to implement barriers. In this case, the user defined function
is a no-op.

bind The expression bind generates a closure. Its parameters are used as arguments on the enclosed
function call while eventual additional arguments are captured from the surrounding context.

CAST To perform conversions from one datatype to another datatype, INSPIRE provides the primitive
CAST. Casts using this primitive are restricted to scalars with the same size in bytes.

ref reinterpret Arrays of a given type can only be converted into arrays of another type using the
ref reinterpret construct in INSPIRE. When reinterpreting an array using another type, the
binary representation is unchanged, but it is interpreted as another type. Therefore, also the
number of elements may changes.

Additional details about the primitives defined in INSPIRE can be found in [81]. The INSPIRE
type system is analog to the one introduced in Section 2.2.2. Table 3.1 shows INSPIRE syntax for
types.

Type INSPIRE syntax

scalar(signed integer, l) int<l>

scalar(unsigned integer, l) uint<l>

scalar(real, l) real<l>

array(t, d) array<t, d>

struct{(t0, m0), (t1, m1)} struct{t0 m0, t1 m1}
tuple{t0,t1} (t0, t1)

Table 3.1: Type syntax of INSPIRE

3.3.2 Insieme Compiler Frontend

The Insieme compiler frontend is responsible for translating the input code to INSPIRE. To parse
the input code, it relies on Clang [13]. Therefore, the frontend is limited to input languages which
are supported by Clang, which is the case for most C-derivatives, including OpenCL. The frontend
consists of a generic implementation, which is used to translate C to INSPIRE. In order to translate

3.3. INSIEME 21

non-standard C (e.g. OpenCL, Cilk, etc.), an extension to the generic frontend is needed. Such an
extension can either replace the default handling for specific Clang nodes, add a post-processing step
for some INSPIRE nodes, or add a post-processing step for the entire program, after it has been
translated by the generic frontend.

Insieme OpenCL Frontend Extension

The OpenCL part of the Insieme frontend has two major responsibilities: On the one hand, it im-
plements the semantics of many OpenCL library calls (in the OpenCL host code), OpenCL built-in
functions, and implicit semantics (in the device code) to enable detailed program analysis. On the
other hand, it connects the host and device code of an OpenCL program to form one single instance.
By doing so, several analysis and transformations can be done, which would not be possible when
analyzing at each part individually. To further ease analysis, the OpenCL frontend makes the se-
mantics of the OpenCL library and built-in functions explicit, so that an OpenCL program could be
translated to a C program that does not depend on the OpenCL library.

The OpenCL frontend performs all transformations on the INSPIRE representation. This means,
that the generic C frontend generates an INSPIRE DAG from the source code on which the OpenCL
frontend performs some transformations, as shown in Figure 3.6. The result of the OpenCL Fron-
tend is a program in INSPIRE that contains the host and device part of an OpenCL program and
where the implicit OpenCL functionalities (e.g. parallelism, data transfer, etc.) are made explicit.
OpenCL specific qualifiers (e.g. kernel, local, global, etc.) which are not part of standard
C are defined by an automatically injected header file and eliminated (if irrelevant for the INSPIRE
representation) or translated to annotations which are attached to the corresponding INSPIRE node.
The generic frontend is also responsible for translating OpenCL vector types to INSPIRE vectors with
the appropriate type as well as translating vector accesses to subscript operations and operations on
vectors (e.g. addition) to calls to functions generated using vector.pointwise, which performs the
corresponding operation on each vector element in a loop. This is done directly when translating the
Clang AST to the INSPIRE DAG.

Since the OpenCL host code is standard C code which includes some specific headers, whereas
the device or kernel code uses an extension of a subset of C, the OpenCL frontend extensions for
both parts are implemented in two independent compiler components which will be described in the
following paragraphs.

OpenCL Device Frontend

To compile an OpenCL kernel function with Insieme, the OpenCL Device Frontend automatically
adds the header file ocl device.h. This header file declares (but does not implement) most of the
OpenCL built-in functions (in both scalar and vector version), so that Clang will be able to parse the
kernel file without errors and a valid INSPIRE program can be generated from it.

Since OpenCL kernels do not have a main function, the compiler can’t find the entry points
automatically. Therefore, the programmer must mark all kernel functions that should be compiled
with Insieme using #pragma insieme mark. The generic frontend will then generate a program with
a separate entry point for each kernel function and add an annotation to each of them, so they can
be identified as kernel functions by the OpenCL Device Frontend.

22 CHAPTER 3. BACKGROUND

Generic C-
Frontend

Ocl Host
Frontend

1

2

3

4

5

6

7

Host
Code

Device
Code

Generic
INSPIRE

Code

Ocl Host
Frontend

OCL
INSPIRE

Code

8

9

Figure 3.6: Schematic view of the individual stages of the Insieme frontend when compiling an OpenCL
program.

When an INSPIRE node with the aforementioned annotation is found, the OpenCL Device Fron-
tend transforms the attached function and all its sub-functions as follows: It makes the implicit
parallelism of OpenCL explicit. When calling an OpenCL kernel function, several instances of it will
be started in parallel in a two level hierarchy of threads. The instances of the first level are called
work groups. Work groups consist of several work items (which are similar to threads), forming the
second level. Both levels can have up to three dimensions. For a detailed description of the two level
hierarchy see Section 3.1. In order to capture this semantics in INSPIRE, two nested parallel/job
constructs [81] are wrapped around the kernel function’s body, one covering the parallel work groups,
the other one representing the parallel work items as it can be seen in Figure 3.8 which shows the
INSPIRE code generated from the OpenCL kernel function performing a vector addition in Fig-
ure 3.7. The job constructs have a fixed number of threads which is determined by the arguments
global work size and local work size of the function clEnqueueNDRangeKernel in the host code.
In OpenCL, these values are passed to the kernel function implicitly, therefore in INSPIRE two ad-
ditional arguments are added to the kernel, passing them explicitly. The number of threads of the
outer job construct is equal to global work size divided by local work size. Therefore, at the
beginning of the kernel function (at line 36 in Figure 3.8), a statement performing exactly this calcu-
lation is added and the result is used as argument to the outer job construct. The number of threads
for the inner job construct is equal to local work size.

The parallel/job constructs in INSPIRE are only one dimensional. Therefore the three dimen-
sional NDRange of OpenCL is flattened to generate two one dimensional spaces. In order to maintain
the semantics of the input program, the three dimensional group, local, or global id has to be restored
at any place where an instance of get [group|local|global] id is called. In order to do so, these
functions are replaced with new functions, implemented in INSPIRE. Like their OpenCL counter-
parts, those new functions take the dimension as an argument. Additionally, also the local and global

3.3. INSIEME 23

1 #pragma ins i eme mark
2 k e r n e l void vec add (g l o b a l int∗ input1 , g l o b a l int∗ input2 , g l o b a l int∗

output , unsigned int s i z e) {
3 int g id = g e t g l o b a l i d (0) ;
4 i f (g id >= s i z e) return ;
5 output [g id] = input1 [g id] + input2 [g id] ;
6 }

Figure 3.7: OpenCL kernel performing a vector addition.

size (passed as arguments to the kernel function as described in the previous paragraph) and/or the
number of groups (calculated at the first line of the kernel, as described in the previous paragraph)
is added to the argument list, depending on the actual function. From these parameters the actual,
three dimensional index is calculated using division and modulo calculations as the example in Fig-
ure 3.9 shows. Similarly, calls to get [local|global] size and get num groups are replaced with
functions implemented in INSPIRE to yield the same return value as the original functions.

When a function is called inside a kernel, the interface of this function may be changed. As
mentioned before, in the INSPIRE representation some functions need the local size, global size or
number of groups as argument which is not contained in the OpenCL input code. Therefore, if
anything inside a sub-function needs one of those variables, they will be added to the interface and
to all its call sites.

Arguments of the kernel function which use the local qualifier are declared between the two
parallel/job constructs, so they are shared among the threads of the inner parallel, but each thread
of the outer parallel has its own instance of those arguments, as it is defined in [89]. In case of kernel
arguments with the local qualifier, their size is not known at compile time. Therefore, they are
replaced with arguments of type uint<8>, which are used to pass their size from the host code to the
device code, where they are declared between the two parallel/job constructs. Variables with a
global qualifier don’t have to be re-declared inside of the parallel/job constructs, since they are

always pointers. The pointer itself is private to each thread, only the data it is pointing to is shared
among all threads. Arguments using the private qualifier are passed by value so that every thread
has a private copy of them.

In OpenCL, all math functions (e.g. sin, cos etc.) can be marked as native by the programmer.
This keyword means that, if available, a faster and less accurate version of the function (usually
implemented in hardware) shall be used. To cover this semantic, the OpenCL host frontend extension
embeds marked function calls in a call to the function accuracy fast, to keep the information that
accuracy should be traded for speed if possible. This is also done for math functions marked with
half , which work with half floating point precision in OpenCL. Since Insieme does not support two
byte floating point numbers, it translates them to four byte floats. However, the information that this
function does not need high accuracy is preserved. The built in OpenCL function mad is expanded
into a multiplication and an addition since INSPIRE does not support fused multiply-add.

mem fence in OpenCL is directly translated into calls to barrier in INSPIRE. They only syn-
chronize the inner parallel region, as synchronizations on the outer parallel region are not supported
by OpenCL. While mem fence is only synchronizing accesses to either the local or global memory,
depending on the argument, the INSPIRE barrier always synchronizes all instructions. This may

24 CHAPTER 3. BACKGROUND

1 let vecAddWorkItems = fun (
2 r e f<array<int<4>,1>> input1 ,
3 r e f<array<int<4>,1>> input2 ,
4 r e f<array<int<4>,1>> oputput ,
5 int<4> s i z e , vector<uint<8>,3> numGroups ,
6 vector<uint<8>,3> l o c a l S i z e
7) −> uni t {
8 dec l r e f<int<4>> id = (var (u i n t t o i n t (getGloba l Id (0u , numGroups , l o c a l S i z e) ,

4))) ;
9 i f (((∗ id)>=s i z e)) {

10 return uni t ;
11 } ;
12 oputput&[i n t t o u i n t ((∗ id) , 4)] := ∗(input1 &[i n t t o u i n t ((∗ id) , 4)]) + ∗

input2 &[i n t t o u i n t ((∗ id) , 4)] ;
13 } ;
14

15 let vecAddWorkGroups = fun (
16 r e f<array<int<4>,1>> input1 ,
17 r e f<array<int<4>,1>> input2 ,
18 r e f<array<int<4>,1>> oputput ,
19 int<4> s i z e , vector<uint<8>,3> numGroups ,
20 vector<uint<8>,3> l o c a l S i z e
21) −> uni t {
22 paral le l (job ([v e c t o r r e d u c t i o n (l o c a l S i z e , 1 , u int mul)−v e c t o r r e d u c t i o n (

l o c a l S i z e , 1 , u int mul)]) {
23 bind () {vecAddWorkItems (input1 , input2 , oputput , s i z e , numGroups , l o c a l S i z e)

}
24 }) ;
25 mergeAll () ;
26 } ;
27

28 let vecAdd = fun (
29 r e f<array<int<4>,1>> input1 ,
30 r e f<array<int<4>,1>> input2 ,
31 r e f<array<int<4>,1>> oputput ,
32 int<4> s i z e ,
33 vector<uint<8>,3> g l o b a lS i z e ,
34 vector<uint<8>,3> l o c a l S i z e
35) −> uni t {
36 dec l vector<uint<8>,3> numGroups = v e c t o r p o i n t w i s e (u i n t d i v) (g l o ba l S i z e ,

l o c a l S i z e) ;
37 paral le l (job ([v e c t o r r e d u c t i o n (numGroups , 1 , u int mul)−v e c t o r r e d u c t i o n (

numGroups , 1 , u int mul)]) {
38 bind () {vecAddWorkGroups (input1 , input2 , oputput , s i z e , numGroups , l o c a l S i z e

) }
39 }) ;
40 mergeAll () ;
41 } ;

Figure 3.8: INSPIRE code performing a vector addition, created from the OpenCL kernel function
in Figure 3.7. The INSPIRE representation of the function getGlobalId can be found in Figure 3.9.

3.3. INSIEME 25

1 l e t getGloba l Id = fun (uint<4> dimindx , vector<uint<8>,3> g l o b a l S i z e , vector<uint
<8>,3> l o c a l S i z e) −> uint<8> {

2 dec l uint<8> l o c a l I d = getThreadID (0) ;
3 dec l uint<8> groupId = getThreadID (1) ;
4 switch (dimindx) {
5 case 0 : {
6 return (((l o c a l I d /(l o c a l S i z e [2])) /(l o c a l S i z e [1])) +((l o c a l S i z e [0]) ∗ ((

groupId /(g l o b a l S i z e [2])) /(g l o b a l S i z e [1])))) ;
7 }
8 case 1 : {
9 return (((l o c a l I d /(l o c a l S i z e [2]))%(l o c a l S i z e [1])) +((l o c a l S i z e [1]) ∗ ((

groupId /(g l o b a l S i z e [2]))%(g l o b a l S i z e [1])))) ;
10 }
11 case 2 : {
12 return ((l o c a l I d %(l o c a l S i z e [2])) +((l o c a l S i z e [2]) ∗ ((groupId /(g l o b a l S i z e

[2]))%(g l o b a l S i z e [1])))) ;
13 }
14 default : { }
15 } ;
16 return 0 ;
17 } ;

Figure 3.9: INSPIRE code of the OpenCL built-in function get global id.

introduce an overhead due to unnecessary synchronizations, but it never affects the program’s cor-
rectness.

In OpenCL, it is legal to assign a scalar pointer (e.g. of type int) to a pointer of vector-type
(e.g. int4) by using a simple cast. However this does not correspond with the semantics of a CAST in
INSPIRE. Therefore, such operations are replaced with a call to the function ref reinterpret. This
is already done during the translation from the Clang AST to the INSPIRE DAG by an OpenCL
specific extension to the generic frontend. When one of the OpenCL built-in functions starting with
convert is used to transform scalar arrays to vectors, this function is not affected by the generic
frontend but passed to the OpenCL device frontend extension, which replaces it with a function which
iterates over the array and constructs the desired vector element wise.

OpenCL Host Frontend Extension

The host code of an OpenCL program is standard C code, therefore the generic C frontend can
translate it to INSPIRE. However, three transformations need to be applied before any meaningful
analysis on this code can be performed:

• Replacing OpenCL library functions with INSPIRE implementations.

• Typing of cl mem objects.

• Integrating the device code with the host code.

26 CHAPTER 3. BACKGROUND

1 l e t c r e a t e B u f f e r = fun (
2 type< ’ a> t ,
3 uint<8> s i z e ,
4 r e f<array<int<4>,1>> e r r
5) −> r e f<array< ’ a,1>> {
6 e r r &[0u] := 0 ;
7 return new(ar ray c r ea t e 1D (t , s i z e)) ;
8 } ;

Figure 3.10: INSPIRE code of the OpenCL function clCreateBuffer.

Replacing OpenCL Functions with INSPIRE Implementations Most of the functionalities
of an OpenCL host code are performed by some functions defined in the header file cl.h, defined by the
OpenCL standard. However, the actual implementations of those functions are not accessible, since
they are vendor specific and not publicly available. Therefore, the generic frontend only adds the
function’s prototype in the generated INSPIRE code. The OpenCL host frontend extension replaces
them with implementations in INSPIRE, so that Insieme can analyze the program. Two exemplary
examples are described in the following paragraphs.

The INSPIRE implementation of clCreateBuffer can be found in Figure 3.10, which is used to
allocate memory on the device. In line 6 the function sets the fourth argument, which corresponds
to the error code of clCreateBuffer to 0 to indicate a successful execution. Line 7 returns a new
array, allocated in the heap, of the requested type and size.

Figure 3.11 shows the implementation of clEnqueueWriteBuffer in INSPIRE. This function
copies data from host memory to device memory. The arguments command queue, blocking write,
num events in wait list, and event are dropped since they are not needed in INSPIRE. The argu-
ment devicePtr is the sink of the copy operation, i.e. the device buffer, while offset represents the
starting point for the write operation relative to the buffer’s first element in bytes. cb is the number
of bytes being copied where hostPtr is a memory address in the host memory starting from where
cb bytes will be copied to the buffer. The lines 8–9 show a conversion of hostPtr to an array with
the same type as the buffer which is needed to perform the copy operation without violating any type
constraints. Line 10 converts the offset from bytes into number of elements of the corresponding
type. The loop in line 11–13 copies the data element wise to the device buffer. The function always
returns 0, which is equivalent to CL SUCCESS in order to mimic the behavior of the original OpenCL
function.

Many other OpenCL library functions are processed similarly. Some are dropped since they are
not needed. Most of the dropped functions deal either with synchronization of out-of-order/non-
blocking calls to OpenCL functions (not needed since the INSPIRE code is always assumed to be
blocking/in-order) or with gathering information about the device. The code to gather information
about the available devices can be dropped from the application code as this task will be taken over
by the Insieme Runtime.

Typing of cl mem Objects In OpenCL, all data transfer between the host and the device is done
with cl mem buffers. In the host code, they represent a typeless memory area. Such objects are
represented in Inspire as abstract data types, which prohibits most analysis. Therefore, the Insieme

3.3. INSIEME 27

1 let wr i t e Bu f f e r = fun (
2 r e f<array <’a , 1> > devicePtr ,
3 uint<8> o f f s e t ,
4 uint<8> cb ,
5 r e f<any> hostPtr
6) −> int<4> {
7 dec l r e f<array <’a,1>> hp =
8 r e f r e i n t e r p r e t (hostPtr , l i t (array <’a , 1>)) ;
9 dec l uint<8> o = o f f s e t / s i z e o f (l i t (’ a)) ;

10 for (uint<8> i = 0u . . cb) {
11 dev icePtr [i + o] = ∗(hp [i]) ;
12 }
13 return 0 ;
14 } ;

Figure 3.11: INSPIRE code of the OpenCL function clEnqueueWriteBuffer.

1 unsigned int n = . . .
2 int∗ input = (int ∗) mal loc (s izeof (int) ∗ n) ;
3 cl command queue queue ;
4 . . .
5 cl mem∗ buf input = c lCrea t eBu f f e r (context , CL MEM READ ONLY, n∗ s izeof (int) , NULL,

NULL) ;
6 clEnqueueWriteBuffer (queue , buf input , CL TRUE, 0 , n∗ s izeof (int) , input , 0 , NULL,

NULL) ;
7 . . .

Figure 3.12: Exemple for a buffer initialization in OpenCL.

OpenCL host frontend extension translates all cl mem objects to variables of type array<a,1> where
a is the actual datatype of the elements and 1 specifies the array as one dimensional. In order to
identify the datatype, the compiler searches for calls to clCreateBuffer. In the size argument of
those calls it tries to find a sizeof([type]) call to extract the type from it. If this cannot be found,
the compilation fails. The extracted type is then used for the corresponding buffer. Using a buffer
twice with two different types is not supported. Updating the type of all buffers implies also updating
all function interfaces which use a buffer as an argument. Figure 3.12 shows an example how a
buffer may be initialized in OpenCL while the resulting INSPIRE code is shown in Figure 3.13. The
INSPIRE code uses the functions createBuffer (see Figure 3.10) and writeBuffer (see Figure 3.11).
The example shows that the variable queue is dropped during the translation to INSPIRE as it is
not relevant for the functionality of the resulting INSPIRE program.

Integrating the Device Code with the Host Code A very important feature of Insieme is the
ability to combine the host and device code to one single program in order to perform analysis on the
entire program. When compiling an OpenCL program with a traditional compiler, the integration
is only established at run-time, which prohibits many compile time optimizations. Obviously, this
connection can only be performed if the kernel function can be determined at compile time. Dynamic

28 CHAPTER 3. BACKGROUND

1 dec l r e f<uint<4>> n = . . .
2 dec l r e f<r e f<array<int<4>,1>>> input = var (new(ar ray c r ea te 1D (type<int<4>>, (

u i n t p r e c i s i o n (∗n , 8) ∗ s izeof (type<int<4>>)) / s izeof (type<int<4>>)))) ;
3 . . .
4 dec l r e f<r e f<array<int<4>,1>>> buf input = var (c r e a t e B u f f e r (type<int<4>>,

u i n t p r e c i s i o n (∗n , 8) , r e f r e i n t e r p r e t (r e f n u l l , type<array<int<4>,1>>))) ;
5 wr i t e Bu f f e r (∗ buf input , 1u , 0 ul , (u i n t p r e c i s i o n (∗n , 8) ∗ s izeof (type<int<4>>)) , ∗

input) ;
6 . . .

Figure 3.13: INSPIRE representation of the code shown in Figure 3.12.

kernel selection at run-time is not supported by Insieme. The compiler reads the name of the kernel
function directly form the kenrel name argument of the function clCreateKernel which means, that
it must contain the kernel function’s name as a string. Finding the file, which contains the kernel code
is not trivial, since this is normally done at run-time. Therefore, Insieme requires the programmer to
add the pragma #pragma insieme kernelFile "[pathToKernelFile]" to the call to the OpenCL
function clCreateProgramWithSource, providing the path to the kernel file. Kernel code which is
embedded in the host source file as a string is not supported by Insieme.

Once the kernel code is loaded, it is translated to INSPIRE as described in Section 3.3.2. Each
occurrence of clEnqueueNDRangeKernel in the host code is then replaced with a call to a function
which executes the appropriate kernel function and passes all the arguments to the kernel. It always
returns zero, which corresponds to CL SUCCESS in order to match the return value of the OpenCL
function clEnqueueNDRangeKernel. Figure 3.15 demonstrates what INSPIRE code results from the
code fragments in Figure 3.14. The arguments to the kernel are not part of the replaced call, but
are specified somewhere in the host code by calls to clSetKernelArg. In order to collect all the
arguments, the cl kernel variable used in these calls is replaced with a variable of type tuple, which
is used to collect all the arguments. In the source code shown in Figure 3.15, this tuple is declared at
line 32. The calls to clSetKernelArg are replaced with a call to a function that stores the argument
in the tuple and returns 0 to mimic the behavior of clSetKernelArg (line 34). In the call to the
kernel function (line 23 – 28), the single elements of the tuple are passed as arguments. If a kernel
has an argument using the local qualifier, it is replaced by an unsigned integer, holding the size of
the requested array in bytes. This variable is then used to allocate a memory region that represents
the behavior of OpenCL variables with the local qualifier as it is described in Section 3.3.2.

Insieme OpenMP Frontend Extension

The Insieme OpenMP frontend extension consists of two components: The first component translates
the OpenMP pragmas in the input source code to INSPIRE annotations during the generation of the
INSPIRE DAG. The second component generates parallel INSPIRE constructs out of these annotated
INSPIRE nodes.

The most important OpenMP pragmas are omp parallel and omp for. omp parallel will
be translated to a parallel/job construct in INSPIRE, with a variable number of threads. For-
loops that are marked with the omp for pragma are converted to pfor loops which act as a work

3.3. INSIEME 29

1 c l k e r n e l k e rne l = c lCreateKerne l (program , ” vec add ” , NULL) ;
2 . . .
3 cl mem∗ buf input = . . .
4 . . .
5 c lSetKerne lArg (kerne l , 0 , s izeof (cl mem) , &buf input) ;
6 . . .
7 s i z e t l o c a l S i z e = . . .
8 s i z e t g l o b a l S i z e = . . .
9 clEnqueueNDRangeKernel (queue , kerne l , 1 , NULL, &g l o ba l S i z e , &l o c a l S i z e , 0 , NULL,

NULL) ;

Figure 3.14: Exemplary code fragments setting the arguments for and calling the OpenCL kernel
function in Figure 3.7.

sharing construct in INSPIRE as described in [82]. OpenMP barriers are implemented using the
redistribute function in INSPIRE. Implicit barriers, e.g. at the end of an omp for loop are made
explicit in their INSPRIE representation. Figure 3.16 shows a simple parallel loop in OpenMP while
its INSPIRE representation can be found in Figure 3.17. The last argument of the pfor in line
34 expects a function taking the start, end and step size of the loop to be executed in parallel as
arguments. To pass additional arguments to the function in line 1, the bind expression is used to
generate a closure taking the three arguments provided by the pfor and capturing the remaining
arguments form the surrounding context. Further details about the Insieme OpenMP Frontend can
be found in [159].

3.3.3 Insieme Backend

The Insieme Backend translates the INSPIRE code to C code that is suitable for the Insieme Runtime
System (see Section 3.3.4). For this purpose, the INSPIRE code is translated to a C-AST which is
then converted to C. The backend is written in an extendable way, thus additional modules can be
added easily. One of those modules is used to generate OpenCL code as described in the following
paragraph. Another one is designed to generate calls to the Insieme Runtime System out of parallel
INSPIRE constructs to enable the parallel execution on multi-core CPU architectures. Detailed
information about the Insieme backend can be found in [81].

Insieme OpenCL Backend Module

The backend module for OpenCL adds three functionalities to the basic Insieme Backend:

• Generating special OpenCL keywords/functions in the OpenCL kernel code.

• Identifying the OpenCL kernel functions and including them in the output code as a string.

• Adding the needed OpenCL code to the host code.

Generating special OpenCL keywords/functions in the OpenCL kernel code The OpenCL
kernel code has several syntax extensions over the C language. These consist of special keywords (e.g.

30 CHAPTER 3. BACKGROUND

1 let kernelTupleType = (re f<array<r e f<array<int <4>,1>>,1>>, r e f<array<r e f<array<int
<4>,1>>,1>>, r e f<array<r e f<array<int <4>,1>>,1>>, r e f<array<uint<4>,1>>) ;

2

3 let setArg = fun (
4 r e f<kernelTupleType> kerne l ,
5 r e f<array<r e f<array<int<4>,1>>,1>> argument
6) −> int<4> {
7 (t u p l e r e f e l e m (kerne l , 0 , type<r e f<array<r e f<array<int<4>,1>>,1>>>) :=

argument) ;
8 return 0 ;
9 } ;

10

11 letConvertToVector = fun (
12 r e f<uint<8>> s c a l a r
13) −> vector<uint<8>,3> {
14 dec l vector<uint<8>,3> vec = [(∗ s c a l a r) , 1 , 1] ;
15 return vec ;
16 } ;
17

18 let c a l l K e r n e l = fun (
19 kernelTupleType kerne l ,
20 vector<uint<8>,3> g l o b a lS i z e ,
21 vector<uint<8>,3> l o c a l S i z e
22) −> int<4> {
23 vec add (
24 ∗(tuple member access (kerne l , 0 , type<r e f<array<r e f<array<int<4>,1>>,1>>>)& [0])

,
25 ∗(tuple member access (kerne l , 1 , type<r e f<array<r e f<array<int<4>,1>>,1>>>)& [0])

,
26 ∗(tuple member access (kerne l , 2 , type<r e f<array<r e f<array<int<4>,1>>,1>>>)& [0])

,
27 ∗(tuple member access (kerne l , 3 , type<r e f<array<uint<4>,1>>>)& [0]) ,
28 type<int<4>>) , g l o b a l S i z e , l o c a l S i z e) ;
29 return 0 ;
30 } ;
31

32 r e f<r e f<kernelTupleType>> ke rne l = var (new(undef ined (type<kernelTupleType>))) ;
33 . . .
34 setArg (∗ kerne l , s c a l a r t o a r r a y (bu f input)) ;
35 . . .
36 dec l r e f<r e f<array<int<4>,1>>> buf input = . . .
37 . . .
38 dec l r e f<uint<8>> l o c a l S i z e = . . .
39 dec l r e f<uint<8>> g l o b a l S i z e = . . .
40 c a l l K e r n e l (∗ (∗ ke rne l) , convertToVector (g l o b a l S i z e) , convertToVector (l o c a l S i z e))) ;

Figure 3.15: INSPIRE representation of the code fragments shown in Figure 3.14, calling the kernel
function in Figure 3.8.

3.3. INSIEME 31

1 int main () {
2

3 unsigned int s i z e = 100 ;
4 int∗ input1 = mal loc (s i z e ∗ s izeof (int)) ;
5 int∗ input2 = . . .
6 int∗ output = . . .
7

8 #pragma omp p a r a l l e l for
9 for (unsigned int i = 0 ; i < s i z e ; ++i) {

10 output [i] = input1 [i] + input2 [i] ;
11 }
12

13 return 0 ;
14 }

Figure 3.16: Exemple of a simple C program with a OpneMP parallel for loop, performing a vector
addition.

kernel, global, etc.) and special data types, especially the OpenCL vector types. Those are
generated by this backend module when needed. Furthermore, the module is also responsible to
convert matching INSPIRE constructs to function calls such as get global id and other OpenCL
built in functions.

Identifying the OpenCL kernel functions and including them in the output code as a
string The output of the Insieme Backend is only one source file. Therefore, the kernel code is
embedded in it as a string and then compiled and executed with the corresponding OpenCL utility
functions.

Adding the needed OpenCL code to the host code OpenCL needs some code to move data
to the devices, start the kernel execution, and retrieve the result. Calls to these functions are also
inserted by the OpenCL backend extension. Furthermore, the code for distributing the input data
among several devices as well as merging together the results of those devices as described in Chapter 5
is performed at this point. To ease this tasks, Insieme OpenCL Backend Module uses the OpenCL
utility library presented in [58].

Insieme Runtime Backend Module This module of the Insieme backend is designed to create
programs that can be executed within the Insieme runtime system. The generated C code contains
a call to the Insieme Runtime library in order to generate Insieme work items [159] which can be
executed in parallel. Parallel INSPIRE constructs, which are not intercepted by the OpenCL Backend
Module, are translated to calls to the Insieme Runtime Library which trigger the parallel execution
of these work items. For example, input programs which are parallelized using OpenMP will be
translated to programs using such calls by the Insieme compiler. Which INSPIRE statement is
mapped to what call to the Insieme Runtime Library is described in [159].

32 CHAPTER 3. BACKGROUND

1 l e t f unc t i on = fun (
2 r e f<r e f<array<int<4>,1>>> input1 ,
3 r e f<r e f<array<int<4>,1>>> input2 ,
4 r e f<r e f<array<int<4>,1>>> output ,
5 uint<4> s t a r t ,
6 uint<4> end ,
7 uint<4> s t e p s i z e
8) −> uni t {
9 for (dec l uint<4> i = s t a r t . . end : s t e p s i z e) {

10 ∗output &[i] := ∗(∗ input1) &[i] + ∗(∗ input2 &[i]) ;
11 } ;
12 } ;
13

14 l e t body = fun (
15 r e f<uint<4>> s i z e ,
16 r e f<r e f<array<int<4>,1>>> input1 ,
17 r e f<r e f<array<int<4>,1>>> input2 ,
18 r e f<r e f<array<int<4>,1>>> output
19) −> uni t {
20 {
21 p fo r (getThreadGroup (0) , 0u , (∗ s i z e) , 1 , bind (s ta r t , end , s t e p s i z e) {

f unc t i on (input1 , input2 , output , s t a r t , end , s t e p s i z e) }) ;
22 b a r r i e r () ;
23 } ;
24 mergeAll () ;
25 } ;
26

27 l e t main = fun () −> int<4> {
28 dec l r e f<uint<4>> s i z e = var (100u) ;
29 dec l r e f<r e f<array<int<4>,1>>> input1 = (var (new(ar ray c r ea t e 1D (type<int

<4>>, (100 u l ∗ s izeof (type<int<4>>)) / s izeof (type<int<4>>))))) ;
30 dec l r e f<r e f<array<int<4>,1>>> input2 = . . .
31 dec l r e f<r e f<array<int<4>,1>>> output = . . .
32 {
33 merge (p a r a l l e l (job (([1− i n f])) {
34 bind () {body (s i z e , input1 , input2 , output) }
35 })) ;
36 } ;
37 return 0 ;
38 } ;

Figure 3.17: INSPIRE representation of a program with a parallel loop performing a vector addition,
generated from the C code in Figure 3.16.

3.4. SUMMARY 33

3.3.4 Insieme Runtime System

Programs compiled with the Insieme compiler are designed to be executed by the Insieme runtime
system. Those programs are typically multi-threaded using calls to the Insieme runtime library as
described in Section 3.3.3. The Insieme runtime system provides a parallel execution environment
with customizable parallelization strategies. It is responsible for mapping the executed program to
OS-level threads. For each OS-level thread used, one worker is created and started [159]. Every
worker is mapped to a specific CPU core in ascending order. Each worker has its own queue of
Insieme work items that it processes. The runtime system manages the work distribution among
those queues and can apply different distribution strategies to them (e.g. work stealing or static work
distribution). If the work item queue is empty, the worker is put to sleep and woken up by the
runtime system when new work items are assigned to the corresponding worker. The Insieme runtime
system is designed in a modular way. OpenMP programs that have been compiled with the Insieme
Compiler are mapped to this customizable infrastructure to maximize their performance. A detailed
description of the Insieme runtime system can be found in [159].

Insieme OpenCL Runtime System

The main difference of the Insieme OpenCL runtime system to the generic runtime system imple-
mentation is that it queries for and initializes the OpenCL devices and distributes the work among
them instead among the CPU cores only. The Insieme runtime system allocates one CPU thread for
each OpenCL device. This thread is responsible for all the communication between the host and the
corresponding device. Using a separate CPU thread, i.e. worker, for each device is needed to enable
efficient overlapping computation of several devices. To find an efficient distribution of the given work
over the available, typically heterogeneous, devices, it can use information gathered from an external
source, e.g. a database or the Insieme Compiler, and feed them into a previously generated model
that suggests a workload distribution.

3.4 Summary

This chapter introduced the programming languages and frameworks which will be used in the follow-
ing chapters. Two of them, namely OpenCL and OpenMP, are well known and established themselves
as quasi standards in their respective fields. While OpenMP is very common in parallel programs for
CPUs, OpenCL is mostly used for programming GPUs and hybrid computing nodes. Insieme, on the
other hand, is framework designed for research purposes at the University of Innsbruck. It provides
researchers a toolkit that can be easily extended and adapted for their needs. The following chapters
are examples how the Insieme compiler and runtime system may be used to extend the current state
of the art.

Chapter 4

Automatic OpenCL Device
Characterization

This chapter presents a benchmark suite (uCLbench) that analyzes the strengths and weaknesses of
OpenCL devices. It presents measurements for eight hardware architectures, four GPUs, three CPUs,
and one accelerator, and illustrates how the results accurately reflect unique characteristics of the
respective device. In addition to measuring quantities traditionally benchmarked on CPUs like arith-
metic throughput or the bandwidth and latency of various address spaces, uCLbench also includes code
designed to determine parameters unique to OpenCL like the dynamic branching penalties prevalent
on GPUs. The contributions in this chapter are a joint work with Dr. Peter Thoman. My main
task was the implementation, execution and evaluation of the benchmarks. The results of the research
presented in this chapter have been published in [161].

As mentioned in Chapter 1, the search for higher sustained performance and efficiency has led to
increasing use of highly parallel architectures. This movement includes GPU computing, accelerator
architectures like the Cell Broadband Engine, but also the increased thread- and core-level paral-
lelism in classical CPUs [122]. As described in Section 3.1, OpenCL provides a unified programming
environment which is capable of effectively targeting this variety of devices.

Broad acceptance of OpenCL leads to the interesting situation where vastly different hardware
architectures can be targeted with essentially unchanged code. However, as mentioned in Section 3.1,
implementations that yield good performance on one platform may – because of seemingly small
architectural differences – fail to perform well on other platforms. The large and increasing number of
hardware and software targets and the complex relationships between code and performance changes
make it hard to predict how some algorithm will perform across the full range of platforms.

In order to enable automated in-depth characterization and comparison of OpenCL hardware and
software platforms, we have created a suite of microbenchmarks – uCLbench. It includes programs
measuring the following data points:

Arithmetic Throughput Parallel and sequential throughput for all basic mathematical operations,
and many built-in functions defined by the OpenCL standard. When available, native imple-
mentations (with reduced accuracy) are also measured.

35

36 CHAPTER 4. OPENCL DEVICE CHARACTERIZATION

Memory Subsystem Host to device, device to device and device to host copying bandwidth.
Streaming bandwidth for on-device address spaces. Latency for memory accesses to global,
local and constant address spaces. Also determines existence and size of caches.

Branching Penalty Impact of divergent dynamic branching on device performance, particularly
pronounced on GPUs.

Runtime Overheads Kernel compilation time and queuing delays incurred when invoking kernels
of various code volume.

4.1 Benchmark Design and Methodology

Before examining the individual benchmarks composing the uCLbench suite, the basic goals that
shaped our design decisions need to be established. The primary purpose of the suite is to characterize
and compare the low-level performance of OpenCL devices and implementations. As such, we did not
employ device-specific workarounds to ameliorate problems affecting performance on some particular
device, since the same behavior would be encountered by actual programs. Another concern is
providing programmers with useful information that can support them in achieving good performance
over a broad range of devices. Particularly the latency and branching penalty benchmarks are designed
with this goal in mind.

There are three main implementation challenges for uCLbench:

1. Ensure accuracy. The benchmarks need to actually measure the intended quantity on all
devices tested, and it must be possible to verify the computations performed.

2. Minimize overheads. Overheads are always a concern in microbenchmarks, but with the
variety of devices available to OpenCL they are difficult to avoid. E.g. a simple loop whose
performance impact is negligible on a general purpose CPU can easily dominate execution time
on a GPU.

3. Prevent compiler optimization. Since kernel code is compiled at run-time using the compiler
provided by the OpenCL implementation, we have no control over the generated code. Thus,
it is imperative to design the benchmarks in a way that does not allow the compiler to perform
unintended optimizations. Such optimizations could result in the removal of operations that
should be measured.

There is an obvious area of conflict between these three goals. It is particularly challenging to prevent
compiler optimization while not creating significant overheads that could compromise accuracy – even
more so when the same code base is used on greatly differing hardware and compiled by different
closed-source optimizing compilers.

4.1.1 Arithmetic Throughput

As a central part of the suite, this benchmark measures the arithmetic capabilities of a device.
It includes primitive operations as well as many of the complex functions defined in the OpenCL
standard. Two distinct quantities are determined: the device-wide throughput that can be achieved

4.1. BENCHMARK DESIGN AND METHODOLOGY 37

1 k e r n e l void a r i t h f l o a t (g l o b a l f loat ∗ input , g l o b a l f loat ∗ output , const
unsigned i t e r a t i o n s)

2 {
3 f loat a = input [0] ;
4 for (unsigned i = 0 ; i < i t e r a t i o n s ; i++) {
5 a = s i n (a) ;
6 a = s i n (a) ;
7 // . . . r epea ted 100 t imes
8 a = s i n (a) ;
9 }

10 output [g e t g l o b a l i d (0)] = a ;
11 }

Figure 4.1: Arithmetic Testing Kernel. Example to test the throughput of the sinus operation.

by independent parallel execution as well as the performance achieved for sequentially dependent
code. All measurements are taken for scalar and OpenCL vector types.

To enable result checking and prevent compiler optimization, input and output are performed
by means of global memory pointers (see Section 3.1), and the result of each operation is used as
input for the subsequent ones. The loop is manually unrolled to minimize loop overheads on all
devices. Automatic unrolling cannot be relied upon to achieve repeatable results for all platforms
and data/operation types. Figure 4.1 shows the kernel function of this benchmark.

The kernel is invoked with a local and global size of one work item to determine the sequential time
required for completion of the operation, and with a local size of loc = CL DEVICE MAX WORK GROUP SIZE

(as defined in [89]) and a global size of CL DEVICE MAX COMPUTE UNITS∗loc items to calculate device-
wide throughput.

4.1.2 Memory Subsystem

Current GPUs and accelerators have a memory design that differs from the deep cache hierarchies
common in CPUs.

Bandwidth While global GPU memory bandwidth per-chip is high, due to the degree of hardware
parallelism, the memory bandwidth available per compute unit can be insufficient [168]. Another
bottleneck for current GPUs is the limited bandwidth between host and device.

As mentioned in Section 2.1, the memory subsystems of CPUs, GPUs and accelerators show
significant differences. In OpenCL, the use of scratchpad memory and, to some degree, caches can
be controlled by using variables of different address spaces: private, local, constant, global, and host
memory.

For this reason, the memory subsystem benchmarks are divided in two major parts: one for on-
device memory layers and one for memory traffic between host and device. To test the bandwidth of
on-device memory, the benchmark invokes kernels which stream data from one layer in the memory
hierarchy back into the same layer. We also discern differences between scalar and various OpenCL
vector types, as the latter might show higher performance.

38 CHAPTER 4. OPENCL DEVICE CHARACTERIZATION

For the streaming kernel, overheads were a major concern. This was addressed by using fast add
operations to forestall optimization, and by maximizing the ratio of read/write memory accesses.

Host↔device bandwidth measurement does not require any kernel, instead it uses OpenCL li-
brary calls to copy data from/to the device’s global memory or inside device’s global memory. For
device/host communication, two options are considered: the first generates a buffer and commands
the OpenCL runtime to transfer it (clEnqueueWriteBuffer), the second maps a device buffer into
the host memory and works directly on the returned pointer.

Latency In addition to bandwidth, knowledge about access latency is essential to effectively utilize
the available OpenCL memory spaces. Depending on the device used, only some or none of the
accesses may be cached, and latency can vary by two orders of magnitude, from a few cycles up to
several hundreds.

1 5 6 7 8 9 1110 1312 1514 20 43

Figure 4.2: Latency benchmark offset array for a cache line size of 4 elements used for latency
benchmark.

The latency benchmark uses a specifically designed index array to perform a large number of
indirect memory accesses. The index array contains address offsets chosen to cause jumps larger
than the cache line size, and end on a zero entry after traversing the entire array, as illustrated in
Figure 4.2. The measurement kernel is relatively simple, as shown in Figure 4.3. It is always invoked
using a single work item. Constant address space is tested similarly.

Some input-dependent computation and output has to be performed to prevent optimization,
which is achieved by accumulating the offsets. Writing the sum to global memory allows correctness
checking. To sufficiently reduce the impact of loop overheads when measuring the latency of global
memory on all platforms required a manual unrolling of 64 iterations. Note that the resulting program
only works correctly for input sizes evenly divisible by 64.

1 k e r n e l void l a t ency (g l o b a l u int ∗ input , g l o b a l u int ∗ r e s u l t)
2 {
3 uint r e s = 0 , next = 0 ;
4 do {
5 next = input [next] ;
6 // . . . 63 r e p e t i t i o n s o f
7 // ”next = input [next] ; ”
8 r e s += next ;
9 } while (next) ;

10 ∗ r e s u l t = r e s ;
11 }

Figure 4.3: Memory latency kernel. Example for testing the latency of global memory.

4.1. BENCHMARK DESIGN AND METHODOLOGY 39

1 k e r n e l void
2 branchPenalty (g l o b a l f loat ∗ brancharray , g l o b a l f loat ∗ outarray)
3

4 {
5 int id = g e t g l o b a l i d (0) ;
6 i f (brancharray [id] >= 63.9 f && brancharray [id] <= 64.1 f) {
7 outarray [id] = work (6 4 . 0 f ∗brancharray [id]) ;
8 }
9 // . . . 63 to 2 sk ipped

10

11 i f (brancharray [id] >= 0.9 f && brancharray [id] <= 1.1 f) {
12 outarray [id] = work (1 . 0 f ∗brancharray [id]) ;
13 }
14 }

Figure 4.4: Branch penalty testing kernel

Measuring local memory latency is slightly more involved, since it requires copying the input array
as a first step inside the kernel. This introduces some delay which cannot be measured reliably and
exactly. We compensate this by repeating the traversal of the memory segment 10000 times in each
invocation. This number of repetitions has proven sufficient to reduce the impact of the copying
operation to less than one percent on all platforms.

4.1.3 Branching Penalty

On some OpenCL devices divergent dynamic branching on work items leads to some or all work being
serialized. The impact can differ with the amount and topological layout of diverging branches on the
work items. Since the effect on algorithm performance of this penalty can be severe [54] we designed
a microbenchmark to determine how devices react to various branch counts and layouts.

0 1 b . . .

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

2 Branches, branching width 4

0 0 1 1 2 2 3 3 4 4 5 5 0 0 1 1

6 Branches, branching width 2

Figure 4.5: Measurement layout options used for branch penalty benchmark.

The benchmark kernel is provided with an array of floating point numbers equal in length to the
amount of work items. Each item then takes a branch depending on the number stored in its assigned

40 CHAPTER 4. OPENCL DEVICE CHARACTERIZATION

location. Figure 4.4 shows the kernel code for this test. The work function performs busy work
independent of the input in order to increase the run time of each branch and make any dynamic
branching penalties more easily measurable. Figure 4.5 illustrates how brancharray configurations
can be used to test a varying number of branches and different branch layouts.

For this benchmark, dealing with the issues described at the beginning of this section was relatively
easy. Since only relative performance with different branching behavior is of interest, the function
work can be scaled without influencing the outcome of the benchmark. This makes overheads a
non-issue and allows the benchmark design to concentrate on ensuring that no unwanted compiler
optimizations can take place. This is achieved by calling the function work with a number partly
composed of the dynamic input, and saving the result to global memory.

4.1.4 Runtime Overheads

Compared to traditional program execution, the OpenCL model introduces two potential sources of
overhead. Firstly, it is possible to compile kernels at run-time, and secondly there is an amount of time
spent between queuing a kernel invocation and the start of computation. These overheads are mea-
sured in uCLBench using the OpenCL profiling event mechanism – we define the invocation overhead
as the elapsed time between the CL PROFILING COMMAND QUEUED and CL PROFILING COMMAND START

events, and the compilation time as the time spent in the clBuildProgram call. The actual ker-
nel execution time is disregarded for this benchmark, and the accuracy of the profiling events is
implementation defined (see Table 4.1).

4.2 Device Characterization – Results

To represent the broad spectrum of OpenCL-capable hardware we selected eight devices, comprising
four GPUs, three CPUs and one accelerator. Their device characteristics, as reported by OpenCL
are summarized in Table 4.1. The following paragraphs describe the used processors in detail.

NVIDIA TESLA 2050 The GF100 Fermi chip in this GPGPU device contains 14 compute units
with a load/store unit, a cluster of four special function units as well as two 16 element wide SIMT
vector units each. These execution units are fed with instructions by two independent scheduling
units.

AMD Radeon HD5870 The Cypress GPU on this card has 20 compute units containing 16 Very
Long Instruction Word (VLIW) [51] processors with an instruction word length of five. To benefit
from the VLIW architecture in OpenCL the programmer should use a vector data type such as
float4.

NVIDIA GeForce GTX460 The GTX460 contains a GF110 Fermi GPU which comprises 7
compute units. These compute units are similar to the ones on the TESLA 2050, with one important
difference: Each compute unit consists of 3 SIMT vector units fed by 2 superscalar scheduling units.

4.2. DEVICE CHARACTERIZATION – RESULTS 41

D
ev

ic
e

T
es

la
20

5
0

R
ad

eo
n

58
70

G
T

X
46

0
G

T
X

27
5

2x
X

55
70

2
x

O
p

t.
24

35
2
x
C

el
lP

P
E

2x
C

el
lS

P
E

Im
p

le
m

en
ta

ti
o
n

N
V

ID
IA

A
M

D
N

V
ID

IA
N

V
ID

IA
A

M
D

A
M

D
IB

M
IB

M
O

p
er

at
in

g
S

y
st

em
C

en
tO

S
5
.3

C
en

tO
S

5.
4

C
en

tO
S
5.

4
W

in
7

C
en

tO
S

5.
4

C
en

tO
S

5.
4

Y
D

L
6
.2

Y
D

L
6.

2
H

o
st

C
on

n
ec

ti
o
n

P
C

Ie
2.

0
P

C
Ie

2.
0

P
C

Ie
2.

0
P

C
Ie

2.
0

-
-

-
O

n
-c

h
ip

T
y
p

e
G

P
U

G
P

U
G

P
U

G
P

U
C

P
U

C
P

U
C

P
U

A
C

C
E

L
#

C
h

ip
s

1
1

1
1

2
2

2
2

#
C

om
p

u
te

U
n

it
s

14
20

7
30

16
1
2

4
1
6

M
ax

W
o
rk

g
ro

u
p

1
0
24

25
6

10
24

51
2

10
24

10
24

2
56

25
6

V
ec

t.
W

id
th

F
lo

at
1

1
4

1
4

4
4

4
C

lo
ck

(M
H

z)
1
1
47

14
00

85
0

14
04

29
3
3

2
60

0
3
20

0
32

00
M

ax
.A

ll
o
c.

(M
B

)
67

1
25

6
51

2
22

0
10

2
4

1
02

4
75

7
7
57

Im
a
ge

s
Y

es
Y

es
Y

es
Y

es
N

o
N

o
N

o
N

o
M

ax
.

K
er

n
el

A
rg

s
4
3
52

10
24

43
52

43
52

40
96

40
96

2
56

25
6

A
li

gn
m

en
t

64
12

8
12

8
16

1
28

12
8

1
1

C
ac

h
e

R
/W

N
on

e
R

/W
N

on
e

R
/W

R
/W

R
/W

N
on

e
C

ac
h

e
L

in
e

12
8

-
12

8
-

6
4

64
12

8
-

C
ac

h
e

S
iz

e
(K

B
)

22
4

-
11

2
-

6
4

64
3
2

-
G

lo
b

al
M

em
(M

B
)

3
0
72

10
24

20
48

87
7

30
72

30
72

30
72

3
07

2
C

on
st

an
t

(K
B

)
64

64
64

64
64

6
4

6
4

64
L

o
ca

l
T

y
p

e
S

cr
at

ch
S

cr
at

ch
S

cr
at

ch
S

cr
at

ch
G

lo
b

a
l

G
lo

b
a
l

G
lo

b
a
l

S
cr

a
tc

h
L

o
ca

l
(K

B
)

48
32

48
16

32
3
2

51
2

2
43

T
im

er
R

es
.

(n
s)

1
0
00

1
10

00
10

00
1

1
37

3
7

T
a
b

le
4.

1:
O

p
en

C
L

d
ev

ic
es

b
en

ch
m

ar
ke

d
in

th
is

ch
ap

te
r

42 CHAPTER 4. OPENCL DEVICE CHARACTERIZATION

NVIDIA GeForce GTX275 This graphics card is based on the GT200 GPU which has 30 com-
pute units, each containing one eight element wide SIMT vector unit.

Intel Xeon X5570 The Intel Xeon X5570 features 4 physical CPU cores with simultaneous multi-
threading (SMT) leading to a total of 8 logical cores. The Xeons used in our benchmarks are mounted
on an IBM HS22 Blade featuring two Intel Xeon X5570 with shared main memory, resulting in a single
OpenCL device with 16 compute units. Each compute unit houses one four element wide vector unit.

AMD Opteron 2435 The Opteron 2435 CPUs used in this chapter are mounted on a dual-socket
IBM LS22 Blade. Each Opteron 2435 contains 6 cores leading to a total of 12 compute units with
one four element wide vector unit each.

IBM PowerXCell 8i The accelerator device in our benchmarks consists of two PowerXCell 8i
mounted on an IBM QS22 Blade. In OpenCL a Cell processor comprises two devices: A CPU (the
PPE of the Cell) and an accelerator (all SPEs of the Cell). The two Cell PPEs, each featuring SMT,
contain four compute units, the eight SPE cores of the two Cell chips add up to 16 compute units.
Every compute unit, both PPE and SPE, contains one eight element vector unit each.

All benchmarked devices in this chapter, except the NVIDIA GPUs, feature SIMD vector units
that can be exploited in OpenCL by using vector data types such as float4. The vector units of the
NVIDIA GPUs can only be addressed with OpenCL using multiple work items within the same work
group.

4.2.1 Arithmetic Throughput

We have gathered well over 3000 throughput measurements using the uCLBench arithmetic bench-
mark. A small subset that provides an overview of the devices and contains the most significant and
interesting results will be presented in this section.

Figure 4.6a shows the number of single precision floating point multiplications per second measured
on each device and the theoretical maximum calculated from the hardware specifications. The first
thing to note is the large advantage of GPUs in this metric, which necessitates the use of separate
scales to portrait all devices meaningfully.

Looking at the effective utilization of hardware capabilities, the GPUs also do well. The Fermi
cards reach over 99% utilization. The other GPUs still go over 80% while the two x86 CPUs fail to
reach the 50% mark. IBM’s OpenCL devices perform a bit better, achieving slightly over 65% of the
theoretical maximum throughput on both the PPEs and SPEs.

While throughput of vectorized independent instructions is important for scientific computing
and many multimedia workloads, some problems are hard to parallelize. The performance in such
cases depends on the speed at which sequentially dependent calculations can be performed, which is
summarized in Figure 4.6b. The CPUs clearly outperform GPUs and accelerators here, providing a
solid argument for the use of heterogeneous systems.

Vectorization Figures 4.7a and 4.7b show the relative performance impact of manual vectorization
using the floatN OpenCL datatypes. With a single work item all devices benefit from vectorization
to some extent. Since all three CPUs deliver the same relative performance, they are consolidated.

4.2. DEVICE CHARACTERIZATION – RESULTS 43

0 50 100 150 200 250

Xeon
Opteron
Cell PPE
Cell SPE

Measured
Theoretical Max

0 250 500 750 1000 1250

Tesla 2050
Radeon
GTX460
GTX275

GOp/s

(a) Parallel

0 200 400 600 800

Tesla 2050

Radeon

GTX460
GTX275

Xeon

Opteron

Cell PPE

Cell SPE

MOp/s

(b) Sequential

Figure 4.6: Floating point multiplication throughput

When the full amount of work items is used there are two clearly visible categories: The NVIDIA
GPUs effectively gather individual work items into SIMD groups and thus show no additional benefit
from manual vectorization, vectors with 16 elements even slow down the execution. The GTX460 re-
sult is counter-intuitive, but can be explained by scheduling constraints introduced by the superscalar
architecture.

4.2.2 Memory Subsystem

The memory subsystems of the benchmarked OpenCL devices diverge in two areas – availability of
dedicated global device memory and structure of the on-chip memory. The GPU devices feature
dedicated DRAM (i.e. global memory) while for all other devices the global device address space
resides in the host’s main memory. Furthermore, the local memory on GPUs and Cell SPUs is a
manually managed scratchpad while on CPUs it is placed inside the cache hierarchy.

44 CHAPTER 4. OPENCL DEVICE CHARACTERIZATION

1

2

4

8

16

float float2 float4 float8 float16

Tesla 2050

Radeon

GTX460

GTX275

CPU

Cell SPE

(a) Using a single work item

0,5

1

2

4

8

16

float float2 float4 float8 float16

Tesla 2050

Radeon

GTX460

GTX275

Xeon

Opteron

Cell PPE

Cell SPE

(b) Using many work items

Figure 4.7: Vectorization Impact

Bandwidth The bandwidth measured between host and devices is shown in Figure 4.8a. For CPUs,
data is simply copied within their main memory, while for GPUs it has to be transferred over the PCIe
bus. Therefore, the bandwidth measured for the CPUs is higher in this benchmark,and the results
of the two CPUs using the AMD implementation correspond to their main memory bandwidth. All
NVIDIA GPUs perform similarly, whereas the Radeon is far behind them when using direct memory
while it is faster when using mapped memory. The Cell processor achieves very low bandwidth
although it is equipped with fast memory, a result that we attribute to an immature implementation
of the IBM OpenCL runtime.

4.2. DEVICE CHARACTERIZATION – RESULTS 45

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
M
B
/s

Host->Device, Direct
Host->Device, Mapped
Device->Host, Direct
Device->Host, Mapped

(a) Bandwidth transferring data from/to the device

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

G
B

/s

0

1

2

3

4

5

(b) Global device memory bandwidth

Figure 4.8: Bandwidth measurements

A second property we measured is the bandwidth of the devices’ global memory. As shown in
Figure 4.8b the GPUs outperform all other architectures in this benchmark due to their wide memory
interfaces. The GTX275 outperforms the Radeon as well as the newer NVIDIA GPUs although the
theoretical memory bandwidth of the latter ones is slightly higher. All CPUs achieve the same
bandwidth as in the host↔device benchmark since host and device memory are physically identical.

Looking further into the memory hierarchy we measure the bandwidth of a single compute unit
to its local memory. Since all compute units on a device can access their local memory concurrently,
the numbers provided need to be multiplied by the compute unit count in order to calculate the local
memory bandwidth of the whole device. We measured the bandwidth in four ways: in the first case

46 CHAPTER 4. OPENCL DEVICE CHARACTERIZATION

0

1

2

3

4

G
B

/s

scalar, Argument
vectorized, Argument
scalar, in Kernel
vectorized, in Kernel

0

10

20

30

40

(a) Using a single work item

0

50

100

150

200

G
B

/s

0

10

20

scalar, Argument
vectorized, Argument
scalar, in Kernel
vectorized, in Kernel

(b) Using multiple work items

Figure 4.9: Bandwidth of one compute unit to its local memory

only one work item accesses the memory, in the second case the maximum launchable number of
work items is used. These two variants were used on local memory that has been statically declared
inside a kernel function as well as to local memory passed as an argument to the kernel function.
Furthermore, all benchmarks were performed using scalars and vector data types. Figure 4.9a shows
the result of the benchmarks using only one work item while Figure 4.9b displays the values for the
maximum amount of work items. GPU scratchpad memories are clearly designed to be accessed by
multiple work items, and with parallel access their performance increases by up to two orders of
magnitude. All GPUs benefit from using vector data types when accessing the memory sequentially,
while in the parallel version only the Radeon shows a higher bandwidth when using OpenCL vector
types than with scalars.

In contrast to the GPUs, the Cell SPE scratchpad memory can be used efficiently in the sequential
benchmark, parallelizing the access has only a minor impact on the speed. On the CPU side, all
systems exhibit unexpected slowdowns with multiple work items. We believe that this is caused by

4.2. DEVICE CHARACTERIZATION – RESULTS 47

1

10

100

A
cc

e
ss

 L
at

en
cy

 (
n

s)

global

const

local

Figure 4.10: Memory access latency of various OpenCL address spaces

superfluous cache coherency operations due to false sharing [163]. All CPUs benefit from OpenCL
vector types. All devices show a higher bandwidth to the local memory when it is statically declared
inside the kernel function.

Latency One purpose of the multiple address spaces in OpenCL give the programmer access to
lower latency memory pools. This is particularly important on GPUs and accelerators, where global
memory is un-cached or the caches involved are relatively small. As shown in Figure 4.10, absolute
access latency to global memory, i.e. to the DRAM, is almost an order of magnitude larger on GPUs
and accelerators than on CPUs. Additionally CPUs can rely on their highly sophisticated cache
hierarchies to reduce the access times even further. The impact of caching is shown in Figure 4.11
which shows the relative time to access a data item of a certain size in comparison to the previously
measured latency to the global memory. If the data fits in a cache, not the access time to the DRAM,
but to the cache is measured.

This depiction clearly identifies the number of caches featured by a device, as well as their usable
size in OpenCL. The caches on the CPUs are the most efficient. Since the Fermi GPUs feature a
L1 and L2 cache, accesses to data in those caches have a much lower latency than an access to the
DRAM. The Radeon and GTX275 as well as the Cell SPE do not feature any automated caching of
data in global memory resulting in equal access time for all tested sizes.

Local and constant memory latency is significantly smaller than the latency of the global memory
on all devices. On the CPUs it corresponds to L1 cache latency as expected. All four GPUs show very
similar performance to access the local memory, while the Fermi based chips outperform the Radeon
and GTX275 in accessing the constant memory by approximately six and three times, respectively.
The accelerator’s behavior more closely resembles a CPU than a GPU regarding local latency, resulting
in the largest difference between global and local timings. The SPEs are the only device to achieve
significantly lower latency for constant memory than for local memory accesses.

48 CHAPTER 4. OPENCL DEVICE CHARACTERIZATION

0

0,2

0,4

0,6

0,8

1

4K 8K 16K 32K 64K 128K256K512K 1M 2M 4M 8M 16M 32M

Tesla 2050

GTX460

Xeon

Opteron

Cell PPE

Figure 4.11: Memory access latency relative to un-cached global memory accesses depending on data
size demonstrating the impact of caching on global memory latency.

4.2.3 Branching Penalty

We measured the time taken to process the branch penalty testing kernel with one to 128 branches
relative to the time required to complete a single branch. All CPUs remain at the same performance
level regardless of the number of divergent branches. This is expected, as CPUs do not feature the
SIMT execution model that results in a branching penalty. Also the Cell SPE accelerator does not
exhibit any penalty. The situation is more interesting for the GPUs, which show a linear increase in
run-time with the number of branches until a certain cutoff point. In case of all NVIDIA GPUs, this
point is reached at 32 divergent branches, on the Radeon it takes 64 branches. This measurement
coincides perfectly with the warp size [118] reported for each GPU, which is the number of work items
that are grouped together for SIMT execution.

Figure 4.12 summarizes the results obtained varying both branch count and topological layout of
branches in the local size. A darker color indicates longer kernel run-time, and the lower right part
is black since it contains infeasible combinations of branching width and branch count. Generally,
grouping branches together improves the performance. In fact, the hardware behaves in a very
predictable way: if the condition branchingWidth ∗ branchCount ≥ warpSize is fulfilled, further
increases in the branch count will not cause performance degradation. On NVIDIA GPUs, multiples
of 8 for the branch width are particularly advantageous, and the same is true for multiples of 16 on
the AMD Radeon 5870. For GTX275 and AMD Radeon 5870 this value is equal to the reported width
of the architecture’s vector units. This is not the case for the Fermi-based NVIDIA GPUs, where a
vector unit width of 16 is generally assumed, yet their behavior remains unchanged compared to the
older NVIDIA GPU.

4.2. DEVICE CHARACTERIZATION – RESULTS 49

5 10 15 20 25 30

5

10

15

20

5

10

15

20

5 10 15 20 25 30

N
um

be
r o

f d
iv

er
ge

nt
 b

ra
nc

he
s

Branching widthBranching width

8

16

24

16

Figure 4.12: Branching penalty with varying branch width for NVIDIA GPUs (left hand side) and
the AMD Radeon 5870 (right hand side).

4.2.4 Runtime Overheads

Invocation overheads of a kernel function, as depicted in Figure 4.13, remain below 10 microseconds
on the tested x86 CPUs as well as the Fermi GPUs. The two IBM devices and the GTX275 take
approximately 30 and 50 microseconds, respectively. The Radeon HD5870 requires approximately
450 microseconds from enqueueing to kernel startup.

We measured compilation times below 1 second for all mature platforms, scaling linearly with
code size. The IBM platform has larger compilation times, particularly for the SPEs, reaching 30
seconds and more for kernels beyond 200 lines of code.

0 10 20 30 40 50 60 70 80 90 100 110

Tesla 2050
Radeon
GTX460
GTX275

Xeon
Opteron
Cell PPE
Cell SPE

450

Figure 4.13: Kernel invocation overhead

50 CHAPTER 4. OPENCL DEVICE CHARACTERIZATION

4.3 Related Work

Microbenchmarks have a long history in the characterization of parallel architectures. The Intel MPI
Benchmarks (IMB) [77] are often used to determine the performance of basic MPI operations on
clusters. For OpenMP, the EPCC suite [27] measures the overheads incurred by synchronization,
loop scheduling and array operations. Bandwidth is widely measured using STREAM [109], and our
memory bandwidth benchmark implementation is based on its principles.

A major benefit of using OpenCL is the ability to target GPU devices. Historically these were
mostly used for graphics rendering, and benchmarked accordingly, particularly for use in computer
games. A popular tool for this purpose is 3DMark [139]. When GPU computing first became
widespread Stanford University’s GPUbench suite [24] provided valuable low-level information. How-
ever, it predates the introduction of specific GPU computing languages and platforms, and therefore
only measures performance using the restrictive graphics programming interface. In depth perfor-
mance analysis of one particular GPU architecture has been performed by Wong et al. [177].

Recently, the SHOC suite of benchmarks for OpenCL was introduced [39]. While it contains some
microbenchmarks, it is primarily targeted at measuring mid- to high-level performance. It does not
try to identify the individual characteristics of mathematical operations or measure the latency of
accesses to OpenCL address spaces. Conversely, our suite is aimed at determining useful low-level
characteristics of devices and includes exhaustive latency and arithmetic performance measurements
as well as a benchmark investigating dynamic branching penalties. We also present results for a
broader range of hardware, including an accelerator device.

The Rodinia Heterogeneous Benchmark Suite [29] predates wide availability of OpenCL, therefore
separately covering CUDA, OpenMP and other languages with distinct benchmark codes. Also, unlike
uCLbench, Rodinia focuses on determining the performance of high-level patterns of parallelism.

The performance characteristics of additional OpenCL devices which are not covered in this thesis,
investigated using uCLbench, can be found in [152]. Additionally, uCLbench has been used to guide
device specific optimizations for OpenCL programs in [110, 111, 164, 112]. The authors of [108]
and [86] utilized uCLbench to generate hardware features for automatic scheduling of OpenCL kernel
functions in heterogeneous nodes, using a model generated with machine learning model and an
analytical model, respectively.

4.4 Summary

The uCLbench suite provides tools to accurately measure important low-level device properties in-
cluding: arithmetic throughput for parallel and sequential code, memory bandwidth and latency to
several OpenCL address spaces, compilation time, kernel invocation overheads and divergent dynamic
branching penalties. We obtained results on eight compute devices which reflect important hardware
characteristics of the platforms.

Our benchmark suite is useful to quickly gaining an in-depth understanding of new hardware and
software OpenCL platforms. We demonstrated that microarchitectural features such as warp sizes or
memory layout can be accurately deduced from the results of the respective benchmarks. Additionally,
uCLbench can help in assessing the viability of a GPU or accelerator version of a certain program,
and inform decisions on what device to use for which parts of an algorithm in a heterogeneous system.

Chapter 5

Automatic Input-Sensitive
Heterogeneous Task Partitioning

This chapter examines the problem of distributing the workload of an OpenCL program over all avail-
able processing units in order to minimize the execution time. The target architecture is a single
compute node consisting of three different OpenCL-capable processing units: two (equal) GPUs and
one multi-core CPU. The system is executing only one OpenCL kernel at a time, the input codes
are standard OpenCL programs. In contrast to previous work, the system presented in this chapter
is designed to find an efficient workload distribution for previously unseen programs. This chapter
presents a joint work with Ivan Grasso. My contribution was the translation of the input programs
to INSPIRE as well as tuning and experimenting with the artificial neural networks, including the
work distribution and decision making process. The contributions presented in this chapter have been
published in [95].

In the past few years, heterogeneous computing systems (as described in Section 2.1) have emerged
as cost-effective means for scaling. The transition from homogeneous to heterogeneous architectures
is challenging with respect to the efficient utilization of the hardware resources and the reuse of the
software stack. As heterogeneous computing opens many new opportunities for developing parallel
algorithms, our work is motivated by the additional challenges and complexity that it introduces.
One of the challenges is the distribution of tasks (i.e. task partitioning) among the available OpenCL
devices in order to maximize the system performance. Task partitioning defines how the total workload
is distributed among several computational resources.

It is important to understand that the best performing task partitioning is likely to change with
different applications, different (input) problem sizes, and different hardware configurations. We
justify our statement presenting a case study with two programs which are part of our test cases:
linear regression and reduction. The programs have been executed with different problem sizes and
varying task paritionings. We measured the execution times on two heterogeneous target architectures
consisting of one CPU and two GPUs. The results of these experiments are shown in Figures 5.1
and 5.2. Each chart shows execution times (in seconds) in logarithmic scale (y-axis) with different
number of work items (x-axis). Detailed hardware descriptions of the two target architectures mc1
and mc2 are shown in Table 5.1.

51

52 CHAPTER 5. HETEROGENEOUS TASK PARTITIONING

2.0E-03

3.9E-03

7.8E-03

1.6E-02

3.1E-02

6.3E-02

1.3E-01

2.5E-01

5.0E-01

1.0E+00

2.0E+00

4.0E+00

8.0E+00

1.6E+01

3.2E+01

6.4E+01

ex
e

cu
ti

o
n

 t
im

e
 (

se
c)

nr. of threads

one CPU

best hybrid

one GPU

two GPUs

(a) Linear regression on mc1

4.9E-04
9.8E-04
2.0E-03
3.9E-03
7.8E-03
1.6E-02
3.1E-02
6.3E-02
1.3E-01
2.5E-01
5.0E-01
1.0E+00
2.0E+00
4.0E+00
8.0E+00
1.6E+01
3.2E+01
6.4E+01

ex
e

cu
ti

o
n

 t
im

e
 (

se
c)

nr. of threads

one CPU

best hybrid

one GPU

two GPUs

(b) Linear regression on mc2

Figure 5.1: Performance behavior of linear regression on different target architectures with varying
problem size (i.e. work items).

On our first target architecture, mc1, for small problem sizes, the GPU is less effective and the
one CPU task partitioning delivers the best performance for both applications. However, for some
sizes, a hybrid task partitioning (using the CPU as well as one or two GPUs) or a GPU only task
partitioning is preferable. On the second target architecture, mc2, linear regression performs best on
one GPU for smaller problem sizes while reduction reaches the best performance with one CPU. For
increasing problem size the GPUs become more effective and linear regression should be distributed
over two GPUs for both mc1 and mc2. The reduction program exhibits a different behavior for larger
problem sizes, favoring hybrid solutions which outperform any homogeneous configuration by up to
44% and 19% on mc1 and mc2, respectively.

53

4.9E-04

9.8E-04

2.0E-03

3.9E-03

7.8E-03

1.6E-02

3.1E-02

6.3E-02

1.3E-01

2.5E-01

5.0E-01

ex
e

cu
ti

o
n

 t
im

e
 (

se
c)

nr. of threads

one CPU

best hybrid

one GPU

two GPUs

(a) Reduction on mc1

2.4E-04

4.9E-04

9.8E-04

2.0E-03

3.9E-03

7.8E-03

1.6E-02

3.1E-02

6.3E-02

1.3E-01

2.5E-01

ex
e

cu
ti

o
n

 t
im

e
 (

se
c)

nr. of threads

one CPU

best hybrid

one GPU

two GPUs

(b) Reduction on mc2

Figure 5.2: Performance behavior of a parallel chunked reduction on different target architectures
with varying problem size (i.e. work items).

These experiments demonstrate that even for a single application, the optimal partitioning con-
siderably depends on the problem size and the capabilities of the hardware.

Another important aspect of heterogeneous computing is the difficulty of writing multi-device
programs (i.e. a single program which can be executed on multiple devices concurrently). Since
current state-of-the-art compilers are not capable of automatizing this complex task, new tools are
needed in order to facilitate the conversion of existing programs to heterogeneous systems.

In this chapter we present an automatic, problem size sensitive method for task partitioning
of OpenCL programs on heterogeneous systems. Our work is based on machine learning which
effectively combines compile time analysis with run-time feature evaluation to predict the optimal

54 CHAPTER 5. HETEROGENEOUS TASK PARTITIONING

Machine
Name mc1 mc2

CPU manufacturer AMD Intel
CPUs 2x Opteron 6168 2x Xeon X5650
#CPU cores (HT) 24 12 (24)
CPU frequency 1.9 GHz 2.67 GHz
#Parallel Ops (SP) 96 48
Peak Performance 364 GFLOPS 256 GFLOPS
Memory 32 GB 24 GB
Memory Bandwidth 83 GB/s 62 GB/s
Compiler GCC 4.6.3 w/ ”-O3”
Operating System CentOs 5.8
OpenCL version AMD APP SDK 2.7

GPU manufacturer Ati NVIDIA
GPUs Radeon HD 5870 GeForce GTX 480
#GPU cores 20 15
Core frequency 850 MHz 1401 MHz
#Parallel Ops (SP) 1600 480
Peak Performance 2.7 TFLOPS 1.3 TFLOPS
Memory 2 GB 1.5 GB
Memory Bandwidth 153 GB/s 177 GB/s
Connection PCIe 2.0 x16 PCIe 2.0 x16
OpenCL version AMD APP SDK 2.7 CUDA 4.1.1

Table 5.1: Experimental target architectures

task partitioning for every combination of program, problem size and hardware configuration. The
contributions of this chapter are as follows:

• We propose and implement a novel compiler-runtime framework for auto-generation of multi-
device OpenCL code and optimized task partitioning on heterogeneous systems. Our framework
is portable to any OpenCL environment with an arbitrary number of devices. Its task parti-
tioning system is based on an off-line generated, problem size sensitive model, which is capable
of outperforming the CPU/GPU only strategy by 22% and 25%, respectively. Our experimen-
tal results demonstrate the capabilities of our approach using 23 different applications on two
different heterogeneous multi-device systems.

• We show that Principal Component Analysis (PCA) improves the performance of dynamic task
partitioning system by 2% to 7%, depending on the used machine learning technique and target
architecture.

• We present an analysis of different machine learning techniques suitable to solve the automatic
task partitioning problem and show that Artificial Neural Networks (ANN) outperform Support
Vector Machines (SVM) in the presented use case.

5.1. FRAMEWORK OVERVIEW 55

• We empirically demonstrate the benefits of our machine learning based approaches compared
to traditional static task partitioning techniques.

Analyzer

Parallel Heterogeneous
Platform

Runtime System

Multi-device Runtime Code

Measure-
ments

compile time

Backend

Execution

Input
Codes

Trainer

Model

Runtime
Features

1

2 Code
Features

3

4

5

6

7

training phase

runtime

(a) Training phase

Input
Code

Analyzer

Parallel Heterogeneous
Platform

Runtime System

Multi-device Runtime Code

compile time runtime

Backend

Model

1

2 Code
Features

4

7

Runtime
Features

Configuration

3

5

6 Execution

(b) Deployment phase

Figure 5.3: Framework Overview

5.1 Framework Overview

Heterogeneous systems are difficult to program, and moreover the performance capability of individual
devices can vary significantly across different applications and problem sizes which often makes static,

56 CHAPTER 5. HETEROGENEOUS TASK PARTITIONING

problem size insensitive distribution techniques unsuitable. We use the Insieme Compiler and Runtime
framework relieve the developer from this difficult task. The Insieme Compiler translates single-device
OpenCL programs (i.e. an OpenCL program which uses only one processing uint) into multi-device
OpenCL programs. The Insieme runtime system distributes the computation among the available
devices to effectively exploit the performance capabilities of a heterogeneous system.

5.1.1 Architecture

Figure 5.3 illustrates the architecture of the proposed framework, highlighting two main phases:
training and deployment. The labels (1-7) in Figure 5.3a and Figure 5.3b explain the processing of a
program within the Insieme framework.

The goal of the training phase is to build a task partitioning prediction model. Any previously
unseen target architecture can be supported by generating a new model for it. Since the model
generation is done automatically, our approach can be ported to any heterogeneous system without
user intervention. To build a model, a set of OpenCL programs are provided to the system and
translated to INSPIRE (see Section 3.3.1) by the code analyzer (1). From this representation, the
features of the program (the static program features) are extracted and stored in a database (2).
The intermediate representation of the program is then passed to the backend which generates multi-
device OpenCL code (3). Once generated, the new program will be executed with various problem
sizes and the available task partitionings. The obtained performance measurements (4), together with
the problem size dependent features of the program (the run-time features), are collected and added
to the database (5). After these steps have been accomplished for all programs, the trainer uses the
features and the performance measurements stored in the database (6) to generate a task partitioning
prediction model (7).

In the deployment phase a new OpenCL program is provided to the analyzer (1) for optimizations,
the static features are extracted (2) and the intermediate representation is passed to the backend (3)
which generates a multi-device OpenCL program (4). When the program is executed, the run-time
features are provided to the previously trained model (5), which combines them with the static
program features to predict the best task partitioning for the current program with the selected
problem size (6). Finally, the runtime system executes the program on the given hardware using the
predicted task partitioning (7).

5.1.2 Implementation

In this chapter, the input for the Insieme Compiler is a single-device OpenCL program. An OpenCL
program consists of a host and a device part as described in Section 3.1. The goal of this work is to
reduce the executing time of the device part by distributing the kernel function over multiple devices.

In order to distribute a kernel function, the Insieme Compiler analyzes the generated IR of the
input program. It collects the subscripts of all buffer accesses in order to derive the buffer’s access
pattern. This analysis identifies whether a buffer should be replicated or distributed among several
devices. If the buffer can be distributed among several devices, we call it splittable. If every device
running a fraction of the original kernel function requires the entire buffer we refer to it as non-
splittable. All buffers with reading accesses in the kernel function have to be splittable in order to

5.2. PARTITIONING DATA-PARALLEL TASK 57

allow our system to distribute the kernel over several devices. Due to the limited synchronization
capabilities of OpenCL, this is the case for most kernel functions.

The access pattern analysis is based entirely on the device code. However, also the host code has
to be adapted according to the results of the access pattern analysis in order to guarantee the correct
distribution of data. For this reason, the Insieme source-to-source compiler connects host and device
code during the translation of the Clang AST into IR, enabling the analysis of the entire program.

After the analysis, the IR is translated by the backend to a multi-device OpenCL program. The
generated code is semantically equivalent to the input code, but its kernels can be distributed among
a generic number of devices by the Insieme runtime system. To select the task partitioning a priori,
the runtime system employs a model generated by machine learning. This model is based on static
program features extracted at compile time and problem size sensitive features collected at run-time.
A detailed description of how we extract features and build this model can be found in Section 5.2.

5.1.3 Limitations

While the Insieme framework can be used to optimize the performance of many programs on hetero-
geneous systems, it also has limitations that leave room for future improvement. At the current stage,
the buffer analysis and task partitioning are executed individually on each kernel. In programs with
multiple kernels, this can cause unnecessary data transfers since the output of each of them must be
copied back to the host in order to be redistributed with a new task partitioning.

Device-specific optimizations are not in the scope of this publication. This work aims at distribut-
ing a given kernel over a set of devices in the best performing way, not at generating a specifically
tuned version of the kernel for each device. Although this issue is not addressed in the current
publication, our system is able to handle multiple versions of a kernel.

Other restrictions are related to scattered data accesses and atomic operations, both performed on
buffers in global memory. For scattered accesses on buffers, the analysis distinguishes two cases: read-
only and read-write buffers. In the first case, the entire buffer will be copied to each device including
data that is not needed. In the second case the kernel will be not distributed, since the gathering and
merging of writes from different devices is not yet supported. Regarding the use of atomic operations
on buffers, OpenCL does not provide any means to implement such operations over multiple devices,
therefore the Insieme framework currently does not support kernels with atomic operations.

Our approach cannot deal with irregular workloads due to the difficulty to statically predict an
optimized task partitioning for such cases.

5.2 Partitioning Data-Parallel Task

Data-parallel tasks can often be split into smaller sub-tasks and distributed across multiple devices.
However, finding an efficient partitioning is not trivial. As will be explained in Section 5.4 and
also pointed out by other studies [62], a dynamic scheduling approach may not lead to an optimal
solution, mostly due to the large difference in performance and transfer bandwidth of the single
devices. Therefore, our approach, based on analysis of the program structure and input data, tries to
predict the optimal partitioning for an OpenCL program a priori. This section describes the extraction
of features and the construction of the machine learning model, used to predict a partitioning.

58 CHAPTER 5. HETEROGENEOUS TASK PARTITIONING

5.2.1 Predicting the Optimal Partitioning

Our overall approach requires to build a model using machine learning in order to predict a task
partitioning a from a vector of features that describes the essential characteristics of a program as
well as the current problem size. Each task partitioning is characterized by a tuple of n integer values
for a target architecture with n devices. Each value represents the percentage of work that is executed
on a particular device. The set A contains all possible partitionings over the available devices with
a granularity of 10% and the predicted task partitioning a should be as near as possible to the best
task partitioning in terms of performance. As done in [62], we choose a granularity of 10% since this
is a good compromise between granularity and number of classes.

5.2.2 Extracting Features

The feature extraction consists of two phases. In the first phase, all the features that can be statically
inferred from the intermediate representation are extracted by the Insieme compiler. This phase takes
place during the source-to-source compilation step of the Insieme Compiler. In the second phase, the
Insieme runtime system determines the values of all problem size dependent run-time features. The
second phase takes place when a program is executed, since the problem size is unknown at compile
time.

The feature extractor needs to know the execution count of each feature relevant statement. If
it is not possible to derive the execution count at compile time (for instance, if loop bounds depend
on input data), the feature extractor assumes a loop iteration count of 100. This means that every
static feature that appears in a loop is multiplied by 100. If loops are nested, this rule is applied
recursively. The resulting value may not be realistic in many cases. However, our goal is not to
estimate the absolute execution times but instead compare relative execution times for different
devices. Therefore, it is sufficient to consider whether feature relevant statements occur outside,
inside or within nested loops. The compiler is also responsible for the generation of one univariate
linear polynomial for each run-time feature, which takes the problem size as input. The generated
polynomials are evaluated during the second phase of the feature extraction to calculate the actual
values of the run-time features.

The features we used to train our framework are sub-divided in static program features (extracted
from the intermediate representation during the source-to-source compilation process) and run-time
features (calculated by the runtime system when the program is executed). Most static program
features count the occurrence of certain activities, like arithmetic operations, memory accesses, or
OpenCL built in functions (e.g. log or cos). Others describe the ratio between two characteristics
(e.g. the ratio between computation and memory accesses or the ratio between number of branches
and all instructions).

All run-time features depend on the problem size. Apart from the problem size itself, they describe
how much data has to be transferred between the host and the devices. We differ between device-to-
host and host-to-device transfers and between transfer size for splittable and non splittable buffers.
Since splittable buffers are distributed over all devices, the total amount of data to be copied is
independent from the number of devices used. In contrast to that, the transfer size of non splittable
buffers scales with the number of devices, since each device must hold a copy of the entire buffer in
its memory.

5.2. PARTITIONING DATA-PARALLEL TASK 59

Algorithm 5.1 Greedy Feature Selection algorithm. F denotes the set of all features and the features
to be used are collected in the set G.

1: function GreedyFeatureSelection(F :set)
2: F← non empty set of all features
3: G← ∅
4: mse ←∞
5: improved ← true
6: while improved do
7: improved ← false
8:

9: for all f ∈ F in parallel do
10: model ← trainModel(f ∪ G)
11: msetmp ← evaluate(model)
12: if msetmp < mse then
13: mse ← msetmp
14: g ← f
15: improved ← true
16: end if
17: end for
18: if improved then
19: F ← F \ g
20: G ← G ∪ g
21: end if
22: end while
23: end function

We used the Greedy Feature Selection described in [144] and illustrated by Algorithm 5.1 to select
the most important features out of a set of 24 static code features and 9 dynamic run-time features.
To select the most important ones, a separate model is trained for each single feature f ∈ F . The
feature which generates the model that gives the lowest mean squared error mse is added to the set of
selected features G. In the next step, a separate model for each remaining feature f and the already
selected ones in set G is trained. Again, the feature which gives the model with the lowest error is
added to the set of selected features G. We repeated this step until adding another feature would not
further reduce the error.

We performed this greedy algorithm on both target architectures using an SVM. During the feature
selection phase, static code features and dynamic run-time features were treated equally. Table 5.3
lists the features that we used to train models on our two target architectures. The column Rank
indicates the order in which the features where added by the Greedy Feature Selection. The column
MSE shows the mean squared error of the model using the corresponding feature and the ones with
a lower rank. The selected features clearly show that on mc1 the dynamic run-time features have a
bigger influence on the result, while on mc2 the static features are more important. This underlines
the necessity to select the features individually for different target architectures. As it will be shown
in Section 5.4, the combination of the selected static program features and run-time features seem to

60 CHAPTER 5. HETEROGENEOUS TASK PARTITIONING

T
ra

in
in

g
co

d
es

d
escrip

tion
P

erfo
rm

a
n

ce
1

o
n

m
c1

P
erform

an
ce

1
on

m
c2

A
p

p
lica

tion
C

P
U

G
P

U
S

V
M

A
N

N
C

P
U

G
P

U
S

V
M

A
N

N

D
ata

T
ra

n
sfer

to/fro
m

D
ev

ice
9
0

3
7

9
2

9
8

84
72

88
9
4

V
ector

A
d

d
itio

n
7
7

4
0

9
3

9
4

71
69

8
7

85
M

atrix
M

u
ltip

licatio
n

6
4

4
9

7
8

8
7

45
79

9
8

90
B

lack
-S

ch
o
les

O
p

tio
n

P
ricin

g
8
2

4
1

9
1

9
3

65
76

93
9
5

V
ertex

p
o
sition

s
in

S
in

e
W

ave
P

attern
1
5

7
0

3
4

47
7

70
83

9
5

2
D

3
x
3

C
on

vo
lu

tio
n

7
0

5
0

9
4

9
8

38
82

95
9
6

M
olecu

la
r

D
y
n

a
m

ics
S

im
u

lation
8
1

5
7

9
4

9
9

68
87

83
9
4

S
p

a
rse

M
a
trix

V
ector

M
u

ltip
licatio

n
9
6

5
9

9
7

1
0
0

82
93

9
8

96
L

in
ear

R
eg

ressio
n

5
1

5
9

5
1

6
0

22
74

70
8
3

K
-M

ea
n

s
clu

sterin
g

8
6

4
8

9
7

9
8

76
80

85
8
8

K
-N

ea
rest-N

eig
h
b

o
r

C
lassifi

cation
2
2

6
8

4
5

48
5

68
69

8
7

S
y
m

m
etric

R
a
n

k
-2

k
O

p
eration

s
9
5

2
4

8
7

78
9
4

49
51

54
S

ob
el

F
ilter

7
5

5
8

9
1

9
7

51
9
0

85
85

M
ed

ia
n

F
ilter

8
2

5
4

9
6

9
8

56
93

90
9
6

R
ay

-trian
g
le

In
tersection

9
0

6
2

9
4

9
7

74
9
8

89
94

F
in

ite-tim
e

L
y
a
p

u
n
ow

E
x
p

o
n

en
t

F
ield

C
a
lcu

la
tio

n
7
7

5
6

9
5

94
59

82
8
5

84
F

low
M

ap
C

a
lcu

la
tion

9
1

3
5

6
0

9
2

75
81

81
8
8

C
h
u

n
ked

R
ed

u
ction

7
2

4
1

8
4

8
9

61
73

8
8

87
P

erlin
N

oise
G

en
erator

9
4

1
7

8
1

73
83

49
84

8
5

C
h
u

n
ked

C
a
lcu

latio
n

of
th

e
G

eo
m

etric
M

ea
n

6
8

4
5

8
1

9
2

54
81

9
4

93
M

ersen
n

e
T

w
ister

R
an

d
om

N
u

m
b

er
G

en
era

to
r

7
9

4
1

9
1

89
67

72
90

9
1

B
y
tew

ise
In

teger
C

o
m

p
ression

7
7

3
9

9
0

9
4

70
69

89
9
5

S
im

u
latio

n
of

a
S

w
in

gin
g

P
en

d
u

lu
m

2
0

7
5

2
0

20
19

70
58

7
6

1
A

ch
iev

ed
p

erfo
rm

a
n
ce

co
m

p
a
red

to
th

e
m

a
x
im

u
m

p
erfo

rm
a
n
ce

in
p

ercen
ta

g
e

a
s

d
escrib

ed
in

S
ectio

n
5
.4

.

T
ab

le
5
.2

:
D

escrip
tio

n
o
f

test
ca

ses
u

sed
for

m
o
d

el
train

in
g

an
d

p
erform

an
ce

of
variou

s
task

p
artition

in
g

strategies.

5.2. PARTITIONING DATA-PARALLEL TASK 61

Rank static program features MSE

2 OpenCL built-in functions 76.3
3 Number of branches / number of statements 64.4
4 Scalar float operations / number of statements 61.1

Rank run-time features MSE

1 Data transfer size for splittable buffer (device to host) 99.7
5 Number of global work items 60.0
6 Data transfer size for splittable buffer (host to device) 47.6
7 Data transfer size for non splittable buffer (h2d) / number of arith. ops 47.5

(a) Features selected by Greedy Feature Selection for mc1

Rank static program features MSE

1 Number of branches / number of statements 91.6
2 Scalar float operations / number of statements 75.8
4 OpenCL built-in functions / number of statements 66.9
6 Scalar int operations / number of statements 56.5
7 Vector float operations / number of statements 52.2
8 Number of loops / number of statements 48.6
9 Scalar int operations 47.5

10 Vector float operations 46.9

Rank run-time features MSE

3 Data transfer size for splittable buffer (host to device) 69.6
5 Data transfer size for splittable buffer (device to host) 64.0

(b) Features selected for mc2

Table 5.3: Static program and run-time features used by our approach determined using the Greedy
Feature Selection [144].

carry enough information to characterize the behavior of our tested programs.

5.2.3 Generating Training Data

To train and validate our model we use the set of codes listed in Table 5.2. As shown in Figure 5.3a,
all training codes are compiled with the Insieme source-to-source compiler and their static program
features are collected in a database. After the compilation, the programs are executed with various
problem sizes (9 to 17 problem sizes, depending on the program) and task partitionings, adding to
the database information about run-time features and execution times. The set of explored task
partitionings depends on the number of available devices in the system, as described in Section 5.2.1.

In order to generate the training patterns needed for the model generation, we perform an ex-
haustive search on that set, finding the task partitioning with the best execution time. The size of

62 CHAPTER 5. HETEROGENEOUS TASK PARTITIONING

the search space is defined by the number of experiments multiplied with the number of possible task
partitionings.

For the number of training codes and the target architectures considered in our study, the search
space consists of 355 × 21 = 7455 elements, where 355 corresponds to all problem size/program
combinations and 21 is the number of task partitionings.

For each combination of test case and problem size we generate one training pattern that com-
bines static and dynamic program features with the best performing task partitioning. Such task
partitioning will then be used as target value during the training of our model.

5.2.4 Building the Model

Based on the training patterns we build a model with one input for each feature (listed in Table 5.3)
and one output, which represents the task partitioning predicted by the model. In our framework, the
user can choose between Support Vector Machines [36] (SVMs) and Artificial Neural Networks [36]
(ANNs). As shown in Table 5.4, SVMs have a much lower training time, while ANNs introduce a
lower overhead during the deployment phase and deliver a higher performance.

During the construction of the model we also evaluate the effect of Principal Component Anal-
ysis [36] (PCA) on the classification result. PCA can be described as the linear projection that
minimizes the average projection cost, defined as the mean squared distance between the data points
and their projections [125]. In our case this means that a certain number of features is reduced to
a smaller number of new features in a lossy way, conserving as much of the original features’ vari-
ance as possible. PCA can help to increase the predictive accuracy of models. However, calculating
the PCA, which includes the calculation of the features’ eigenvalues and eigenvectors, introduces a
notable overhead. This means that applying PCA to all our features, which include some values
only available at run-time, would substantially increase the execution time. In order to eliminate
this additional overhead, we apply PCA only to the static program features, leaving the run-time
features unchanged. In this way we move the overhead of calculating the principal components to
the source-to-source compilation phase, not affecting the execution time. The effect of PCA on our
models’ performance is described in Section 5.4.2.

5.3 Experimental Methodology

This section describes the test cases and the target architectures used in our experiments as well as
the evaluation methodology.

5.3.1 Test Cases

To evaluate the performance of our approach we used a selection of 23 programs (see Table 5.2). These
programs have been drawn from OpenCL vendors example codes, applications from our department
and VRC at the Universität Stuttgart [124], and benchmark suites [40, 60, 30]. After translating the
OpenCL input program with the Insieme compiler, the Gnu Gcc Compiler version 4.6.3 was used to
convert the resulting code to binary.

In order to examine the impact of problem sizes on task partitioning we executed each benchmark
with varying problem sizes on two target architectures. For each test case we examined 9 to 17

5.3. EXPERIMENTAL METHODOLOGY 63

different problem sizes (depending on the amount of memory needed by the program), resulting in
355 training patterns. Each training pattern consists of the static features of a program, its run-time
features for a certain problem size as well as the best task partitioning for the given program with the
current problem size. To ensure a fair comparison between different task partitionings, we measured
the execution time of the kernels including the memory transfer overhead [61].

5.3.2 Experimental Setup

The experiments were performed on two different heterogeneous target architectures composed of
three OpenCL devices: two GPU devices and one CPU device.The first platform, mc1, consists of
two AMD Opteron CPUs and two Ati Radeon GPUs, while the second, mc2, holds two Intel Xeon
CPUs and two NVIDIA GeForce GPUs. Table 5.1 gives a more detailed listing of the two systems’
characteristics.

As already mentioned in Section 5.2.1 we use a set of task partitionings. For the target architec-
tures used in this study, consisting of one CPU device and two GPU devices, we characterize each
task partitioning with a tuple of three numbers representing the percentage of the workload executed
on a specific device. The first number represents the portion to be executed on the CPU while the
second and third number represent the percentage for the first and second GPU, respectively. Task
partitioning (100, 0, 0), for example, means that the entire workload is assigned to the CPU, while
(0, 50, 50) means that the work is distributed evenly among the two GPUs while nothing is assigned
to the CPU. The entire set of task partitionings A is constructed as follows:

X ={0, 10, 20, ..., 100}
A =

⋃
x∈X

{
(x, 100− x, 0), (x, 100−x2 , 100−x2)

}

Where X is the set of different percentage values of the workload considered to be executed by the
CPU. The remaining workload is then executed either by the first GPU or distributed evenly among
the two GPUs. The resulting set A consists of 21 different task partitionings.

From this set A our runtime system tries to select the optimal task partitioning using the prediction
model as described in Section 5.2. To evaluate the performance of our approach we compare the
execution times of a program with two different task partitionings. The first task partitioning is
proposed by The Insieme Runtime System and the second one is found by an exhaustive search over
all task partitionings in the set A.

In order to evaluate the quality of our models we perform a leave-one-out cross validation [47] on
all our training programs of the set H listed in Table 5.2. To evaluate the model’s performance for a
particular program h ∈ H, we train the model with all programs except h. Obviously, this means not
leaving out only one training pattern, but all training patterns related to program h (i.e. all different
problem sizes).

64 CHAPTER 5. HETEROGENEOUS TASK PARTITIONING

5.4 Experimental Results

In this section we report the performance of our approach. As performance metric we use the achieved
percentage of the optimal performance, which can be reached by applying the best task partitioning.
We calculate the performance of a task partitioning as follows

b = tbest/tactual ∗ 100

where b is the achieved performance in percentage, tbest is the execution time of the best task parti-
tioning (identified with an exhaustive search over all task partitionings used) and tactual is the actual
execution time of the selected task partitioning. To combine the performance for several experiments
in one value (e.g. the performance for a specific test case using different problem sizes), we simply
calculate the average of the performance across these experiments.

5.4.1 Performance Results

As shown by the measurements presented in Figure 5.4, depending on the target architecture, the
problem size, and the program, it can be important to select a certain task partitioning, whereas
in other cases, several different task partitionings may deliver similarly good performance. The
diagrams in this figure list the various task partitionings on the x-axis while the y-axis shows the
achieved performance in %, relative to the best task partitioning (as described in Section 5.4). As it
can be seen in Figures 5.4a and 5.4b, when executing matrix multiplication with large problem sizes it
is very important to distribute the workload over both GPUs. Furthermore, for hybrid solutions it is
not important if one or two GPUs are used, since the CPU is always the limiting factor. For smaller
problem sizes, in particular for mc2, several task partitionings yield good performance. In contrast
to that, on mc1 small matrices should be multiplied on the CPU alone. The penalty for selecting a
non-optimal task partitioning on intermediate problem sizes on mc1 is less severe than on mc2.

The situation is different when running the integer compression benchmark. Figure 5.5a shows
that on mc1 with a problem size of 16384 work items, CPU only substantially outperforms all other
task partitionings, while on mc2 the difference is much smaller and all task partitionings deliver 40%
or more of the maximum performance, as revealed in Figure 5.5b. For the larger problem sizes, on
both target architectures a hybrid task partitioning delivers the best performance. However, the
best performing task partitioning is different for each problem size and target architecture. In this
test case, using a heterogeneous distribution can reduce the execution time by up to 23% over any
homogeneous task partitioning (including the dual GPU task partitioning).

As shown in Figures 5.1 and 5.2, there are cases in which a single GPU performs better than
two GPUs. This behavior can be observed in some data transfer dominated scenarios and is mainly
related to the shared connection of the GPUs to the CPU’s main memory.

From the 355 training patterns considered for this study, more than 25% deliver best performance
when using a hybrid task partitioning.

5.4.2 Comparison of Different Models/Techniques

To select the best partitioning we tested a variety of models, generated either with a Support Vector
Machine [36] (SVM) or an Artificial Neural Network [36] (ANN). For both techniques we used the

5.4. EXPERIMENTAL RESULTS 65

0%

20%

40%

60%

80%

100%

32768

524288

8388608

(a) Matrix Multiplication on mc1

0%

20%

40%

60%

80%

100%

32768

524288

8388608

(b) Matrix Multiplication on mc2

Figure 5.4: Performance behavior of matrix multiplication on two target architectures with different
workload distributions.

implementation provided by the Shark library [76]. In this section, we compare the performance
of our model-guided runtime system with the performance of the two default strategies which use
either one CPU or one GPU. These are the only available options when using the unchanged input
programs, without the generation of multi-device code by the Insieme Compiler.

Furthermore, without using Insieme framework, the challenging task of choosing the most appro-
priate device is left to the user.

We also show the advantage of our approach over the expected performance of a random scheduler,
calculated by taking the average execution time over all task partitionings in our set A (described in
Section 5.3.2).

Table 5.4 shows the average performance for a cross validation over all test cases in Table 5.2 using
different scheduling approaches. On mc1 the CPU-only strategy outperforms the GPU-only strategy

66 CHAPTER 5. HETEROGENEOUS TASK PARTITIONING

0%

20%

40%

60%

80%

100%

16384

131072

4194304

(a) Bytewise Integer Compression on mc1

0%

20%

40%

60%

80%

100%

16384

131072

4194304

(b) Bytewise Integer Compression on mc2

Figure 5.5: .
Performance behavior of bytewise integer compression on two target architectures with different

workload distributions.

while on mc2 we observe the opposite behavior. This underlines the complexity of choosing the most
appropriate device in a heterogeneous environment. On average, over the two target architectures,
both default strategies fail to reach 70% of the optimal performance. In most cases there are only
few well performing task partitionings while the others show rather poor performance. Therefore, the
random scheduler is not a good solution and even lags behind the two default strategies.

Our SVM approach uses the MulticlassSVM implementation of [76]. As kernel function we used
Radial Basis Function [36] (RBF). This kernel function is the most widely used for classification with
SVMs. The parameter γ of the RBF was set to 2.5, the regularization parameter c was set to 15 for
both positive and negative examples. We observed, that the performance does not vary more than 4
- 5% when changing these values, which demonstrates the robustness of SVMs with regard to these

5.4. EXPERIMENTAL RESULTS 67

Task Par- Execution Time
titioning Training (sec) Deployment (ms) Performance1

Approach mc1 mc2 mc1 mc2 mc1 mc2 Avg.

CPU only - - - - 73 58 65.5
GPU only - - - - 48 77 62.5
Random - - 0.12 0.09 44 55 49.5

SVM2 8 8 0.31 0.23 80 78 79.0
ANN2 248 421 0.07 0.07 84 84 84.0

SVM3 22 19 0.28 0.18 82 85 83.5
ANN3 317 201 0.07 0.06 86 89 87.5

1 Percentage of maximum performance as described in Section 5.4.
2 Using all static features listed in Table 5.3.
3 Using static features generated form the static features listed in Table 5.3 with

PCA.

Table 5.4: Properties and performance of different machine learning algorithms.

parameters.
The ANNs used for our study are three-layer feed-forward perceptron networks with a sigmoid

activation function and five neurons in the hidden layer [36]. All three layers are fully connected with
their neighboring layers. For our ANN we use the FFNet implementation of [76]. All weights inside
an ANN are initialized randomly within the same range, equal to ±0.125.

As training algorithm we used the conjugate gradient method provided by Shark, which automat-
ically adapts the training rate. To determine the number of training iterations for the neural network,
we use the early stopping method which terminates the training automatically after a certain level of
convergence is reached. The training data is split into a training set, used to train the model, and a
validation set which is not used for training. The level of convergence is measured by observing how
the error on the validation set evolves over consecutive training iterations [36]. Depending on what
test case is removed from the training set to perform the cross validation, the training is stopped
after 36 to 749 iterations. The training times shown in Table 5.4 refer to the training for all test cases
without cross validation. Figure 5.6 shows how the mean squared error evolves on the training set and
the validation set during the training (without cross validation) on both of our target architectures
using our best performing ANN. In both cases the error curves on the training set are very smooth
and converge to a minimum. As usual, the error curves on the validation set are more uneven, but
they also converge during the training. Surprisingly, in both cases the mean squared error on the
validation set was lower than the one on the training set when the training was stopped.

As explained in Section 5.2.4, we apply PCA to our static program features. On both target
architectures we use the first n principal components of the static code features listed in Table 5.3 in
order cover 100% of the static program features’ total variance (calculated in single precision floating
point). For the static features used on mc1, this resulted in using only the first principal component.
For the static features used on mc2, two principal components were needed to cover all their variance.
Our results in Table 5.4 clearly show that PCA improves the accuracy of our models and shortens the

68 CHAPTER 5. HETEROGENEOUS TASK PARTITIONING

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 20 40 60 80 100 120 140 160 180 200 220 240 260

Training iteration

Training set

Validation set

(a) Best performing ANN on mc1

0.6

0.65

0.7

0.75

0.8

0.85

0 50 100 150 200 250 300 350 400 450

Training iteration

Training set

Validation set

(b) Best performing ANN on mc2

Figure 5.6: Error curves showing the means squared error after each training iteration on our two
experimental target architectures.

deployment times. PCA is only applied to static code features, so it is not part of the execution time
of the programs. It is noticeable that the models used on mc2 benefit more from the PCA than the
models used on mc1. This is most likely related to the relative large number of static code features
used on mc2, which can be reduced to one quarter of the original number using PCA without loosing
any information.

Our task partitioning approach which assigns one portion of the task to each device, has some
significant advantages over a dynamic scheduler. A dynamic scheduler has to split a task into a
large amount of small chunks. At the beginning of the execution, each device receives one chunk.
When a device has finished its assigned work, it will receive another chunk until the entire task has
been processed. The chunk size is a very important factor for such an approach. Smaller chunks are

5.5. RELATED WORK 69

better for load balancing, but they reduce the parallelism inside one chunk and suffer from higher data
transfer and kernel invocation overhead. Larger chunks reduce the load balancing, but also the number
of kernel invocations and data transfers, resulting in a lower overall overhead. On the one hand, a
scheduler for OpenCL task partitioning should use large chunks, because the kernel invocation and
data transfer overhead are relatively high, compared to the execution time. For example, executing
two vector addition chunks with a size of 65536 on a GPU in mc1 takes 71% longer than running
one chunk of twice the size. On the other hand, a scheduler for OpenCL task partitioning requires
small chunks, due to the high differences in performance of the heterogeneous devices. As it can be
seen in Figure 5.4a, with a problem size of 838868 running only 10% of the task on the CPU reduces
the performance to 20% of the performance that can be reached by distributing the task evenly over
both GPUs. Based on this observation, we believe that dynamic schedulers cannot efficiently solve
the task partitioning problem described in this chapter.

5.4.3 Analysis of the Results

In Table 5.2 we compare the performance of the task partitionings predicted by the Insieme Runtime
System based on an SVM and ANN using PCA (listed in Table 5.4), with the performance delivered
by the CPU/GPU only strategy for each code and each target architecture individually. For almost
all test cases, the CPU-only strategy delivers a higher performance on mc1 than on mc2, while the
GPU-only strategy usually performs better on mc2. This is related to the weaker performance of
the GPU (Ati Radeon HD 5870) in mc1. Its VLIW architecture with a very wide instruction width
and high branch miss penalty would require specific fine-tuning of each code to perform well [161].
However, none of our test cases was tuned for a specific device.

On average, considering both target architectures, our machine learning guided approaches deliver
a significant better performance than the two default strategies for most test cases. Our models are
capable of representing the target architecture’s characteristics in order to find performance efficient
task partitionings. Our approaches also determine which device is to be favored on a specific target
architecture. This is underlined by the fact that our machine learning guided approaches show their
worst performance in atypical test cases, i.e. test cases which perform better on the GPU than on
the CPU on mc1 (e.g. Simulation of a Swinging Pendulum) or vice versa on mc2 (e.g. Symmetric
Rank-2k Operations on mc2).

In most cases the ANN shows a better performance than the SVM. The ANN is also faster to
predict the task partitioning of a program, as shown in Table 5.4. For both of our approaches the
time to predict the task partitioning is negligible (in the range of 0.06 to 0.31 ms). The downside of
ANN is the corresponding relatively long training time as well as the associated sensitivity regarding
the tuning parameters like network structure or weight initialization range. SVMs do not have this
many tuning parameters and the quality of the result does not depend that much on the parameters’
value.

5.5 Related Work

In recent years, heterogeneous systems have received great attention from the research community.
Several projects [149, 12, 17, 147, 91, 90] mainly focused on OpenMP, CUDA, and OpenCL extensions,
have investigated how to facilitate the programming of clusters with heterogeneous compute nodes.

70 CHAPTER 5. HETEROGENEOUS TASK PARTITIONING

Our work, while following the same idea, is focused on automatic management of multiple devices
in a single compute node. A similar study was done by Chen et al. [33]. The authors introduce an
automatic parallelization process to use multiple GPUs. This work targets mainly the analysis of
access patterns for data decomposition, showing that many applications can be parallelized automat-
ically. Our approach, based on a similar analysis, not only derives the data partition schemes, but
also provides a solution for optimal task partitioning on heterogeneous devices.

In a different perspective, much work has been done to address mapping or scheduling of tasks to
heterogeneous systems. Several frameworks [149, 15, 104] have been created to support the developer
in the use of all available computing resources of a heterogeneous system. Although these studies
propose several possible solutions to the problem, they are mostly based on performance estimations
provided by the user. On the contrary, our approach is automatic and does not require any additional
user-supplied information. Furthermore, these approaches focus on optimizing the scheduling of
multiple available tasks, assuming that several parallel tasks are available. Our system is designed to
optimize the execution of a single task and can therefore optimize also programs with a single task.

Other works have investigated the problem of automatic task partitioning. Luk et al. [105]
introduced an adaptive mapping approach based on a regression model. Their system considers every
first run of a program as a training run that can then be used to determine the computation-to-
processor mapping for the same program with a new input problem. This approach expects that a
program is trained once and then used many times afterward. In contrast to our work, they only
show results of one target architecture equipped with only one CPU and one GPU.

A similar approach was adopted by Kai et al. [84]. They proposed a holistic energy management
framework for heterogeneous architectures which dynamically splits and distributes the workload over
GPU and CPU based on the observed performance. Their algorithm dynamically adjusts the task
partitioning based on the run-time difference between devices. Our approach, on the other hand, does
not require any profiling or training runs of the program to be optimized. We can derive an optimized
task partitioning during the first run of a new program by using a previously, off-line trained model.

Hong et al. [72] proposed MapCG, a framework that supports source code level portability between
CPU and GPU. By incorporating a MapReduce programming model, a program can be compiled and
executed on either CPUs or GPUs without modification. However, they observed that CPU/GPU
combinations did not yield significant performance improvement for the 8 test cases they examined.
In contrast to this work, as already described in Section 5.4.1, on our target architectures, we observed
the important role of the hybrid task partitioning to achieve the best performance for our test cases.

Grewe et al. [62] developed a purely static task partitioning approach based on predictive mod-
eling and program features. Starting from a multi-device OpenCL code, the authors predict the
partitioning of a task with a machine learning model based on static features analysis for fixed prob-
lem sizes. Our work uses a similar machine learning approach, but combines static program features
detected at compile time with dynamic features collected at run-time that allow the adaptation of the
task partitioning to different problem sizes. We test our approach for different target architectures
emphasizing the importance of the problem size and the hardware configuration for the tuning of
the task partitioning. Furthermore, our system is not limited to a CPU-GPU configuration but can
handle an arbitrary number of heterogeneous devices in a single compute node. In another work by
Grewe et al. [63] the impact of GPU contention was investigated. The work demonstrated how SVMs
and a combination of program and contention features can be used to predict the task partitioning

5.6. SUMMARY 71

for heterogeneous systems in a scenario where multiple programs compete for the GPU. While such
a scenario was not in the scope of our work, their experiments only included a machine with a CPU
and a single, integrated GPU.

The authors of [45] extended the framework OmpSs [26] to handle multiple OpenCL devices and
concurrently execute tasks among them. They show the efficiency of their approach with a static
and a work-stealing scheduling approach. While their approach reaches significant speedups when
distributing OpenCL kernel functions among multiple OpenCL devices, their system relies on the
availability of multiple, independent OpenCL kernel functions which can be executed concurrently.
The approach presented in this work on the other hand, is able to distribute a single kernel function
over multiple OpenCL devices.

The framework presented in [57] is able to automatically partition OpenCL kernel functions and
distribute them among a CPU and a single GPU, using a machine learning model to predict the par-
titioning. The authors identified control-flow divergence as an important feature, which is combined
with the same static code features as used in [62]. Their experiments demonstrate the benefits of
using the control-flow divergence as a feature for their model. While achieving good results, their
experiments are limited to a single system using a CPU and a single GPU and do not take into
account the effect of varying input sizes.

5.6 Summary

In this chapter we proposed a novel approach which can automatically distribute OpenCL programs
on heterogeneous CPU-GPU systems. It consists of a source-to-source compiler, which translates a
single-device OpenCL program into a multi-device OpenCL program and a runtime system which
distributes the workload over all heterogeneous resources using a machine learning based, off-line
generated prediction model.

Our measurements demonstrate that the optimal task partitioning does depend on the program,
the target architecture, and the problem size. To accommodate this observation, we use two classes of
features: static program features, whose values can be extracted from the source code at compile time,
and problem size dependent run-time features, whose values are collected during program execution.

We compared different machine learning techniques, showing that ANNs can reach a higher overall
performance, while SVMs can be trained much faster and are less sensitive with respect to their
intrinsic parameters. We observed, that the importance of features varies between different platforms.
We also demonstrated that PCA applied to the static program features increases the models’ accuracy
while reducing its run-time overhead.

To demonstrate the portability of our system, all tests were performed on two different target
architectures. On average, over those target architectures, the Insieme framework reached up to 87.5%
of the optimal performance across 23 programs. Our approach outperforms the default strategies of
using only the CPU or only the GPU, which achieve 65.5% and 62.5% of the optimal performance,
respectively. In addition, we outperform a random heterogeneous scheduler which delivers only 49.5%
of the optimal performance.

Chapter 6

Automatic Data Layout Optimizations
for GPUs

This chapter studies the effect of the data layout on the performance of GPUs. Since memory op-
timizations have become increasingly important in order to fully exploit the computational power of
modern GPUs it presents an automatic approach to find an efficient data layout for a given applica-
tion/GPU pair. This approach is based on hardware features of the GPU, the data structures used by
the application as well as decision trees. This tree is built a-priori for each GPU using performance
data gathered from a set of predefined training kernels. The results presented in this chapter originate
from a collaboration with Dr. Biagio Cosenza from TU Berlin. My contributions are the development
of the memory distance metric as well as the decision tree for the structure splitting. I was also
responsible for carrying out the needed experiments. The research presented in this chapter has been
published in [93].

With the advent of new massively parallel architectures such as GPUs, data layout optimizations
have become increasingly important; modern processing units can take 200 clocks to access the
DRAM, while a floating point multiply may take only four clock cycles [14]. Because of this Memory
wall, many research projects focus on memory optimizations. In order to exploit the properties of the
memory hierarchy, a key aspect is to maximize the reuse of data.

In this context, data layout transformation represents a very interesting class of optimizations.
Two typical examples are: organizing data with similar access patterns in structures or rearranging
array of structures (AoS) as structure of arrays (SoA). Recent work extends the classical SoA layout
by introducing AoSoA (Array of Structure of Array) [175], also called ASA [148]. In this work we
prefer the term tiled-AoS, but all approaches exploit the same idea: mixing AoS and SoA in a unique
data layout. Our work considers tiled layout as intermediate representation between AoS and SoA: if
the tile-size is 1, we have an AoS layout; if the tile-size is N , where N is the total number of elements
in the array, then we have a SoA layout. Figure 6.1 shows an example with three different variable
declarations, one for each AoS, SoA, and tiled-AoS.

In this work, we investigate an automatic memory optimization method which can be easily ported
to different GPU architectures, using OpenCL as programming model. We combine two different
optimization strategies: we try to group together data fields with similar data access patterns and

73

74 CHAPTER 6. DATA LAYOUT OPTIMIZATION

1 struct AoS{
2 f l o a t a ;
3 f l o a t b ;
4 } ;
5 AoS aos [N] ;

1 struct SoA{
2 f l o a t a [N] ;
3 f l o a t b [N] ;
4 } ;
5 SoA soa ;

1 struct TiledAoS{
2 f l o a t a [T] ;
3 f l o a t b [T] ;
4 } ;
5 TiledAoS tAoS [N/T] ;

Figure 6.1: Declaration of variables containing two arrays of N elements with different memory layout.

find the best data layout for each of these clusters.
Considering SAMPO [94] as an example, using a struct containing twelve fields. The number of

possible ways to partition these twelve fields is equal to 4, 213, 597. Considering that this program
has minimum run-time of 65 seconds on an AMD FirePro S9000, depending on the data layout, just
evaluating all the possible partitions (i.e. clusters) would take more than eight years.

At the same time, for each field cluster with at least two elements (a single-field cluster is naively
in SoA layout) we can apply different data layouts, including AoS, SoA, and tiled-AoS with different
tile-sizes (in our experiments we considered up to twelve possible tile-sizes).

The exploration of the whole search space, including both fields’ clustering and data tiling (i.e.
finding the best data layout for each of these clusters) would take more than 400 years.

Figure 6.2 shows a subset of the optimization space for SAMPO. The heat-map on top depicts all
possible data tiling for the one-cluster grouping of all the twelve data fields. For this partition, the
un-tiled AoS layout is slow (blue); by increasing the data tile-size the run-time decreases (shown in
red), and with data tile-size bigger than 12K it also outperforms the SoA layout. The lower heat-
map shows the performance results while applying the specific data tiling suggested by our algorithm
(Section 6.1.1). The fastest version of the shown optimization sub-space is achieved when we use
a tile-size of 16 for the smaller struct containing two fields, 24 for the bigger struct with six fields,
and having the other fields in a SoA layout. This example program also shows that the best tile-size
can be different within the same code and different clusters: when using only one cluster, the highest
performance is achieved with large data tiles; however, different clustering delivers better performance
with smaller data tiling sizes. This suggests that the optimal data tile-size highly depends on the size
of the individual cluster.

Our work is the first approach which automatically tackles the two problems mentioned above.
Our contributions are:

• A Kernel Data Layout Graph (KDLG) model extracted from an input OpenCL kernel; each
vertex weight represents a structure field’s size and the edge weight expresses intra-data field
memory distance.

• A two-phase algorithm: first, a KDLG partitioning algorithm – driven by a device-dependent
graph model – splits the original graph into partitions with similar data access patterns; second,
for each partition we exploit a data layout selection method – driven by a device-dependent
layout calculation – selects the most suitable layout from AoS, SoA and tiled-AoS layouts.

• An evaluation of five OpenCL applications on three GPUs (AMD FirePro S9000, NVIDIA
GeForce GTX 480, NVIDIA Tesla k20m) showing a speedup of up to 2.83.

6.1. METHOD 75

Figure 6.2: Excerpt of SAMPO’s Optimization Space. Execution times vary from 65 seconds (in red)
to 104 seconds (in blue).

6.1 Method

Our approach tries to answer two questions: (1) What is the best way to group data fields? (2) For
each field cluster, what is the best data layout?

We determine a performance efficient way to group data fields, such that all fields of a cluster
have a similar memory behavior, hence they access memory in a similar way. Once clusters have been
identified, for each cluster we try to find the best possible layout within that cluster. Our model
supports AoS, SoA, as well as tiled-AoS with different tile-sizes.

In the next section we introduce a novel graph based model, where we encode data layout, field’s

76 CHAPTER 6. DATA LAYOUT OPTIMIZATION

size and field locality information. The presented two-step approach (1) identifies field partitions (i.e.
clusters of fields) with high locality within intra-partition fields and (2) determines an efficient data
layout for each partition.

6.1.1 Kernel Data Layout Graph Model

We define a Kernel Data Layout Graph (KDLG) as an undirected, complete graph whose nodes
represent fields of the input struct (assumed to have AoS layout). The KDLG has two labeling
functions: σ for vertices, representing the field’s data size; δ for edges, representing the memory
distance (or inverse-affinity) between fields. Formally, a KDLG is a quadruple defined as follows:

KDLG =(F,E, σ, δ)

where F is the set of all fields of the struct, which corresponds to the set of nodes in the KDLG .
E = F 2 r {(x, x)|x ∈ F} is the set of all edges e = {(f1, f2)|f1, f2 ∈ F}. The mapping function
σ : F → N returns the size of a field f in bytes, e.g. if f refers to a field of type int, then σ(f) = 4,
according to the OpenCL specifications. δ : E → {N ∪ ∞} returns the weight of an edge e. The
mapping function δ((f1, f2)) is defined as the memory distance between the two fields f1 and f2 by
counting the number of unique memory locations, in bytes, touched by the program between the
instruction where they are accessed.

Figure 6.3 shows how a kernel code is converted to a KDLG . The edge labels δ represent the
memory distance between two fields by counting the number of unique memory locations, in bytes,
touched by the program between the instructions where they are accessed. We borrow the idea of
memory distance from [133] and extend it with the actual data type size, which is important to
distinguish between different memory behaviors.

The KDLG is based on an OpenCL kernel. The set F will have a vertex for each field defined in
the structure, which is passed as an argument to the device kernel function. For each vertex f , the σ
function returns the actual type’s size in bytes of the corresponding field of f ; e.g. according to the
OpenCL specifications, if f refers to a field of type int, then σ(f) = 4.

Figure 6.3b displays the KDLG generated from the code shown in Figure 6.3a: The fields a and b
are always accessed consecutively, therefore δ(a, b) is 4 bytes. c is accessed after the for loop with 32
iterations, therefore δ(c, b) = 252 and δ(c, a) = 256 bytes, resulting from the 32 iterations that access
2 · 4 bytes in each iteration. d is never accessed in this kernel, therefore its distance from other fields
is ∞.

Our graph based model unrolls all loops before starting the analysis. Therefore, it assumes that
loop bounds are known at compile time. If not known, we use an OpenCL kernel specific loop size
inference heuristic to have a good approximation (see Section 6.1.1). Our analysis focuses on global
memory operations, as they are considerably slower than local and private memory operations

Let MI (f) define the set of all global memory instructions (loads and stores) involving the data
field f . Our distance function δ between two fields f1 and f2 is defined by taking into account the
maximum-memory-distance path between the accessing instructions i1 ∈ MI (f1) and i2 ∈ MI (f2).

In order to calculate δ, we use a data flow analysis where each node of the control flow graph
(CFG) consists of a single instruction. The function σ(i) returns the number of bytes which are
written to/read from the global memory in instruction i. We define IN and OUT as

6.1. METHOD 77

1 struct T {
2 f l o a t a , b , c ;
3 double d ;
4 } ;
5 k e r n e l fun (g l o b a l T ∗ t) {
6 f l o a t a , b , c ;
7 double d ;
8 i n t id = g e t g l o b a l i d (0) ;
9 double sum = 0 ;

10 for (i n t i=id ; i<id +32; i++)
11 sum += t [i] . a ∗ t [i] . b ;
12 t [id] . c = sum ;
13 } ;

(a) Kernel code

a
4

b
4

c
4

d
8

4

256

2
5
2 ∞

∞

∞

(b) Generated KDLG

Figure 6.3: A KDLG generated by a sample input data layout and kernel. Darker edges show fields
that are closer in memory (smaller δ).

IN i[j] = min
x∈pred(j)

(OUTi[x])

OUT i[j] =

{
0 if i = j

IN i[j] + σ(j) if i 6= j

In that way, in branches in our code, we only consider the branch which leads to the minimum
memory distance. We define an instruction-memory distance function MD(i1, i2) as

MD(i1, i2) = max(OUTi1 [i2], OUTi2 [i1])

so that MD(i1, i2) = MD(i2, i1). We calculate δ(f1, f2), the memory distance between the fields f1
and f2, as the maximum memory distance between all instructions in MI(f1) and MI(f2) as follows:

δ(f1, f2) = max

(
max

i∈MI (f1),j∈MI (f2)
MD(i, j)

)
Therefore, we can use δ(f1, f2) to assign a weight to each edge (f1, f2) ∈ E. We conservatively

use the maximum, which leads to higher weights on the KDLG ’s edges and leads to more clusters;
since more clusters have a lower risk of performance loss on our target architectures. Our approach
conservatively assumes that all iterations of a for loop are executed and loop bounds are approximated
with constants, as discussed in Section 6.1.1.

KDLG Partitioning

The first step of our algorithm identifies which fields in the input data structure should be grouped
together. Formally, we assume that a field partitioning C of the KDLG (i.e. field clusters) is good if
∀e ∈ C|δ(e) < ε, where ε is a device dependent threshold. We define ε as the L1 cache line size of the

78 CHAPTER 6. DATA LAYOUT OPTIMIZATION

Algorithm 6.2 Algorithm to partition the KDLG based on the relation between its nodes.

1: function KDLG-Partitioning(F,E, δ, ε)
2: C ← ∅
3: for all f ∈ F do
4: C ← C ∪ {{f}}
5: end for
6: Eε ← {e ∈ E : δ(e) < ε}
7: for all edge (f1, f2) ∈ Eε do
8: c1 ← {x ∈ C|f1 ∈ x}
9: c2 ← {x ∈ C|f2 ∈ x}

10: if thenc1 6= c2
11: C ← (C r {c2, c1}) ∪ {c1 ∪ c2}
12: end if
13: end for
14: return C
15: end function

individual GPUs. The values of ε are listed in Table 6.1. We use this value as it is the smallest entity
that can be loaded from the L1 cache and therefore should be loaded at once.

We propose a strategy based on Kruskal’s Minimum-weight Spanning Tree (MST) algorithm [97]
that extends the classical MST algorithm with an ε-based early termination criteria and multiple
clusters of nodes (i.e. struct fields).

As Algorithm 6.2 shows, it takes as input a KDLG , previously computed from an input kernel,
and a threshold ε. It starts by creating a partitioning with |F | sets, each of which contains one field
in F (lines 2–5). Line 6 initializes Eε for all edges in E with a weight smaller then ε, according to the
weighting function δ. The for-loop in lines 7–13 checks, for each edge (f1, f2), whether the endpoints
f1 and f2 belong to the same set. If they do, then the edge is discarded. Otherwise, the two sets are
merged in line 11. The complexity of this algorithm is O(|E| · |F |). Figure 6.4 shows three possible
output partitions that can be generated from the graph seen in Figure 6.3b using different ε values.
Our graph clustering differs from [133] in several aspects: our partitioning algorithm is driven by a
hardware-dependent ε value; we do not explicitly consider false sharing because our target hardware
does not implement a cache coherent protocol; we encode only kernel-dependent field distances in the
graph.

Loop Bounds Approximation

When generating the test data to select ε we use loops with a fixed number of iterations, to accurately
understand the memory distance between two memory accesses. In real world codes, the actual num-
ber of iterations is often not known at compile time. Therefore we use a heuristic that is specifically
designed for OpenCL kernel codes. If the number of loop iterations are determined by compile-time
constants, we use the actual number of iterations. If not, we apply a heuristic to approximate the
number of iterations: When a loop performs one iteration for each OpenCL work item of the work
group, we estimate it has 256 iterations, as the work group size is usually in this range. When a loop

6.1. METHOD 79

a

b

c

d

4

256

2
5
2

∞

∞

∞

(a) ε = 1

a

b

c

d

4

256

2
5
2

∞

∞

∞

(b) ε = 100

a

b

c

d

4

256

2
5
2

∞

∞

∞

(c) ε = 10000

Figure 6.4: Different output partitions using different ε values on a KDLG .

Hardware ε Decision Tree

AMD
FirePro
S9000

64 ≤ 20
≤ 12

1024

512

> 48
16384

≤ 32
AoS

32

NVIDIA
GeForce
GTX 480

128 ≤ 12
≤ 8

AoS

SoA

≤ 96
512
SoA

NVIDIA
Tesla
K20m

128 ≤ 48
≤ 20

SoA

8192

≤ 96
16384

32768

Table 6.1: Properties determined using our algorithms

performs one iteration for each work item of the NDRange, we assume it will have 1 · 106 iterations.
If the number of iterations is neither constant nor linked to the work group size or NDRange, we
estimate it to have 512 · 103 iterations. The estimation of loop bounds is not very sensitive: we only
need to distinguish short loops, which may not completely flush the L1 cache, from long ones.

6.1.2 Per-Cluster Layout Selection

After KDLG-Partitioning was executed, we assume that each field in the same cluster has sim-
ilar memory behavior. Therefore, all the fields within a cluster should have the same data layout
arrangement, e.g. tiled-AoS with a specific tile-size.

To understand what layout is best for a given cluster, we generate different kernels corresponding
to a simple one-cluster KDLG where δ is roughly the same for each pair of fields. The kernels consist
of a single for-loop with a constant number of iterations n. The value of n comprises all powers of
two from 128 to 16384. We generated kernels with different combinations of loop size n, number of
structure fields m, and tile-size ts. With those kernels we evaluated the performance behavior on
various devices.

80 CHAPTER 6. DATA LAYOUT OPTIMIZATION

Algorithm 6.3 Algorithm to optimize the data layout of a struct in two steps: First splitting it into
several cluster and then selecting the optimal tile-size for each cluster.

1: function LayoutOptimize(F,E, δ, ε)
2: L← ∅
3: C ← KDLG-Partitioning(F,E, δ, ε)
4: for all c ∈ C do
5: t← Select-Tilesize(σ(c))
6: L← L ∪ {(c, t)}
7: end for
8: return L
9: end function

From the aforementioned performance measurements we derive a device-dependent function Select-
Tilesize(σ(c)) which returns the suggested layout for a cluster c, where σ(c) =

∑
f∈c σ(f) and σ(f)

returns the size of the field f in bytes. Select-Tilesize is implemented using a decision tree, con-
structed by the C5.0 algorithm [137]. σ(c) is the only attribute the decision tree depends on. The
potential target classes are AoS , SoA and all powers of two from 21 to 215. The results of those
benchmarks are used to generate the training data.For each kernel we create a training pattern for
the fastest tile-size as well as all other tile-sizes that are less than 1% slower than the fastest one.
These training patterns consist only of the size of the structure σ(c), which is the only feature while
the used tile-size acts as the target value. Generating training patterns not only for the fastest tile-size
but for all which achieve at least 99% of it, as well as several training patterns for different structures
with the same size, may lead to contradicting training patterns. However, our experiments demon-
strated that the resulting decision tree is more accurate and less prone to overfitting. C5.0 was used
with default settings; its run-time was about 1ms, depending on the input.

6.1.3 Final Algorithm

In order to achieve best results, we combine the two algorithms described in Section 6.1.1 and Sec-
tion 6.1.2. Before applying those algorithms, one has to identify the device dependent factor ε
and construct a decision tree to be used in function Select-Tilesize, as described in the previous
sections. These steps are part of the installation process of our framework. At compile time the
KDLG graph is constructed and the actual memory layout for the program to be optimized is se-
lected. The selection of the memory layout is described by the pseudo code in Algorithm 6.3. Line
3 calls the KDLG-Partitioning algorithm and returns a set of clusters C in which the corresponding
structure should be split. Then the decision tree determines an efficient tiling factor for each of these
clusters and stores the resulting pair (cluster, tile-size) (line 4-7).

6.2 Experimental Results

To verify the validity of our approach we implemented a prototype of our framework and observed its
performance on several OpenCL applications. The deployment of our system is split into two parts:
A device dependent part which has to be performed once for each GPU (installation time), and a

6.2. EXPERIMENTAL RESULTS 81

AMD NVIDIA NVIDIA
FirePro GeForce Tesla
S9000 GTX 480 k20m

Frequency (MHz) 900 1401 706
Compute Unit 28 15 13
Parallel Ops 1792 480 2496
FLOPS (SP) 3225 1345 3524
Memory (GB) 6 1.5 5
Memory BW (GB/s) 264 177 208

Table 6.2: Used hardware

program dependent part, which is executed at the compile time of the program. These two parts
are depicted in Figure 6.5. The device dependent part consists of identifying the L1 cache line size
to be used as ε and running a set of training programs to collect the information needed to build
the decision tree as defined in Section 6.1.2. Collecting all the necessary data requires to run many
benchmarks. Running them takes 196, 158 and 299 minutes on the three evaluated GPUs (described
in Table 6.2) FirePro, GeForce and Tesla, respectively. The program dependent part constructs a
KDLG graph for the structure to be optimized in the corresponding program. This graph is hardware
independent and can therefore be shared among different GPUs. By combining the KDLG graph with
the hardware depended parameter ε, we split the struct into several clusters (Section 6.1.1). For each
of these clusters we query the hardware dependent decision tree to obtain the tile-size to be used
(Section 6.1.2). The resulting program can then be executed on the GPU.

Application code Split structs
into clusters

installation time

compile time

GPU L1 cache
line size ϵ GPU

Execution
Build decision tree

Build KDLG Apply tiling

Intermediate
transformed

code

Final transformed
code

Execution

Measurements
Tiling

training
codes

GPU

Figure 6.5: Work-flow of our data layout optimization process

To evaluate our framework we run different programs on three different GPUs. Details about the
used hardware are listed in Table 6.2 while a short description of the test programs can be found in

82 CHAPTER 6. DATA LAYOUT OPTIMIZATION

Table 6.3. In each program, we focus on the structure with the most instances and try to optimize
its layout. The performance of the optimized program is compared to the one using the AoS data
layout, which acts as the baseline. The result of our framework on five tested programs is shown in
Table 6.3. The data layouts proposed by our system always reach at least the performance of the
original implementation using the AoS data layout. In most cases we are able to achieve a considerable
speedup (up to 2.83). In the following paragraphs we give more details about three example test cases.
For all charts we use AoS as a baseline and report the speedup of four transformed versions: SoA,
the version generated after applying the KDLG algorithm and splitting the structure if applicable, a
tiled AoS version were we use the tile-size proposed by our hardware dependent decision tree-based
algorithm, and the final result of our framework as described in Section 6.1.3 which results of first
applying the KDLG algorithm and then tiling the resulting structures using our decision tree-based
algorithm.

struct size affected loop bound speedup over AoS
Test codes bytes fields kernels approx.1 FirePro GeForce Tesla

N-body 32 2 1 n 1.01 1.06 1.01
BlackScholes [21] 28 7 1 – 1.00 1.43 2.83
Bitonic sorting 16 4 1 u 1.47 1.50 1.38
LavaMD [135] 36 3 1 c,u 2.22 1.89 2.07
SAMPO 48 12 9 w,u 2.19 1.59 1.96

1 Used Loop bound approximations Section 6.1.1: loop over all work items
in the NDRange (n), over the work group size (g), with constant bound-
aries (c), with unknown boundaries (u).

Table 6.3: Test programs

N-body The first test case that we used to evaluate our framework is N-body, which performs a
direct summation of the forces of all particles on every other particle, resulting in a computational
complexity of O(n2). This implementation contains two structures of the same type, which are
switched in each iteration (aka. double buffering). As this exchange is done by simply switching the
references, those two structures must have the same type after the transformation of the data layout.
Therefore, both instances of this struct are treated equally in our analysis. The struct in the used
implementation consists of two fields with a size of 16 bytes each. The edge on the KDLG between
them is labeled with 1 · 106·4 bytes. Considering the ε of the used hardware listed in Table 6.1 we
can observe, that those fields have a big memory distance and the KDLG-based algorithm will split
those fields into separate structs. Therefore, the result after applying the KDLG-based optimization
is the same as when using the SoA layout. Furthermore, applying our tiling algorithm after the
KDLG-based algorithm has no effect. The speedup achieved is shown in Figure 6.6. It clearly shows
that the tiled version of the program is not only slower than the one in SoA data layout, but also
slower than the AoS implementation which we use as baseline. This applies to all tile-sizes, not only
to the tile-size selected by our decision tree-based algorithm. However, since our framework uses a
combination of two layout optimizations, it still correctly selects SoA, which is the data layout with
the highest performance for this program on all tested GPUs.

6.2. EXPERIMENTAL RESULTS 83

0.8

0.9

1.0

1.1

1.2

FirePro GeForce Tesla

sp
ee

d
u

p

SoA KDLG Tiling KDLG + Tiling

Figure 6.6: Speedup over AoS implementation on N-body using different data layouts.

Bitonic Sort Bitonic Sort [19] is a sorting algorithm optimized for massively parallel hardware
such as GPUs. The implementation that we are using sorts a struct of four elements, where the
first element acts as the sorting-key. As all elements are always moved together, the KDLG-based
algorithm results in one single cluster for any ε ≥ 4. As this is the case on all GPUs that we evaluated,
the version generated by the KDLG-based algorithm is the same as AoS. The decision-tree-based tiling
algorithm converts this layout into a tiled-AoS layout with a tile-size of 512 bytes for the FirePro
and GeForce while it suggests to use SoA on the Tesla. The results can be found in Figure 6.7. It
clearly shows that, although the KDLG-based algorithm fails to gain any improvement over AoS, the
decision-tree-based algorithm as well as the combination of both algorithm exceeds the performance
of the AoS based implementation by a factor of 1.38 to 1.5. Furthermore, it delivers performance
that is comparable or superior than the one achieved by a SoA implementation.

0.6

0.8

1.0

1.2

1.4

FirePro GeForce Tesla

sp
ee

d
u

p

SoA KDLG Tiling KDLG + Tiling

Figure 6.7: Speedup over AoS implementation on Bitonic sorting using different data layouts.

84 CHAPTER 6. DATA LAYOUT OPTIMIZATION

SAMPO SAMPO (described in more detail in Section 8.1) is an agent-based mosquito point model
in OpenCL, which is designed to simulate large populations of mosquitoes in order to better under-
stand how vector-borne illnesses (e.g. malaria) may spread. The version available online is already
manually optimized for AMD GPUs. Therefore, we ported this version to a pure AoS layout, where
each agent is represented by a single struct with twelve fields. We use the AoS version as a baseline
for our transformations and compare the result of our framework with the result obtained by the
manually optimized version as well as a SoA version. The measurements are displayed in Figure 6.8.
The results clearly show, that SoA yields a much better performance than AoS on all tested GPUs,
on NVIDIA GPUs it is even better than the manually optimized version. Applying the KDLG-based
algorithm already results in a speedup between 1.54 and 2.18 on the three tested GPUs, which is
within ±10% of the SoA version, depending on the hardware. Applying tiling to the AoS implemen-
tation shows good results on the NVIDIA GPUs. Also the AMD GPU benefits from tiling, but it
does not reach the performance of the SoA version or the version optimized with the KDLG-based
algorithm. Applying tiling to the latter version further increases the performance on all evaluated
GPUs and leads to a speedup over the AoS version of 2.19, 1.59 and 1.96 on the FirePro, GeForce and
Tesla, respectively. This means that the complete version of our algorithm (using both KDLG-based
algorithm and data tiling) outperforms any other version we tested. Even the manually optimized
implementation is outperformed by 7%, 10% and 18% on the FirePro, GeForce and Tesla, respectively.

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

FirePro GeForce Tesla

sp
ee

d
u

p

SoA KDLG Tiling KDLG + Tiling Manually optimized

Figure 6.8: Speedup over AoS implementation on SAMPO using different data layouts.

6.3 Discussion

The results clearly show, that programs with AoS data layout are not well suited for GPUs. SoA
delivers a much higher performance on all GPU/program combinations we tested. However, also SoA
fails to achieve the maximum performance in some cases. We observed that a tiled-AoS can achieve
results that are usually equal or better compared to the ones achieved with an SoA layout. But as
indicated by our observations on N-body, tiled-AoS is not suited for all programs. Similarly, splitting
structures in several smaller ones based on a KDLG is beneficial for most programs. However, also

6.4. RELATED WORK 85

this technique fails to improve the performance of some applications, like for example Bitonic Sort.
Therefore, combining these two algorithms leads to much better overall results than each of them can
achieve individually. This is underlined by the results of SAMPO, where the combination of both
algorithms leads to a memory layout that does not only outperform the results of each algorithm
applied individually, but also leads to higher performance than obtained by both, a SoA layout and
the manually optimized layout.

6.4 Related Work

The problem of finding an optimal layout is not only NP-hard, but also hard to approximate [136].
Such problem has been largely studied in the past [74, 34, 179], often taking into account the target
parallel architecture [79, 121]. Raman et al. [133] introduced a graph based model to optimize
structure layout for multi-threaded programs. They developed a semi-automatic tool which produces
layout transformations optimized for both false sharing and data locality. Our work uses a different
graph based model encoding the variables memory distance and data structure size, in order to provide
a completely automatic approach; we also support AoS, SoA and tiled-AoS layouts.

Kendermi et al. [85] introduced an inter-procedural optimization framework using both loop
optimizations and data layout transformation; our method does not apply to a single function only,
but can span over multiple functions in a program and multiple kernels in an OpenCL program.

Data layout transformations such as SoA conversion have been described to be the core optimiza-
tion techniques for scaling to massively threaded systems such as GPUs [146].

DL presented data layout transformations for heterogeneous computing [150]; DL supports AoS,
SoA and ASTA and implements and automatic data marshaling framework to easily change data
layout arrangements. Our work supports similar data layouts, but we provide an automatic approach
for the layout selection.

Strzodka [148] developed a library that implements multi-valued containers on a multi-GPU sys-
tem, supporting a wide range of data layouts, including some hybrid AoS/SoA layouts: AoS, SoA,
ASA (Array of Structures of Array), and hybrid layouts such as A{ASA}, S{ASA} and {ASA}{ASA}.

Other source-to-source compiler approaches [138] introduced a user specified and automatic data
layout selection supporting both SoA and AoS. Their model includes a use graph, an affinity graph
and a mathematical model based on affinity index and cache-use factor.

MATOG [175] introduces a DSL-like, library-based approach which optimizes GPU codes using
either static and empirical profiling to adjust parameters or to change the kernel implementation.
MATOG supports AoS, SoA and AoSoA with 32 threads (to match the warp size on CUDA) on
multi-dimensional layouts and builds an application-dependent decision tree to select the best layout.

Dymaxion [32] is an API that allows programmers to optimize memory mapping on heterogeneous
platforms. It extends NVIDIA’s CUDA API with a data index transformation and a latency hiding
mechanism based on CUDA stream. Dymaxion C++ [31] further extends prior work with a clean
abstraction backed by a source-to-source code translator, and providing support to map data struc-
tures to texture and constant memory. However, it does not relieve the programmer from selecting a
good data layout.

The authors of [178] extend the Open64 compiler to enable data layout transformations. They
show how structure accesses can be automatically translated into code that can be vectorized on

86 CHAPTER 6. DATA LAYOUT OPTIMIZATION

SIMD architectures. The transformed code shows an average improvement in computation time of
49.5%, the work only targets CPUs.

Tseng et al. [165] proposes a system that allows programmers to write host code in AoS while
the data layout is automatically converted to SoA when being transferred to the device. The authors
show a performance improvement of up to 177%, even though they do not consider any hybrid data
layouts as it is done in our work.

6.5 Summary

We presented a system to automatically determine an improved data layout for OpenCL programs
written in AoS layout. Our framework consists of two separate algorithms: The first one constructs
a KDLG , which is used to split a given struct into several clusters based on the hardware dependent
parameter ε. The second algorithm constructs a decision tree using to the data gathered from a
second benchmark suite. This decision tree is used to determine the tile-size for a certain structure
when converting it from AoS to tiled-AoS or SoA layouts.

We found out that the combination of both algorithms is crucial, as using only one of them often
leads to no performance improvement over the input code in AoS layout. The layouts proposed by
our framework result in speedups of up to 2.22, 1.89 and 2.83 on an AMD FirePro S9000, NVIDIA
GeForce GTX 480 and NVIDIA Tesla k20m, respectively and are also able to outperform a manually
optimized data layout on a program using a data structure with many fields.

Chapter 7

A Region-Aware Multi-Objective
Auto-Tuner for Parallel Programs

This chapter presents a framework for automatic tuning of programs parallelized with OpenMP using
iterative compilation and general differential evolution. The framework is implemented within the
Insieme compiler and runtime system, described in Section 3.3. The experiments in this chapter show
how the Insieme infrastructure can be used to optimize programs for three objectives: wall time, energy
consumption and resource usage. The framework extends a the framework published in [83] and was
a collaboration with Juan J. Durillo and Philipp Gschwandtner. I was responsible for improving and
fine-tuning the auto-tuning method as well as executing and evaluating the experiments. The scientific
outcome of the effort made for this chapter has been submitted to the International Conference on
Supercomputing (ICS 2017) and is currently under review.

Auto-tuning is increasingly being used to optimize the non-functional parameters for programs.
The typically large search space requires sophisticated techniques in order to find well performing
parameter values in a reasonable amount of time. Optimizing parallel programs becomes increasingly
difficult with rising complexity of modern parallel architectures, as described in Section 2.1. Automatic
software tuning, or simply auto-tuning [114], arose as an attempt to better exploit hardware features
by automatically tuning applications. An auto-tuner tries to find promising configurations for a given
program. A configuration consists of a set of non-functional parameters with a corresponding value
range that can influence a program’s performance by transforming the source code of the application,
or by finding the right parameter values that govern the execution of an application on a given
architecture (e.g. number of threads, frequency per core, etc.).

This chapter describes a novel auto-tuning approach for programs with multiple single-entry single-
exit code regions whose non-functional behavior depends on at least one tunable parameter. We
assume that we can measure the non-functional behavior of these regions for the optimization objec-
tives (e.g. wall time, energy consumption, etc.). Tuning multi-region applications exposes additional
challenges for auto-tuning techniques. Firstly, the same set of parameter values is usually not optimal
for all regions of the program. However, setting the parameter values individually for every region
leads to a huge search space as it grows exponentially with the number of tuning opportunities, i.e.
the number of regions. Secondly, the execution of a region may be influenced by the parameter values

87

88 CHAPTER 7. AUTO-TUNER

applied to neighboring regions. Previous work [102] observed that the optimal parameter values for
individual regions of hybrid MPI/OpenMP applications led to sub-optimal overall performance.

Auto-tuning techniques are widely used [176, 169, 129, 53, 151, 10, 9, 35, 11] but are often limited
to using the same parameter values for every region, i.e. globally for the entire program, ignoring the
fact that different parts of the code may benefit from specific parameter values.

Our auto-tuner can optimize a generic number of objectives which do not necessarily correlate with
each other. This lack of correlation makes it impossible to find a single solution which is best in every
objective. For example, if some regions are optimized for one objective while others are optimized for
different objectives, it is very likely that the overall performance of the program will suffer. It can
happen that a configuration exposes low execution time at the cost of high resource usage for one
region, but the contrary for another region, resulting in sub-optimal overall performance.

The approach proposed in this chapter extends the method presented in [83], which is limited
to optimizing each region in isolation, by adding region-aware auto-tuning support for the entire
program. The contributions of this chapter are the following:

• A region-aware multi-objective auto-tuner.

• A compiler-runtime system that automatically identifies regions and enables automatic tuning
of their parameters.

• Evaluation of several global and region-aware auto-tuning strategies for several codes on different
target architectures which demonstrates the importance of region-aware auto-tuning compared
against global optimization.

7.1 Motivation

In this section, we motivate the need for region-aware auto-tuners by using a simple example program
consisting of two regions. Both regions perform a parallel matrix multiplication. In the first region,
only the outermost loop is parallelized; in the second, we parallelize only the innermost loop. As a
consequence we have two regions with different execution behavior: the first one scales well with the
number of threads and the second one does not. In order to have similar execution times for both
regions, the matrix size in the second region is only one quarter of the matrices in the first region.

The experiments in this section are performed on the Ivy Bridge-EP architecture described in
Section 7.5. Our goal is to find the optimal configuration for executing this program. For the sake of
performing an exhaustive search of all possible program configurations, we assume that these regions
only expose the number of threads as a tunable parameter.

We select configurations for that program using three different approaches:

• Isolated: This approach optimizes both regions in isolation.

• Global: This approach is constrained to find a single set of parameter values to be used in both
regions.

• Region-Aware: This approach optimizes both regions using individual parameter values for each
of them to maximize the program’s overall performance.

7.2. MULTI-OBJECTIVE TUNING OF MULTI-REGION PROGRAMS 89

The best configurations found by these approaches are summarized in Table 7.1. The first two rows
of the table show the number of threads for each region chosen by the approach in the corresponding
column. The following two rows include the execution time for each of these regions with the indicated
number of threads. The fifth row shows the program’s execution time when the regions are executed
with the number of threads shown in the first two rows. Finally, the last row shows the relative
difference regarding the best found execution time across all three approaches.

The Isolated approach gives the slowest execution times. The reason is that it will run the first
region with a large number of threads, as it does scale well. However, this has a negative effect on the
second region, which does not scale well. The change from 20 to only 2 threads between the regions
introduces a significant overhead by the underlying runtime system, as it also implies a change of the
number of sockets where computations are performed on.

The Global approach yields better results since the code regions are not optimized in isolation
but regarding the overall program performance. However, as this approach is limited to the same
parameter values for both regions, it is unable to exploit the full potential of the hardware. This
drawback is overcome by the Region-Aware approach. It does not only take into account eventual
performance penalties from varying configurations between the two regions, it can also customize the
parameter values for each region individually to comply with their hardware requirements.

Isolated Global Region-Aware

#Threads Region 1 20 10 10
#Threads Region 2 2 10 7
Region 11 546 1075 1075
Region 21 5798 2652 2366
Total1 6344 3727 3442
Relative time difference 1.84 1.08 1.00
1 Execution time in milliseconds.

Table 7.1: Theoretical potential of different auto-tuning approaches, determined by exhaustive search
for an example program with two regions.

7.2 Multi-objective Tuning of Multi-Region Programs

In this section we firstly introduce some background related to multi-objective auto-tuning of pro-
grams. Afterwards, we state the main challenges when tuning multi-region programs.

7.2.1 Background on Multi-Objective Auto-Tuning

Auto-tuners may optimize several objectives which sometimes conflict with each other. This means
that optimizing one of them is only possible by worsening the value of at least one of the other
objectives. The mathematical solution to such problems is not defined by a single point, but by a
set of points representing a trade-off between these objectives. The set of solutions representing the
optimal trade-off between the considered objectives is known as Pareto set.

90 CHAPTER 7. AUTO-TUNER

Our approach to apply multi-objective software auto-tuning consists in computing the Pareto set
or an approximation of it [38]. Often, related work reduces multi-objective optimization problems to a
single objective one by using fixed weights for the individual objectives. Therefore, they try to find a
single solution which is near optimal in a pre-defined set of preferences for the objectives. Computing
the Pareto set instead of a single solution is often incorrectly cited by related work with the belief
that it implies a manual selection of a solution by the user which is just one possibility. Different
alternatives comprise a selection based on preferences specified a posteriori, i.e. after the Pareto set
has been computed. The latter approach does not require manual interaction of the user, and has the
advantage that the computed solution belongs to the optimal trade-off. While computing the Pareto
set may seem to require a higher computational effort than computing a single solution, literature in
multi-objective optimization shows that this is not necessarily the case [69]. Indeed, the opposite is
often true: computing the whole Pareto set may be easier than computing some individual solutions
within it, as finding solutions that show a good compromise between two or more objectives implies
a different way of navigating the search space.

7.2.2 Challenges in Tuning Multi-Region Programs

We focus on programs composed of multiple regions and tune each of these regions with an individual
set of parameter values. A region’s performance may depend on the way other regions are executed,
what data they access, and other side effects. The non-functional parameters of a region are not
always independent of the parameter values of other regions. This issue implies that regions should
not be tuned in isolation, which has been observed in [102].

Tuning multi-region applications introduces additional challenges. Firstly, the search space of
possible configurations of a program grows exponentially with the number of regions. For example,
the matrix multiplication kernel considered in [83] consists of a single region. That region requires to
tune three tiling dimensions and the number of threads. For a problem size of 14000, i.e. matrices of
14000×14000 elements, and a machine with 32 cores, the search space of possible program executions
is 7003×32 ' 1010. If a program consists of two regions similar to that one, the search space would be
(700×32)2 ' 1020. Larger search spaces often reduce effectiveness of search methods [43]. Secondly,
in a multi-objective multi-region scenario, it is crucial that the parameter values for the different
regions within a program aim the optimization of the same objective. Otherwise, if two regions are
assigned parameter values optimizing different objectives, most likely the execution of both regions
together will not be optimal for any of these objectives. For example, this is the case when half of
the regions within a program would be executed with optimal parameter values for a given objective
and the other half of the regions with parameter values optimal for a conflicting objective.

Our goal is to design an auto-tuner that can find a single Pareto set of configurations for a given
program with multiple regions. While the parameter values of every region are tuned separately,
we measure the effect of changing the parameter values of a region regarding the entire program
instead of considering the effect only for individual region executions. In this way, we optimize the
whole program execution instead of focusing on specific regions. After the Pareto set for the whole
program is computed, a single configuration for the entire program can be selected from the Pareto
set, either manually or automatically. This approach differs from the one proposed in [83], which is
based on computing an individual Pareto set for every single region in isolation, making this approach
prone to the performance penalties described in Section 7.7. Furthermore, computing a Pareto set

7.2. MULTI-OBJECTIVE TUNING OF MULTI-REGION PROGRAMS 91

independently for every region requires a decision making process for every single region. Therefore,
the approach presented in [83] is unfeasible for tuning programs with a large number of regions. A
feasible way to compare the approach in Jordan et al. [83] to the one presented in this chapter is
using the same set of parameters for every region of the program, thereby reducing the search space
and producing only a single Pareto set for the entire program. Additionally, the auto-tuner can
evaluate the performance of a configuration for all regions at once which makes it aware of eventual
performance penalties caused by region interferences. In Section 7.5, we compare this version of the
auto-tuner presented in [83], which we call RS-GDE3 Global, against the new version introduced in
this chapter.

7.2.3 Method

Our approach extends the RS-GDE3 algorithm presented in [83], which is based on iterative com-
pilation. It uses a fixed size set of different program configurations to be executed on the target
architecture in order to determine their performance. RS-GDE3 refers to this set as population. It-
erative compilation methods update this set across different iterations by generating possibly better
performing configurations for the program being tuned. In the case of RS-GDE3, this is done by
generating a new population called offspring population from the current population as explained
later in this section. At the end of every iteration, the current population is updated by considering
its content and the content of the offspring population. Details about how configurations are chosen
to be part of the population for the next iteration can be found [83].

In order to tune multi-region programs regarding multiple objectives, we need to overcome the
following problems:

1. All the parameter values within a configuration should aim for a common goal. If the tuner
generates a program where a region r1 uses parameter values optimized for a given objective,
and for a subsequent region r2 it uses the best parameter values regarding another objective,
then the execution of both regions will unlikely be optimal for any of these objectives nor will
it represent an optimal trade-off.

2. An intractable large search space, which may reduce the effectiveness of the search performed
by RS-GDE3.

3. Existing or changing parameter settings of a predecessor regions that may negatively impact
successor regions can cause additional overheads.

4. Well performing sets of parameter values for individual regions may be discarded by the tuner if
they are considered in combination with poorly performing parameter values for other regions.

To solve the first problem, our approach does not consider regions in isolation. Instead, our
configurations are comprised of the parameter values of all regions and will be kept as part of the
population if they contribute to optimize the whole program.

To overcome the second problem, finding a good starting point in this huge search space is crucial
to improve the effectiveness of the tuner. For this reason, we perform a global pre-tuning phase.
We restrict this pre-tuning to use the same set of parameter values for every region within the
program. The idea is to reduce the size of the search space, making it easier for tuner to find the

92 CHAPTER 7. AUTO-TUNER

best configurations within the limited search space. We use these configurations as the starting
point of a second tuning phase where every region can have a different set of parameter values.
The global pre-tuning takes place during a few iterations at the beginning of our method. Besides
reducing the dimensionality of the search space, the pre-tuning phase also helps to overcome the third
problem, since the found configurations avoid overheads caused by changing hardware settings between
regions. During the second tuning phase, these overheads may occur due to changing hardware
settings. However the auto-tuner will discard these configurations, unless the benefit of the different
parameter values for each region outweighs the overheads caused by using different parameter values
for individual regions.

To deal with the problem related to the fourth issue, we developed a novel approach which we call
recombination. RS-GDE3 generates new configurations by applying an operator called differential
evolution [145]. For each configuration within the population (we will refer to it as the parent config-
uration), this operator generates a new program configuration. The new configuration is generated
by first calculating the differences between two configurations, randomly selected from the popula-
tion. The resulting values are then divided by two and added to the parameter values of a third,
also randomly selected, configuration. These newly created parameter values replace the values in
the parent configuration with a probability of 50% to create a new configuration. This newly created
configuration inherits parts of its parameter values form the parent configuration while the other
parameter values are generated based on the rest of the population. While this may be beneficial,
it also represents a drawback. For example, if the parent configuration k1 contains the best possible
parameter values q1 for region r1 and the newly generated configuration k2 contains the best possible
parameter values q2 for region r2, it would make sense to compose a third configuration k3 that uses
q1 in region r1 and q2 in region r2. However this is not possible in RS-GDE3 due to the way the
differential evolution operator works. The recombination strategy solves this problem by generating
new configurations using a different method every second iteration. This new generation method
takes the parent configuration and the newly generated one and swaps several of their parameter
values. In particular, the best set of parameter values for individual regions out of the parent and
the newly generated configurations are preserved. This approach maximizes the chances of combining
parameter values that perform well.

A comparison of a traditional, region-aware auto-tuner to the novel approach using recombination
is shown in Figure 7.1. The former, depicted in Figure 7.1a, generates a new offspring population out
of the current population using differential evolution in every iteration and selects the best performing
configurations from the current population and the offspring population to form the population for the
next step, as it is described in [83]. The latter, depicted in Figure 7.1b, uses the differential evolution
only in every second iteration. In the other iterations, a new offspring population is generated by
recombining the parameter values of the configurations in the current population and the offspring
population. The selection of configurations that will form the population of the next step is unaltered
compared to the traditional approach. In order to maximize the benefit of the recombination steps,
we are using two different kinds of recombination, which are applied in an alternating fashion:

1. The first kind compares each configuration that has been generated during the last iteration
of the optimizer with its parent’s configuration. Out of those two configurations (offspring
and parent), for each region it selects the set of parameter values which give the better values
averaged over all objectives and combines them to a new configuration for the entire program.

7.3. IMPLEMENTATION 93

2. The second kind selects one configuration for each objective from the offspring population as
well as their corresponding parents’ configurations. From the parameter values of those config-
urations, it constructs a new configuration for each objective, combining the sets of parameter
values of the regions which deliver the best performance for the corresponding objective.

Finally, the pseudo-code of the whole method is given in Algorithm 7.4.

Population 0

Config. 0 R0 R1 R2 R3 R4 R5

...

Config. 1 R0 R1 R2 R3 R4 R5

Config. 2 R0 R1 R2 R3 R4 R5

Config. N R0 R1 R2 R3 R4 R5

Offspring Population 0

Config. 0’ R0 R1 R2 R3 R4 R5

...
Config. 1’ R0 R1 R2 R3 R4 R5

Config. 2’ R0 R1 R2 R3 R4 R5

Config. N’ R0 R1 R2 R3 R4 R5

Population 1

Config. 0 R0 R1 R2 R3 R4 R5

...

Config. 1’ R0 R1 R2 R3 R4 R5

Config. 2’ R0 R1 R2 R3 R4 R5

Config. N R0 R1 R2 R3 R4 R5

Offspring Population 1

Config. 0’’ R0 R1 R2 R3 R4 R5

...

Config. 1’’ R0 R1 R2 R3 R4 R5

Config. 2’’ R0 R1 R2 R3 R4 R5

Config. N’’ R0 R1 R2 R3 R4 R5

Population 2

Config. 0 R0 R1 R2 R3 R4 R5

...

Config. 1’’ R0 R1 R2 R3 R4 R5

Config. 2’ R0 R1 R2 R3 R4 R5

Config. N’’ R0 R1 R2 R3 R4 R5

Differential
Evolution

Selection

Selection

...

Differential
Evolution

Differential
Evolution

(a) Standard region-aware auto-tuner. In each iteration
an offspring population of N elements is generated out
of the current population.

Population 0

Config. 0 R0 R1 R2 R3 R4 R5

...

Config. 1 R0 R1 R2 R3 R4 R5

Config. 2 R0 R1 R2 R3 R4 R5

Config. N R0 R1 R2 R3 R4 R5

Offspring Population 0 by Diff. Evolution

Config. 0’ R0 R1 R2 R3 R4 R5

...

Config. 1’ R0 R1 R2 R3 R4 R5

Config. 2’ R0 R1 R2 R3 R4 R5

Config. N’ R0 R1 R2 R3 R4 R5

Population 1

Config. 0 R0 R1 R2 R3 R4 R5

...

Config. 1’ R0 R1 R2 R3 R4 R5

Config. 2’ R0 R1 R2 R3 R4 R5

Config. N R0 R1 R2 R3 R4 R5

Offspring Population 1 by Recombination

Config. 0’’

...

Config. 1’’

Config. 2’’

Config. N’’

Population 2

Config. 0

R0 R1 R2 R3 R4 R5

R0 R1 R2 R3 R4 R5

...

R0 R1 R2 R3 R4 R5

Config. 1’’

R0 R1 R2 R3 R4 R5

R0 R1 R2 R3 R4 R5

R0 R1 R2 R3 R4 R5

Config. 2’ R0 R1 R2 R3 R4 R5

Config. N’’ R0 R1 R2 R3 R4 R5

Selection

Selection

...

Differential
Evolution

Differential
Evolution

(b) Auto-tuner using recombination. In every second
iteration, an offspring population is created by recom-
bining the best performing settings for each individual
region from the previous population and offspring pop-
ulation.

Figure 7.1: Examples for the evolution of two region-aware auto-tuners over two iterations, using
a population of n configurations, tuning a program with six regions (R0 to R5). Both auto-tuners
perform 2×n evaluations in this example. In each iteration, a new population is created by selecting
the best configurations from the population of the previous iteration and the corresponding offspring
population.

7.3 Implementation

The presented framework is implemented within the Insieme compiler and runtime system presented
in [83], based on branch inspire 1.3 which is freely available at [2]. The Insieme compiler performs,

94 CHAPTER 7. AUTO-TUNER

Algorithm 7.4 Multi-region auto-tuner using a combination of general evolution and recombination.

1: Generate a population Poppre of configurations, where regions within the same configuration have
the same parameter values

2: set the iteration counter to zero
3: while iteration counter ≤ threshold do
4: Generate new offspring population OPoppre using the differential evolution method
5: Update Poppre with the best trade-off solutions from Poppre ∪OPoppre
6: Increase the iteration counter
7: end while
8: Generate a new population Pop of configurations using solutions in Poppre, replicating the global

set of parameter values for each region.
9: while iteration counter ≤ maximum number of iterations do

10: if iteration counter is even then
11: generate an offspring population OPop using the differential evolution method
12: else
13: generate an offspring OPop population using the recombination method
14: end if
15: Increase the iteration counter
16: Update P with the best trade-off solutions from Pop ∪OPop
17: end while
18: Return the non dominated solutions (i.e. the Pareto set) of P

among other tasks, code analysis and code transformations. Insieme uses INSPIRE [81] as intermedi-
ate representation for extracting individual regions and applying the required code transformations.
The transformed INSPIRE code is then converted back to C. The resulting source code is compiled
to binary using the Gnu Gcc Compiler. In the case of transformations such as tiling, the Insieme
compiler generates a different version for each tile size to be evaluated in order to obtain the best
performance. This means, that a separate version of the code has to be generated and compiled for
each configuration that needs to be evaluated.

The Insieme runtime system executes the transformed input code and measures its performance.
The measurements are reported to the Insieme compiler which provides them to the auto-tuner. The
Insieme runtime system allows to set the number of threads individually for each region and is also
responsible for mapping the executed program to OS-level threads. For each OS-level thread used,
one worker is created and started [159]. The number of workers created for a specific execution is
equal to the maximum number of threads used by any region of the given program. Each worker is
fixed to a specific CPU core in ascending order. When a region is executed with fewer threads than
the number of workers started, the additional workers are set to sleep by the runtime system.

7.3.1 Regions

Our auto-tuner targets parallel programs implemented in C using OpenMP [123] for parallelization.
The programs are subdivided into several regions. We define each parallel OpenMP for-loop to be
a separate region for several reasons: Besides being parallel, these loops usually contain most of

7.4. TESTING METHODOLOGY 95

a program’s computational work. Furthermore, the implicit synchronization following each parallel
OpenMP for-loop is well suited as a point to vary the number of threads, while the number of threads
cannot be changed within the body of an OpenMP for-loop. Additionally, the restrictions enforced
by OpenMP on parallel for-loops, such as no continue, break or return statements as well as no
modification of the iterator variable inside the loop’s body, increase the probability that a loop nest
starting with a parallel OpenMP for-loop is suitable for tiling.

Loop nests that can be tiled are of special interest to us, as they typically have high optimization
potential and consume most resources. Our auto-tuner examines whether a loop nest is suitable for
tiling by using the Polyhedral Model [49] integrated in the Insieme Compiler. This analysis determines
whether a loop nest is tilable and also provides information about the minimum and maximum tile
size for this transformation.

For every region the auto-tuner can tune the number of threads that are used to execute it.
Furthermore, for regions which are tilable, the tile size in each dimension is tuned.

7.4 Testing Methodology

To compare different approaches, we use the same objectives as in [83]. For the result K of every auto-
tuning run we calculate |K| and V (K). K corresponds to the resulting Pareto set of the auto-tuner
while |K| is the number of elements in the Pareto set K. A larger number of elements of the Pareto
set is considered superior, as it offers more flexibility to choose a desired solution. V (K) defines the
normalized size of the hypervolume covered by the performance measurements of the elements in the
Pareto set K [182], i.e. the relative size of a hypervolume formed by all points dominated by the points
in K in a normalized hyperrectangle defined by the highest and lowest measurement in each objective.
When the function V (K) is used to compare several solutions Si where i ∈ [0, n] and n∈ N+, this
hyperrectangle is defined by the highest respectively lowest measurement in each objective of the
combined Pareto set of all solutions Si. This means, if all configurations in Si are dominated by
configurations found in Sj with j ∈ [0, n] and j 6= i, the coverage V (Si) is 0. A configuration k0
dominates another configuration k1 if k0 delivers better performance than k1 in every objective. As
the coverage is calculated on a normalized hypervolume, the result of V (K) ranges from 0 to 1 where
1 corresponds to an ideal solution covering the entire hypervolume, i.e. dominating all other solutions.
For each approach we report the average population size |K| and hypervolume V (K) over 14 runs.

The huge search space of the tested programs prevents a comparison of the results of an auto-
tuner to the theoretical optimum, as the only way to find the theoretical optimum would imply an
exhaustive search over the entire search space.

7.5 Experimental Results

This section presents the performance that we obtained with our approach on some exemplary test
cases. The experiments are executed on two different machines. The first machine features two Intel
Xeon E5-2690 v2 CPUs in a dual socket layout which are based on the Ivy Bridge-EP architecture
with 20 cores in total. The second machine is equipped with four Intel Xeon E5-4650 CPUs, based on
the Sandy Bridge-EP architecture and featuring a total of 32 cores. Hyperthreading has been disabled

96 CHAPTER 7. AUTO-TUNER

on both architectures. The clock frequency was fixed to the highest base frequency throughout all
experiments.

We present the results obtained by different auto-tuners including random, global tuners and
region-aware ones. The complete list is:

• Random: It randomly generates 3000 configurations with individual settings for each region.

• RS-GDE3 Global: It uses the RS-GDE3 tuner introduced in [83] to determine values for all
tunable parameters. This version resembles is a version of the auto-tuner presented in [83]
as described in Section 7.2.2. Every region within the entire program uses the same set of
parameter values. Solutions are generated with the differential evolution operator described
in[83].

• RS-GDE3 Region: Region-aware version of RS-GDE3 Global, which sets the parameter values
for every region individually.

• RS-GDE3 Region GPT: Extends the RS-GDE3 Region using a global pre-tuning phase as
described in Section 7.2. A total number of ten iterations are devoted to this phase.

• RS-GDE3 Recombination: Based on RS-GDE3 Region, but new configurations are generated
using the recombination method described in Section 7.2 in every second iteration.

• RS-GDE3 Recombination GPT: RS-GDE3 Recombination with a global pre-tuning phase that
uses 10 iterations.

All compared RS-GDE3 auto-tuners variations use a population size of 30 and perform 100 itera-
tions, leading to a total of about 3000 executions of the program (as performed also by the Random
tuner). Our experiments did not show any significant performance improvements by enlarging the
population any further with that budget of iterations.

The effectiveness of these approaches are evaluated on three benchmarks. Two of them, mg and bt,
are taken from the NAS parallel benchmarks [115] C/OpenMP implementation by the Omni group [5].
Bt is a block tri-diagonal solver for nonlinear partial differential equations while mg approximates
the solution to a three-dimensional discrete Poisson equation using a multi-grid method. For bt we
choose problem size w, for mg the problem size b, in order to get reasonable execution times for
auto-tuning. The heated-plate benchmark [28] is a stencil-code solving the steady heat equation on
a two dimensional, rectangular plate. The matrix size used for this benchmark was set to 384× 384
elements. The total number of regions, the number of regions to which tiling can be applied as well as
the total number of tunable parameters for each of those programs are listed in Table 7.2. This Table
also indicates the search space size when tuning those programs. The number of tunable parameters
is the sum of the number of tiling dimensions of all regions plus the number of regions, as we can set
the number of threads separately for each region. The search space is the product of the ranges for
each of those parameters. Therefore, the size of the search space depends on the target architecture,
as a higher number of cores also provides more tuning possibilities. For each tuned program, we
include the number of elements in the Pareto set |K| of the six auto-tuners is shown in Table 7.3
while the corresponding hypervolumes V (K) can be found in Table 7.4. The computed Pareto set
of most auto-tuners contains 30 elements, i.e. the entire population. The RS-GDE3 Recombination

7.5. EXPERIMENTAL RESULTS 97

GPT auto-tuner delivers the best result in terms of hypervolume in most cases. Only in heated-
plate it is slightly outperformed by RS-GDE3 Recombination auto-tuner on the Sandy Bridge-EP
architecture. However, the hypervolume values of all RS-GDE3 auto-tuners are very close for that
benchmark, most likely due to its relatively small search space. The global pre-tuning phase yields a
higher improvement on the Sandy Bridge-EP architecture than on the Ivy Bridge-EP which can be
explained by their differing socket numbers: Whereas the Ivy Bridge-EP system has only two sockets,
the Sandy Bridge-EP system has four sockets. Changing the number of threads between regions can
imply an additional cache coherency overhead when the regions are executed in different number of
sockets. This overhead is a consequence of not having shared cache between sockets. Therefore, it is
beneficial to start with a configuration that does not change the number of threads between regions,
which is achieved by the global pre-tuning phase.

mg heated-plate bt

#Regions 94 10 122
#Tilable Regions 82 4 114
#Tunable Parameters 268 18 453
Search Space Size1 10590 1033 10897

Search Space Size2 10609 1035 10922

1 On Ivy Bridge-EP
2 On Sandy Bridge-EP

Table 7.2: Search space description for the evaluated programs.

Ivy Bridge-EP Sandy Bridge-EP
mg heated-plate bt mg heated-plate bt

Random 15.4 10.6 26.2 26.4 4.1 12.1
RS-GDE3 Global 29.9 29.2 24.9 27.4 29.9 23.7
RS-GDE3 Region 30.0 29.6 29.7 30.0 29.9 23.0
RS-GDE3 Region GPT 30.0 30.0 30.0 30.0 29.9 30.0
RS-GDE3 Recombination 30.0 30.0 30.0 30.0 29.4 30.0
RS-GDE3 Recombination GPT 30.0 30.0 30.0 30.0 29.6 30.0

Table 7.3: Pareto set size |K| of several auto-tuner variants for different benchmarks on two different
architectures.

The time required for the auto-tuning is dominated by the time needed to compile and execute
the program. Therefore, shorter and faster programs can be tuned in less time. The tuning time
for our test cases is shown in Table 7.5. The Random auto-tuner exhibits the longest tuning time,
as it typically evaluates the configurations with the lowest performance. The fastest auto-tuner over
all test cases is the RS-GDE3 Global, because it never experiences any slowdowns from performance
penalties caused by region interferences. From the region-aware auto-tuners, those without a global
pre-tuning phase are slower than the auto-tuners with a global pre-tuning phase in most cases. The
latter converge faster to a population with reasonably fast configurations, which leads to significantly

98 CHAPTER 7. AUTO-TUNER

Ivy Bridge-EP Sandy Bridge-EP
mg heated-plate bt mg heated-plate bt

Random 0.0705 0.0545 0 0 0 0
RS-GDE3 Global 0.9038 0.6497 0.6431 0.8572 0.7953 0.6184
RS-GDE3 Region 0.3348 0.6464 0 0 0.7645 0
RS-GDE3 Region GPT 0.8998 0.6685 0.6196 0.8571 0.7981 0.6034
RS-GDE3 Recombination 0.8429 0.6585 0.6576 0.0640 0.8138 0.5694
RS-GDE3 Recombination GPT 0.9152 0.6869 0.7120 0.8821 0.8262 0.7137

Table 7.4: Hypervolume V (K) of several auto-tuner variants for different benchmarks on two different
architectures.

lower execution times of the tuned program. Similarly, the region-aware auto-tuners using the Re-
combination step are faster than their counterparts using only the traditional differential evolution
in most cases, as the average execution time of the resulting program versions is shorter.

Ivy Bridge-EP Sandy Bridge-EP
mg heated-plate bt mg heated-plate bt

Random 21836 26453 24162 31848 34751 38631
RS-GDE3 Global 16810 10488 15584 19643 15488 27344
RS-GDE3 Region 16480 13073 19777 33238 20969 43557
RS-GDE3 Region GPT 20565 11468 17251 21344 18037 28696
RS-GDE3 Recombination 19268 11256 17506 30292 14961 32862
RS-GDE3 Recombination GPT 19576 10809 16597 22113 16598 31125

Table 7.5: Tuning time in seconds of several auto-tuner variants for different benchmarks on two
different architectures.

In addition to the Pareto set size |K| and hypervolume V (K) we also report the objective values of
the best configuration found by the RS-GDE3 Recombination GPT auto-tuner for the three real world
codes compared to the non-optimized (without auto-tuning) versions. To calculate the speedup we use
the best configuration from the auto-tuner’s Pareto set for each individual objective. Typically, this is
a different configuration for every objective. We compare these configurations to two non-optimized
configurations that do not apply any tiling: the sequential version, using only one thread and the
parallel version using all threads available on the corresponding machine. The results are shown in
Table 7.6 which demonstrate a superior performance compared to the non-optimized versions, both
sequential and parallel, in every objective. As expected, the largest improvement over the sequential
version can be achieved in wall time (up to 9.1 fold) while the parallel version is primarily outplayed
in resource usage. Especially on the Sandy Bridge-EP architecture with 32 cores, the non-optimized
version suffers from the moderate scalability of heated-plate and bt, allowing our auto-tuner to achieve
an improvement factor of up to 61.6 in resources usage. These results clearly demonstrate the benefit
of our region-aware multi-objective auto-tuner, even if only a single objective is of interest. This is
underlined by the achieved speedup of the auto-tuner over the parallel version, which ranges from 1.3

7.6. DISCUSSION 99

to 7.6 on the tested architectures and programs. If a well-balanced trade-off solution across several
objectives is required, the benefit may be even higher, depending on the user’s preferences.

Ivy Bridge-EP Sandy Bridge-EP
mg heated-plate bt mg heated-plate bt

s1 p2 s1 p2 s1 p2 s1 p2 s1 p2 s1 p2

wall time 6.7 1.3 9.1 3.8 3.9 3.1 3.6 2.2 7.6 4.2 2.3 7.6
energy 3.0 2.4 7.3 4.4 2.0 3.6 2.2 5.8 4.5 7.3 1.6 10.5
resource usage 1.2 4.8 2.3 19.4 1.3 21.7 1.3 25.0 2.7 47.1 1.3 61.6
1 Improvement over non-optimized sequential version.
2 Improvement over non-optimized parallel version.

Table 7.6: Improvement over non-optimized versions i.e. not tiled with a constant number of threads,
in each individual metric achieved by the RS-GDE3 Recombination GPT auto-tuner.

7.6 Discussion

The results presented in the previous section demonstrate that the best version of our region-aware
auto-tuner, the RS-GDE3 Recombination GPT, outperforms a global auto-tuner based on RS-GDE3
(RS-GDE3 Global).

When comparing the Pareto sets generated by these two tuners, we observe that some configura-
tions in the Pareto set of the RS-GDE3 Global auto-tuner are dominated by others in the Pareto set of
the RS-GDE3 Recombination GPT. This means that there are configurations computed by the global
tuner which are worse in all the considered objectives than some of the configurations computed by
the region-aware tuner.

Next, we analyze the configurations computed by these two algorithms in order understand how
region-aware tuners exploit different parameter values in different regions of the same program. To
this end, we compare the obtained results on two of the considered applications, the bt and the
heated-plate. For these comparisons, we pick a configuration computed by each of these two tuners
and observe the parameter values within each region.

For the first comparison, the two configurations are taken from the Pareto set generated by the
two auto-tuners on the Sandy Bridge-EP architecture. We refer to the configuration computed by the
region-aware tuner as kr, and to the configuration computed by the global tuner as kg. The first thing
to note is that the tiling values used for different regions in kr show a high variation. For example,
while region 40 is tiled using the values {368,13,1}, the region 88 uses the tiling parameters {1,1,2}.
The tile sizes used by kg are {1,8,2} for all the regions within the program. All regions in kg are
executed with eight threads, which corresponds to the maximum number of cores on one socket on our
Sandy Bridge-EP architecture. Also in kr, the maximum number of threads used is eight, meaning
that some of the regions are also executed using eight cores. However, many regions in kr are executed
with fewer threads, where any number between one and eight is used at least once. This results in
the objective values presented Table 7.7. While in terms of wall time and energy consumption both
configurations are similar, the resource usage of kg is 20% higher than for kr. This means, kr is as
fast and consumes as little energy as kg using less resources. This is possible because the region-aware

100 CHAPTER 7. AUTO-TUNER

tuner found a configuration which executes regions that do scale well up to eight threads with such
number of threads; at the same time, regions that do not benefit from being executed on eight cores
are executed with fewer threads. Such a degree of adaption is not possible with any auto-tuner that
uses the same parameter values for every region in the entire program.

kg
1 kr

2 Improvement

wall time (ms) 2076 2074 1.00
energy consumption (J) 148 147 1.00
resource usage (ms) 16611 13838 1.20
1 Taken out of the Pareto set generated with the RS-GDE3 Global

auto-tuner.
2 Taken out of the Pareto set generated with the RS-GDE3 Recom-

bination GPT auto-tuner.

Table 7.7: Performance of two individual configurations in bt on the Sandy Bridge-EP architecture.

For the second comparison, we present the performance figures for two configurations for the
heated-plate benchmark on the Ivy Bridge-EP architecture. Again we label kr the configuration
found by the region-aware tuner and kg the configuration found by the global tuner. In this case,
for kg we choose the configuration with the least resources usage from the Pareto set. While kr is
not the configuration leading to the lowest resource usage in its Pareto set, it still dominates kg.
Obviously, kg uses only one thread for every region in order to minimize the resource usage. The tile
sizes used by this configuration are {1,214}. In contrast to that, kr uses two threads to execute the
biggest region of heated-plate, i.e. region 8. The increased number of threads also requires a different
tile size in order to perform well; in this case it uses {31,251}. All other regions, which account for
more than 1% of the total wall time, use very similar parameter values as the one used in kg: they
are executed using only one thread, and the tile size in the first dimension is equal to 1, while the
tile size in the second dimension varies from 233 to 251. This indicates, that a tile size of 1 in the
first dimension is beneficial when regions are executed sequentially, while a higher number of threads
benefits from larger tile sizes. The combination of a custom tile size and higher number of threads
for region 8 of heated-plate results in a significantly lower wall time as shown in Table 7.8. As that
region does scale well, kr has also a slight advantage over kg in both, resource usage and energy
consumption, despite the increased number of cores used. Additionally, as indicated in the table, the
rather different parameter values for region 8 cause a 25% drop in wall time, compared to kg. As
in the comparison before, these performance figures can only be achieved using different parameter
values for the individual regions of the program.

7.7 Related Work

In the literature we find several frameworks for software auto-tuning, for example self-tuning libraries
like ATLAS [176], OSKI [169], SPIRAL [129] or FFTW [53], or other auto-tuning frameworks includ-
ing Active Harmony [151], Sequoia [48], PetaBricks [10, 9], Patus [35], and OpenTuner [11].

In the past, most auto-tuners focused on the optimization of the wall time of programs. How-
ever, recent work shows an inarguable attention to optimize applications regarding several objectives.

7.8. SUMMARY 101

kg
1 kr

2 Improvement

wall time (ms) 2323 1749 1.33
energy consumption (J) 65 63 1.04
resource usage (ms) 2323 2289 1.02
1 Taken out of the Pareto set generated with the RS-GDE3 Global

auto-tuner.
2 Taken out of the Pareto set generated with the RS-GDE3 Re-

combination GPT auto-tuner.

Table 7.8: Performance of two individual configurations in heated-plate on the Ivy Bridge-EP archi-
tecture.

Besides wall time, energy consumption entailed by a program’s execution is becoming a popular ob-
jective [100, 131, 162, 132, 142, 126, 42, 102, 65]. Resource usage [83, 65], compilation time, or the
size of the executable binary [73, 107, 55] also received attention in related work. Most of these works
fail to capture the trade-off between these objectives and reduce them to a single one. Only a few
works focus on computing and analyzing trade-off between several conflicting objectives [52, 83, 16].

All the aforementioned works applied the same tuning options to the whole program. Approaches
that individually tune code regions and examine their inter-relationships with respect to single or
multiple objectives are rare. A major issue is the definition of code regions for programs. In [98]
program functions are considered to be the regions to optimize. In MPI programs regions are often
defined as the code between pairs of communication directives in [102]. In [41] regions are obtained
from applications Regions within the same cluster are tuned using the same parameters or code
transformations. The Periscope tool of the AutoTune project [113] tunes regions regarding any
function measuring properties of that function (run-time, energy consumed, etc.). Although different
objectives can be tuned, they are not considered simultaneously. Furthermore, Periscope tunes regions
individually without considering side effects among regions. In contrast to the framework presented
in this work, Periscope does not describe a methodology to identify regions within a program.

Some related work splits programs into several regions but optimize them in isolation [98, 41].
However, the authors of [102] show that regions within a program impact each others execution time
behavior. They demonstrate that when regions are executed with their local optima set of parameter
values, a non-negligible penalty may be paid as a result of changing hardware settings across adjacent
regions. The same work also discusses the benefits of using the same set of parameter values for every
region in the entire program versus a per-region tuning approach, and the need for tuning mechanisms
that can find configurations aware of interferences between regions.

7.8 Summary

Most existing auto-tuner focus on a global setting of parameter values which are fixed for the entire
program, ignoring the optimization potential by customizing parameter values to individual region’s
peculiarities. In this chapter, we introduced a novel auto-tuning framework that is based on the
Insieme source-to-source compiler an runtime system as well as a new RS-GDE3 auto-tuner variation
that aims at solving the challenges of multi-region, multi-objective auto-tuning. The challenges

102 CHAPTER 7. AUTO-TUNER

introduced by the huge search space, region dependencies and conflicting objectives are tackled by
adding a pre-tuning phase to the region-aware auto-tuner which tunes the program using the same
parameter values for all regions, and an intermediate evolutionary step for the RS-GDE3 auto-tuner,
generating new configurations by recombining the parameter values generated in previous steps.

Experiments have shown that our new approach is more effective in tuning three different pro-
grams on two different parallel computers than non-region-aware global auto-tuning. We outperform
a non-region-aware RS-GDE3 auto-tuner in hypervolume V (K) by up to 15%. Furthermore, we
demonstrated that our approach reaches up to 7.6, 10.5 and 61.6 fold improvements in wall time,
energy consumption and resource usage respectively, over the non-optimized parallel version.

Chapter 8

Applications

As my doctorate is part of the Doktoratskolleg Plus Computational Interdisciplinary Modelling
(DK+CIM) [166], I had the opportunity to apply my research to two scientific domain applications
in two different fields: One in the area of biology and one in the area of astrophysics. The following
sections present the results of these works.

8.1 SAMPO: An Agent-based Mosquito Point
Model in OpenCL

This section describes an OpenCL implementation of an existing agent-based model, simulating pop-
ulations of the Anopheles gambiae mosquito, one of the most important vectors of malaria in Africa.
Discussed are the methods and techniques used to overcome the design challenges, which arise when
transitioning from an object-oriented program to an efficient OpenCL implementation. In particular,
the parallelism inside the program has been maximized, dynamic divergent branching was reduced, and
the number of data transfers between the OpenCL host and device has been minimized. Even though
our implementation was designed for this specific use case, the approach can be generalized to other
contexts, as most agent-based point models would benefit from the same basic design decisions that
we took for our implementation. The work arose from a collaboration with the Center for Research
Computing at the University of Notre Dame, Indiana, USA. While Gregory Davis provided the knowl-
edge to model the mosquitoes’ live cycle using an agent based simulation, it was my responsibility to
design and implement a high performance OpenCL version of it. The results of this collaboration are
published in [94].

Malaria is a vector-borne illness caused by parasites that are transmitted from human to human
through an intermediate organism, mosquitoes. Because malaria cannot be transmitted between
humans in the absence of these vectors, malaria control and eradication strategies have primarily
relied on interventions that directly target the vector, such as insecticide-treated nets, larvicides,
and indoor residual spraying. To maximize the effectiveness of campaigns involving these types
of interventions, knowledge of population-level malaria transmission dynamics must be understood.
Formal modeling and simulation of mosquito populations is an attractive technique for researchers and
malaria control managers to understand malaria transmission and assess hypothetical strategies for
deploying limited intervention resources. Agent-based modeling and simulation (ABMS) is becoming

103

104 CHAPTER 8. APPLICATIONS

a popular approach used in this field [78, 66, 181] because each member of the population (i.e.
each mosquito) is modeled individually with simple rules, typically derived from laboratory and
field research, dictating their behavior. By simulating large populations of these agents and their
interaction with each other and their environment, system-level properties emerge, which can be used
to better understand the dynamics of malaria transmission.

To facilitate the use of ABMS across many fields of interest, a diverse group frameworks and tools
have been developed. For example, FLAME (Flexible Large-scale Agent Modeling Environment) [37]
is a generic agent-based modeling system where agents are formalized as Stream X-Machines specified
in XML markup and compiled into executable code through a template system alleviating the need
to develop custom code for common agent-based modeling tasks. Other libraries such as Repast [4]
and MASON (Multi-Agent Simulator of Networks) [106] provide common ABMS foundation objects
that can be sub-classed and extended to implement model-specific behavior. Beyond these generic
frameworks, there are tools specifically for modeling populations of disease vectors such as DTK
(Disease Transmission Kernel) [44] and AGiLESim [181].

Figure 8.1: Mosquito life cycle

Agent-based simulations can be compute-intensive, especially when there is a need to simulate
large numbers of agents to approximate a given population. Furthermore, since the outcomes of these
simulations typically depend on stochastic factors, the simulations are often rerun several times to
more accurately characterize the model results, extending computing demands even more. Impor-
tantly, the agent-based approach is also inherently parallel as the behavior of one agent is not generally
directly dependent on the behavior of another. This is reflected in the fact that each of the afore-
mentioned frameworks provide mechanisms for parallelizing the simulations they implement using
either a distributed architecture with compute nodes communicating using MPI or taking advantage
of multi-core CPUs using OpenMP and/or multithreading. However, none of these frameworks takes
advantage of GPU-based computing to automatically scale with the available resources of the ma-
chine the simulation is executing on except for FLAME GPU [134]. This extension of FLAME is
implemented in CUDA so that it runs on NVIDIA GPUs, but is not compatible with GPUs from
other vendors.

8.1. SAMPO 105

In the present work we developed SAMPO (Scalable Agent-based Mosquito POint model), a
derivative model of the Java version of AGiLESim, implemented using OpenCL [89] where each
mosquito agent follows the life-cycle shown in Figure 8.1. As explained in [181], the model is well-
suited for simulating the evolution of mosquito populations. We chose OpenCL because it supports
a large variety of processing units as described in Section 3.1. Whereas HPC resources are expensive
and not necessarily accessible to users of agent-based simulations, GPUs and multi-core CPUs are
widely available even in workstations.

8.1.1 Implementation

Our simulation is implemented in OpenCL, using the LibWater library [59] to reduce the implementa-
tion effort. It consists of twelve kernel functions which are called in every iteration of the simulation.
In general, it is beneficial for OpenCL programs, to have as many independent threads running at
a time as possible. In order to achieve that, we create one thread for each agent for most of our
kernels. The control flow of our implementation, showing the discrete operations performed during
the simulation, can be seen in Figure 8.2.

Although the program may run on many different processing units, it is optimized for GPUs with
dedicated DRAM that are connected to the host CPU via PCIe. For such architectures, the connection
bandwidth between the host and the device is often a bottleneck. Therefore, this implementation aims
at minimizing the communication between host and device. All agents are generated by the device
and will never be copied to host memory. The only data that has to be copied to host memory are
the snapshots of the environment (containing the number of mosquitoes in each state as well as the
number of total and infective bites that occurred) after each iteration. The only data that has to
be written to the device are the seeds for the random number generation (see Section 8.1.1 for more
details). The following paragraphs describe the most important design decisions that we made during
our implementation. For more detailed information, we refer to the source code which is publicly
available online [92].

Data Layout

The mapping of data to memory has a big impact on the performance, especially in GPU-based
architectures. As demonstrated in Chapter 6, the data layout is crucial in order to gain a high
performance on GPUs. This has a number of important implications for design decisions in porting
AGiLESim to OpenCL and the most important of these are described below.

Agent Representation Each agent (i.e. mosquito) in our simulation consists of twelve fields,
listed in Table 8.1. The most natural way to store the agents of this simulation would be an array
of structures where each structure represents one agent. This solution however, leads to a lot of
unnecessary load and store operations (when the data of an entire agent is loaded while only few
fields of the structure are required) and/or non-coalesced memory accesses [167] (when only a single
field of the agent is loaded). Therefore, the transformation of the array of structures into a structure
of arrays could be considered. However, since structures containing pointers are not supported in
OpenCL, this would lead to a separate array for each field of the agent structure, resulting in a large
number of arguments for each kernel. Maintenance and readability of the code would heavily suffer

106 CHAPTER 8. APPLICATIONS

from that transformation. Moreover, if memory accesses occur in a non-coalesced fashion, it can
be beneficial to load a single struct instead of multiple scalars to minimize non-coalesced memory
accesses.

In order to exploit the advantages of both previously mentioned techniques, we use a hybrid
approach for our data layout. The agent structure is split into three smaller ones, called A, B and C
in Table 8.1. The layout of the structures is chosen in a way so that each kernel function that has to
load one of those structures uses as much of its fields as possible.

Name Type Struct

Available Eggs UINT A
Gonotrophic Cycle Length UINT A
Human Bloodmeal Count UINT A
Delay to State Transition REAL A
Number of Egg Batches UINT A

Ovi Positioning Attempts UINT A

Is Dead BOOL B
Current State ENUM B

Age in Hours REAL C
Hours in State REAL C

Is Female BOOL C
Cumulative Sporgonic Development REAL C

Table 8.1: Data structure representing an agent, i.e. one mosquito. The agent’s fields are distributed
over three different structures, the structure of each field is indicated in column Struct.

Agent Storing In order to maximize the performance, all arrays have a fixed size and are allocated
at the start of the simulation. For arrays of constant size as well as for arrays whose size depends
on the simulation length (i.e. the number of iterations) the size can be calculated accurately at the
beginning of the simulation. For arrays whose size depends on the number of active agents, it is
more difficult, since the maximum number of agents that will be reached during the simulation is not
known at the beginning. In our program, the user has to estimate the maximum number of agents
that can be reached during the simulation. This number will then be used to allocate memory for
the agents. In our experiments we figured out, that 10× the maximum carrying capacity [56] of the
environment is a well-suited estimation. The total memory consumption on the OpenCL host and
device is shown in Table 8.2.

Since our implementation aims at minimizing the communication between host and device, the
agents are generated and stored only on the device. They will never be transferred to the host during
the entire simulation. The only data that will be transferred to the host are the statistics that are of
interest to the user of the simulation as described in Section 8.1.1.

8.1. SAMPO 107

Host Device

read input files

query devices + allocate memory

generate random seeds

generate initial populaton

calculate larvae-one-day-equiva-

lent biomass using reduction

count number of females and inf-

ective mosquitoes using reduction

print statistics

generate random seeds

randomly kill agents

update agents' state

generate new agents

calculate new agents' positions

transfer alive agents to new array

swap pointers of

 old/new agent array

free resources

synchronization

write initial population properties to device

write seeds to device

read population properties from device

read number of bites and cycles from device

write seeds to device

max. number
of iteratons
reached?

No

Yes

Figure 8.2: Control flow of SAMPO. All tasks executed on the host are of constant time complexity
with regard to the population size. Thus, the execution time of simulations with larger populations
is dominated by the tasks executed on the device.

108 CHAPTER 8. APPLICATIONS

Size in Bytes

host1 240 + 24 ∗#iterations2

device1 240 + 116 ∗#agents3

host to device4 64
device to host4 100
1 total amount of allocated memory, constant dur-

ing the entire simulation
2 number of time-steps in the simulation
3 maximum number of agents specified as de-

scribed in Paragraph 8.1.1
4 data transferred in each iteration

Table 8.2: Memory used and transferred during the simulation

Divergent dynamic branching minimization

In OpenCL, threads are organized in a two-level hierarchy. The entirety of threads is subdivided
into work groups, which consist of several work items. The size of the work groups is defined by the
local work size, as described in Section 3.1. To maximize the performance on GPUs, all threads in
one work group should follow the same path in the control flow, i.e. should execute the same code.
When branches cause threads inside a work group to execute different code, it leads to divergent dy-
namic branching. Since our main target architecture for this program are GPUs, minimizing divergent
dynamic branching is crucial to obtain a good performance as described in Chapter 4.

In our implementation, consecutive agents in memory are mapped to consecutive threads. There-
fore, agents who are likely to execute the same code should be packed together in memory in order
to minimize divergent dynamic branching. To achieve this, our implementation blocks agents that
are in the same state together. At the end of each block, padding to the next multiple of the
local work size is added in order to avoid agents belonging to two different states inside a single
work group. While this approach is effective in reducing the number of divergent branches to a min-
imum, it requires a reordering of the agents after each iteration. During this reordering, dead agents
are removed from the array, agents that changed their state are moved to the block of their new state
and the entire array is packed in order to avoid empty slots within the blocks of states.

Doing this reordering in parallel requires duplicate arrays that hold agent information. In each
iteration, all living agents are moved from the currently used array to the other one, doing the
previously described reordering at the same time. Duplicating the agent arrays means, that the
memory requirement on the device almost doubles. While this is reducing the maximal population
size that can be handled by a device, this is the only way we found to make the simulation efficient
on modern GPUs. Since this copy is done in parallel with one separate thread for each agent, the
copying thread does not know if the surrounding agents have died or advanced to another state.
Because there is no efficient way to determine the new index of its agent during the copy, we calculate
the new index of each agent before the copy operation using several prefix sums.

The indices are calculated separately for each mosquito state. To do so, we generate a temporal
data array for each state. It has the same size as the agent array and is filled with 1 on the position
of alive agents of the corresponding state and 0 on all other ones. The result of a prefix sum on

8.1. SAMPO 109

this array will be the new index for each agent in that state, relative to the beginning of the state’s
block. Looking at the mosquito development cycle depicted in Figure 8.1, it is obvious, that agents
of each state can only be found in a restricted area in the agent array. For example, all agents who
are in larval state in the next generation, must be in either egg or larval state in the current iteration.
Therefore, the prefix sum can be restricted to that area. To avoid having a separate prefix sum for
each state, we use a segmented prefix sum.

The segmented prefix sum differs from a ”standard” prefix sum as it restarts counting at 0 at
the beginning of each segment. In our application we create one segment for each state. Each
state’s segment is set to the range where agents in that state can occur, as described in the previous
paragraph. Those ranges overlap, as shown in Figure 8.3. Most segments span two state blocks, the
current one and the previous one in the mosquito development cycle. The segment for the egg state
covers only its own block, since there is no previous state. New eggs are simply put at the beginning
of the new array. The segment of the blood meal seeking state covers four blocks. Other than mate
seeking mosquitoes that develop to this state after finding a mate and blood meal seeking mosquitoes,
also gravid mosquitoes go to blood meal seeking state after all their eggs have been laid. The segment
also covers blood meal digesting mosquitoes although no agent in this block can become blood meal
seeking in the next iteration. However, it is added to the segment, since all segments have to be
contiguous in the used prefix sum implementation. Due to the overlapping of the segments, the new
index of all agents cannot be calculated using a single segmented prefix sum, but we have to perform
three of them. Figure 8.3 elucidates, which sates are handled by each of the three prefix sum.

To calculate the new indices of the agents using the segmented prefix sum, two temporary arrays
for each of the three prefix sums have to be created: The first is the data array consisting of 1 and 0 as
described earlier. The data arrays of the states covered by the same prefix sum can easily be merged,
since their segments do not overlap. The second is a flag array, determining the single segments. The
result of the prefix sum holds the new index of each agent, relative to the start of its state’s block.
The start of the block can easily be determined by summing up the number of agents in all preceding
states, which is equal to the last element of the corresponding state’s prefix sum +1. On the GPU we
use the parallel prefix sum implementation of Bolt [7]. When the program is executed on a CPU, we
use a sequential implementation of the prefix sum, since it delivers higher performance on that kind
of processing units. While the sequential implementation of the prefix sum uses only a single kernel,
the calculation of the prefix sum in parallel consists of four kernel invocations: one is generating the
previously described temporal arrays, while the other three, taken from [7], are performing the actual
prefix sums.

Random number generation

Random number generation is a crucial component of many agent-based simulations. Many parame-
ters of our implementation (and similarly in AGiLESim) are influenced by randomness (e.g. mortality
rate, delay to develop for some states, number of eggs generated, etc.). This means that many
random numbers are needed in each iteration. However, GPUs do not have an available built-in
pseudo-random number generator like CPUs, and OpenCL does not provide any means of generating
random numbers on the device. Since this implementation aims at minimizing the communication
between host and device, a common approach for random number generation involving generating all
random numbers on the host CPU and copying all of them to the device is not an option. Therefore,

110 CHAPTER 8. APPLICATIONS

Sum1

Sum2

Sum3

Mate Seeking Blood Meal Seeking Blood Meal Digesting GravidEgg Larvae Pupa Immature

Egg Seg. Immature Segment Blood Meal Seeking Segment

Larva Segment Mate Seeking Segment Gravid Segment

Pupa Segment Blood Meal Digesting Segment

Figure 8.3: Segments for the three prefix sum calculations. Each prefix sum calculations considers all
agents from the start of the first segment to the end of the last one.

we use the a hybrid Tausworthe [153, 101]/LCG [128] generator as described in [116]. This algorithm
uses four integer random numbers as seeds to generate a single floating point random number. Each
of the four seeds is used as an argument for either the Tausworthe or the LCG algorithm with varying
parameters. The four resulting floating point numbers are then combined to form a single random
number. The main advantage of using four seeds instead of one is the increased period length, equal
to approximately 2121 for the used implementation.

The hybrid Tausworthe/LCG generator produces uniformly distributed random numbers. How-
ever, for some variables in the simulation, we need random numbers following a Gaussian distribution
(e.g. the number of eggs generated by a mosquito). To produce normally distributed numbers we use
the Box-Muller [23] transform which takes two independent, uniformly distributed random numbers
as an input and returns a single random number with a Gaussian distribution. The implementation
proposed in [116] produces two normally-distributed random numbers at a time; however, we generate
only one because a second random value is not useful at the point of generation.

The approach in [116] also proposes a separate set of seeds for each thread, where the current
results of the Tausworthe/LCG steps are used as a seed for the next one. This requires a considerable
amount of memory (equal to the number of agents) to store those seeds in addition to one read
and one write operation to global memory every time a random number is generated. To avoid
this overhead, we use an approach, similar to the One-PRNG-per-kernel-call-per-thread approach
described in [127]: all threads use the same seed, which is mangled using the global id of the thread.
Instead of incorporating the simulation time step in the mangling function, we generate a new set of
seeds in every iteration on the host CPU, and transfer them to the device. Doing so, allows us to
replace the hashing function to mangle the seed used in [127] with a single addition or multiplication
operation on the individual seeds. In comparison to the approach proposed in [116], this approach
allows SAMPO to handle larger populations due to the reduced memory overhead. Furthermore, our
approach does not require write access to the device memory and all threads read the seeds from the
same memory location, which means the read operations on the seed can be cached on most modern
GPU architectures.

In our implementation, each thread needs to generate up to four random numbers per iteration.
Therefore, the host writes fours sets of seeds to the device in each iteration, which each thread
combines with its global id to generate four independent random numbers. Using the previously

8.1. SAMPO 111

Random Seeds
Generation and Transfer (s)

AMD Opteron 6168 0.34
Intel Xeon X5650 0.29
AMD Radeon HD5870 4.59
AMD FirePro S9000 1.70
NVIDIA GeForce GTX 480 0.19
NVIDIA Tesla k20c 0.24

Table 8.3: Time required to generate the random seeds and transfer them to the device.

described method, the number of seeds generated and transferred from the host to the device in each
iteration is constant and independent of the number of agents in the simulation. Due to the small
amount of data to be transferred, the time needed for the data transfer can be neglected on most the
architectures used in our tests as shown in Table 8.3. A considerable overhead could be measured
only on the AMD Radeon HD5870; however its impact is constant and does not scale with agent
population size.

Simulation Output

The simulation output consists many measures of the state of the simulation at each time step
including: number of mosquitoes in each development state, an age-adjusted larval biomass (a measure
of how saturated the aquatic environment is - affecting both larval mortality and the number of eggs
laid by a given mosquito), the number of female adult mosquitoes and how many of them are infective,
the number of mosquito bites that have occurred (both infective and non-infective), the number of
gonotrophic cycles1 that have been completed, and the sum duration for all completed gonotrophic
cycles.

To determine the number of agents in each state, the starting and end index of each state-block (as
described in Paragraph 8.1.1) is copied to the host. The host will then use those values to calculate
the actual numbers.

To calculate the number of bites as well as the number of gonotrophic cycles and the sum of their
length we use atomic operations [89]. This means that there is a global counter for each of those
values which is increased by each thread that handles the corresponding action (e.g. a bite occurred
or a mosquito laid all is eggs). Although atomic operations are a potential performance bottleneck,
especially on GPUs, in this simulation their effect is negligible, since they are not invoked that
frequently. Figure 8.4 shows the impact of atomic operations on the execution time, comparing the
run-time of the kernel updating the agent’s state, with and without atomic operations. By omitting
the atomic operations, some of results generated are no longer accurate, but the condition of the
the simulation itself is not affected. The comparison clearly shows that the impact of the atomic
operations on the execution time is minimal.

There are three numbers in the statistics which require performing a reduction over a large number

1A gonotrophic cycle is completed when a gravid mosquito placed all its eggs and goes back into blood meal seeking
state

112 CHAPTER 8. APPLICATIONS

0
5
10
15
20
25
30
35
40
45

se
co

nd
s

with atomics

no atomics

Figure 8.4: Execution time of the agent-state updating kernel of different processing units with and
without atomic operations for statistical counters. Times are taken from a one year simulation of a
population with maximal 1.4 million agents.

of agents: The age-adjusted larval biomass, which requires a reduction over all larvae, the number
of adult female/male, and potentially infective mosquitoes, which require a reduction over all adult
mosquitoes. Since these numbers are affected by all agents in the corresponding states, summing
then up using atomic operations would not be an efficient solution. Therefore, these numbers are
calculated at the beginning of each iteration using a parallel reduction in local memory, based on the
two-stage implementation in [8]. Since the counting of female and potentially infective mosquitoes
is performed on the same data, we use only one parallel reduction to do both of them at once. The
parallel reductions are executed in two steps:

1. Reducing the input array to a number of local work size elements with a kernel function
using a total of local work size2 threads.

2. Using local work size threads to calculate the final result, based on the results of step 1.

This two-step approach is the only feasible way to distribute the reduction to more than local work size

threads since OpenCL does not provide the possibility to synchronize over several work groups.

8.1.2 Correctness

To verify the correctness of our implementation we compared the generation of random numbers and
the structure of the agent population – number of adult mosquitoes and their age structure (see [56])
– to these metrics from a similarly configured Java version of AGiLESim.

Random number generator

To verify our approach to generate random numbers, described in Section 8.1.1, we compare the
number of eggs produced by each mosquito in a one year simulation with a maximum of approximately
40,000 agents. For the mosquitoes that we are simulating, the number of eggs is calculated based on

8.1. SAMPO 113

Algorithm 8.5 Formula calculating the number of eggs produced for a single mosquito developing
from blood meal digesting into gravid state. numEggBatches is the count how often a specific
mosquito already spawned new eggs.

1: function GenerateEggs(int:numEggBatches)
2: eggBatchSize← 170
3: stdDev ← 30
4: nEggs← bRandNormal(eggBatchSize, stdDev)c
5: if eggs < 0 then
6: eggs← 0
7: end if
8: eggs← RoundToNearest(eggs · 0.8numEggBatches)
9: return eggs

10: end function

0 100 200 300

AGiLESim
SAMPO

(a) 5 runs

0 100 200 300

AGiLESim
SAMPO

(b) 50 runs

Figure 8.5: Histogram of the number of eggs generated per mosquito for SAMPO and AGiLESim.
The left picture shows the histogram for five runs, the right picture for 50 runs. Each run simulates
one year with a maximal population size of approximately 40,000 mosquitoes.

a normal distributed random number as shown in Algorithm 8.5. To spawn these numbers, SAMPO
uses the Box-Muller transformation described in Section 8.1.1, while the used version of AGiLESim
uses the random number generator provided by RepastJ [117]. Figure 8.5 shows the histograms of
the number of eggs created by the individual mosquitoes. It can be seen, that the histogram curves
are very similar, especially with a high number of runs.

Population comparison

In order to show that SAMPO produces correct populations we perform two validity checks on the
produced population of adult mosquitoes. The first one compares the average number of adult
mosquitoes on each day of a one-year-long simulation to the ones produced by the Java version of
AGiLESim. Figure 8.6 shows how the number of adult mosquitoes evolves during the simulation.

114 CHAPTER 8. APPLICATIONS

0

10000

20000

30000

40000

50000

60000

70000

1

2
5

4
9

7
3

9
7

1
2

1

1
4

5

1
6

9

1
9

3

2
1

7

2
4

1

2
6

5

2
8

9

3
1

3

3
3

7

3
6

1

N
u

m
b

e
r

o
f

A
d

u
lt

 M
o

sq
u

it
o

e
s

Day

SAMPO

AGiLESim

Figure 8.6: Average number of adult agents on each day of a one-year-long simulation, created
with SAMPO and AGiLESim, respectively. The maximum population size for this experiment was
approximately 1.4 million agents, the environment temperature was a constant 30◦C.

The picture clearly elucidates that the populations generated by the two different implementations
can be considered as equal.

The second validation compares the ages of all adult agents at the end of a one-year-long simulation
with the hypothetical age structure calculated using the formula presented in [56]. Figure 8.7 shows
a histogram of the adult mosquitoes’ age distribution as well as the curve calculated based on the
daily mortality rate of agents, as described in [56]. Also in this case, the values produced by SAMPO
match the expected ones, thus we consider it as correct.

8.1.3 Performance

The main goal of implementing this mosquito simulation in OpenCL was to reduce the simulation time
using modern accelerator hardware such as GPUs. In the following paragraphs we will demonstrate
the performance of our implementation in comparison to the Java version of AGiLESim [56] as well as
its scalability with increasing population sizes on various processors. The population size is controlled
by adapting the initial number of eggs put into the system, as well as the carrying capacity. For all
experiments, the carrying capacity is constant throughout the entire simulation and set to 5× the
initial number of eggs. We chose a simulation length of one year with a resolution of one hour, leading
to 8760 simulation steps. The temperature was constant at 30◦C.

Figure 8.8 shows the execution times using different population sizes of the AGiLESim compared
to SAMPO. The execution times of the Java implementation of AGiLESim were measured on a
dual socket Intel Xeon X5650 CPU (see Table 8.4 for more details). It can clearly be seen, that
SAMPO’s OpenCL implementation scales much better with increasing problem sizes than the Java
version. While the smallest problem size with a maximal population size of approximately 40 thousand

8.1. SAMPO 115

0

1000

2000

3000

4000

5000

6000

7000

8000

1 5 9 13 17 21 25 29 33 37 41 45 49

N
u

m
b

e
r

o
f

A
d

u
lt

 M
o

sq
u

it
o

e
s

Age in Days

SAMPO

Hypothetical Age Structure

Figure 8.7: Histogram showing the age in days of the adult mosquitoes at the end of a one-year-long
simulation as well as the hypothetical age structure calculated using the formula presented in [56]. The
maximum population size for this experiment was approximately 1.4 million agents, the environment
temperature was a constant 30◦C.

AMD Intel AMD AMD NVIDIA NVIDIA
Opteron Xeon Radeon FirePro GeForce Tesla

6168 X5650 HD5870 S9000 GTX 480 k20c

Type CPU CPU GPU GPU GPU GPU
Chips 2 2 1 1 1 1

Frequency (MHz) 1900 2670 850 900 1401 706
Compute Units 24 24 20 28 15 13
Parallel Ops 96 48 1600 1792 480 2496
FLOPS (SP) 365 256 2720 3225 1345 3524

Memory (GB) 32 24 1 6 1.5 5
Memory BW (GB/s) 83 62 153 264 177 208

Table 8.4: Used hardware

agents is almost equally fast in both implementations, for the biggest tested problem size, with a
maximal population size of approximately 5.5 million agents, the OpenCL version outperforms the
Java implementation by a factor of 46. There are several reasons for that:

• The AGiLESim uses double precision for all floating point numbers in the simulation. SAMPO
uses only single precision. However, as shown in Section 8.1.2, this has no negative effect on
the result of the simulation.

• While the Java version of AGiLESim is sequential, the OpenCL implementation is parallel and
uses all cores available in the system.

116 CHAPTER 8. APPLICATIONS

• The Java version of AGiLESim has a considerably lower constant overhead than our implemen-
tation using OpenCL. Executing all 8760 simulation steps without any actual calculation (but
including all necessary data transfers for the OpenCL implementation), the Java version takes
3.5 seconds, while the OpenCL implementation needs 24.2 seconds to execute this task.

• Java has an automated memory management. The memory allocation is hidden from the
programmer. Occasionally, a garbage collector is invoked by the Java VM, which frees all
unused memory. The bigger the population, the more often the garbage collector has to be
invoked in order to limit the maximum memory requirements. Since one invocation of the
garbage collector consumes linear time in relation to the population size and it is invoked more
often with increasing population sizes, this process consumes a considerable amount of time of
the Java version when simulating large populations.

• Many agents in AGiLESim are stored in Java ArrayLists. Dead agents are eliminated from
those lists using the remove operation. Since ArrayLists internally store data in an array, this
operation requires moving all elements positioned after the eliminated element. This results
in an average of n

2 data movements for each remove operation, leading to above linear time
complexity.

Compilation Time
Uncached (s) Cached1(s)

AMD Opteron 6168 1.10 N/A
Intel Xeon X5650 2.03 N/A
AMD Radeon HD5870 5.23 N/A
AMD FirePro S9000 1.85 N/A
NVIDIA GeForce GTX 480 5.83 0.14
NVIDIA Tesla k20c 9.93 0.14
1 The NVIDIA OpenCL run-time compiler automatically caches

compiled kernels in the user’s home directory. If a cached
kernel is executed, it can be directly loaded form the cache
without recompilation resulting in much less overhead.

Table 8.5: OpenCL run-time-compilation time for the used processing units.

We analyze the performance and scalability of the OpenCL implementation on the processors
described in Table 8.4, including CPUs and GPUs. Figure 8.8 shows the performance of those
processors with varying population sizes. The numbers shown in Figure 8.8 represent the execution
time of the simulation only, excluding the time needed for the OpenCL run-time compilation. The
compilation times for the various devices can be found in Table 8.5.

The performance measurements clearly show that GPUs suit this simulation better than CPUs.
A NVIDIA Tesla k20c achieves a speedup of 6-7 and 8-11 compared to the tested Intel and AMD
dual socket CPUs, respectively. The CPUs and the NVIDIA GPUs scale almost linear with the
population size of the simulation. On the AMD GPUs, however, the execution time raises less than
linear with increasing problem sizes. The downside of the AMD GPUs is that they show relative
long execution times for small population sizes. According to our measurements, just invoking all

8.1. SAMPO 117

1

10

100

1000

10000

100000

40K 80K 170K 350K 700K 1.4M 2.8M 5.5M

Se
co

nd
s

Population Size

AGiLESim

Opteron 6168

Xeon X5650

Radeon HD5870

FirePro S9000

GeForce GTX480

Tesla k20c

Figure 8.8: Execution times with varying population sizes for the Java implementation used in AG-
iLESim [56] and our OpenCL implementation on various processing units. The execution times of
AGiLESim were measured on an Intel Xeon X5650.

the kernels and data transfers needed for the simulation without doing any actual calculations takes
about 17 and 9 seconds on the Radeon HD5870 and FirePro S9000, respectively. In contrast, both
NVIDIA GPUs need only 5 seconds for this task. The high overhead on the AMD GPUs seems to
be related to the high kernel invocation overhead on such hardware as already pointed out by the
microbenchmarks presented in Chapter 4. The inefficient use of resources on the AMD GPUs is also
underlined by the low GPU usage. Depending on the population size, we observed a GPU usage of
35-95% and 38-94% on the Radeon HD5870 and FirePro S9000, respectively. On the Tesla k20c the
GPU utilization ranges from 80 to 99% while NVIDIA does not provide any tool to remotely observe
the GPU utilization on the GeForce parts. The overall performance of the NVIDIA Tesla k20c is
disappointing. Despite the report in [119] we observed a maximal speedup of 1.19 over the previous
generation part for our simulation. Furthermore, when simulating large populations, the Tesla k20c
is outpaced by the FirePro S9000, despite its bigger overhead and lower GPU usage.

8.1.4 Summary

In this work we implemented SAMPO, a parallel OpenCL version of an existing agent based point
model for simulating populations of the Anopheles gambiae mosquito. We described some of the more
important challenges that arise when converting an ABMS to the parallel architecture necessary for

118 CHAPTER 8. APPLICATIONS

OpenCL and how we addressed them. Furthermore, we demonstrated correctness of our implemen-
tation by comparing the output to the one generated by AGiLESim. The theoretical age structure of
the population is verified similarly to the verification applied for the original AGiLESim model [56].

The main goal of this work was to investigate the use of OpenCL as a means of minimizing
simulation time for large scale ABMS executions. Our implementation is very effective for larger
population sizes, achieving a speedup of up to 46 over the Java implementation of AGiLESim when
running on the same multi-core CPU. In some respects this same-CPU comparison illustrates the
overhead of using non-native code (such as Java programs) for simulation. Furthermore, we might
expect the OpenCL version, running on the CPU, to have similar performance characteristics to
a highly-optimized C version. Running the simulation on modern GPUs, we observed that the
performance improved approximately 12 times compared to the same code running on the CPU,
and a total speedup of 576 over the original Java implementation. These findings indicate that
OpenCL is an attractive environment for building compute-intensive agent-based simulations.

In the future, we expect that the functionality of our simulation will be extended, incorporat-
ing features to simulate the effects of various vector-targeted interventions like insecticide-treated
mosquito nets and indoor residual spraying (IRS) in order to observe their impact on the malaria
transmission cycle. SAMPO was designed from the beginning to allow this kind of interventions.
Furthermore, additional mosquito species could be added to our simulation. To support that, our
OpenCL implementation encapsulates the species specific behavior a single header file, which can
easily be exchanged with one characterizing another species.

8.2. KD-TREE BASED N-BODY SIMULATIONS 119

8.2 KD-tree based N-body simulations

This chapter introduces a novel method to effectively parallelize N-body simulations for GPUs. Our
method is based on an efficient, three-phase, parallel Kd-tree building algorithm and a novel volume-
mass heuristic to reduce the simulation time.The contribution is a joint effort of members of the DPS
group, Institute of computer science and the Astrophysics Group at the University of Innsbruck as
part of the Doktoratskolleg Plus Computational Interdisciplinary Modelling (DK+CIM) [166]. Do-
minik Steinhauser was providing the background knowledge about astrophysics simulations and their
current state of the art as well as implementing the checks of quality and correctness. My respon-
sibilities were mainly the parallel implementation of the simulation in OpenCL and optimization of
the program as well as running the experiments. The results of the research performed during this
collaboration are published in [96].

In history, understanding the motion of celestial objects under their mutual gravitational attrac-
tion, motivated to search for a solution to the N-body problem. Newtonian attraction forces between
each pair of bodies lead to their acceleration and hence collective motion. The goal is to predict
future positions and velocities for all bodies (often called particles in this context) starting from a
given initial state. The corresponding differential equations to this initial value problem can be solved
analytically only for N ≤ 3. Larger simulations can only be calculated numerically.

The challenge in N-body codes is to find those mutual gravitational attraction forces. The simplest
way to evaluate the force acting on a single particle is by summing the contribution from all the other
particles, called direct summation approach. However, this rather brute-force method is of order
O(N2) and is hence only a viable option for small problems.

Particle-mesh codes, as described in [99] are more efficient than direct summation. However,
close particle interactions are not well modeled. Hybrid approaches such as P3M [70] overcome this
problem.

When calculating the gravitational force contribution of a reasonably distant group of close bodies
on a single particle, this group can be approximated with a single, more massive proxy-body, in order
to reduce the computational effort. To add information about the distribution of the particles inside
this proxy-body, higher order moments of the gravitational potential’s multipole expansion of the
particle group can be used. This observation is exploited in the so-called tree code approach to the
N-body problem [18]. Tree codes make use of space-partitioning data structures to recursively divide
up the simulation domain in sub-volumes. While Barnes&Hut [18] used octrees, we adopt Kd-trees
in our work: Each volume is split in two sub-volumes according to a splitting plane. The leaves of the
tree contain just one single particle each. Thus, for each node the potential in terms of a multipole
expansion is calculated. When calculating the force contribution for a single particle, a tree traversal
is done. In case a tree node, representing a part of the simulation domain, is reasonably remote from
this particle, the approximate potential in this node can be used to calculate the force contribution
of all particles contained within this node. Hence, the subtree of this node does not need to be
considered anymore. The cell opening criterion [18] defines whether the tree walk can be stopped at
the current node, using this node as proxy body, or the descent is continued further in the tree to
calculate the force more accurately.

Being a very computational intensive application, N-body simulations have been historically in-
teresting for high performance computing. Recently, even GPUs have been exploited for this task.

120 CHAPTER 8. APPLICATIONS

However, while direct summation approaches are quite easy to be run on GPUs, more advanced hi-
erarchical methods are very challenging. The use of intricate data structures, their traversal and in
particular building them is a task which makes it hard to exploit the massive parallelism offered by
such hardware. Three factors are critical for N-body simulations based on hierarchical methods on
GPUs: 1) to run the whole algorithm on the GPU in order to avoid expensive communication bottle-
necks due to CPU calculation of intermediate steps; 2) a fast traversal algorithm for the hierarchical
data structure; 3) a fast building algorithm for such a data structure.

In this section, we introduce a novel method to accurately and efficiently calculate the gravitational
forces, the computationally most expensive part of N-body simulations, on the GPU, needed for N-
body simulations in each timestep. Our contributions are:

• a novel hierarchical method for calculating gravitational forces based on a Kd-tree on a GPU;

• a probabilistic approach based on volume-mass heuristic (VMH) to efficiently group particles
in a Kd-tree and drastically improve the efficiency of the Kd-tree traversal;

• a parallel approach to efficiently build the Kd-tree on the GPU: by using a three phase building
algorithm, we maximize the thread utilization of the GPU during the building in both top- and
bottom-part of the Kd-tree;

8.2.1 Parallel Kd-tree building

Our Kd-tree building algorithm is designed to perform well on modern GPUs, exposing a large amount
of parallel operations. This means that it has to expose a large amount of parallel operations. The
program was implemented in OpenCL. Our highly parallel implementation is inspired by the algorithm
presented in [180] and consists of three phases:

• Large node phase

• Small node phase

• Kd-tree output phase

The large node phase takes place at the beginning of the tree construction, where only few nodes,
containing many particles, exist. To increase the degree of parallelism, both, inter- and intra-node
parallelism are exploited during this phase. In the small node phase, many nodes are handled at
a time. Therefore, it is better to avoid the additional synchronization overhead introduced by the
intra-node parallelism and rely on inter node parallelism only in this phase.

A pseudo code representation of our implementation is shown in Algorithm 8.6. It shows, that
the implementation is split into four loops. The first loop represents the so called large node phase,
the second loop the small node phase while the last two loops perform the up pass and the down
pass to sort the tree nodes in depth first ordering. All iterations of these four main loops in our
implementation have to be executed sequentially. Therefore, these loops cannot be used to exploit
parallelism. However, as explained in the following paragraphs, there are several possibilities for
parallelization inside those loops.

8.2. KD-TREE BASED N-BODY SIMULATIONS 121

Algorithm 8.6 Kd-tree construction

1: function buildKdTree(particles:list)
2: nodelist ← new list()
3: activelist ← new list()
4: nextlist ← new list()
5: smalllist ← new list()
6: rootnode ← new node(particles)
7: rootnode.offset ← 0
8: nodelist.add(rootnode)
9: activelist.add(rootnode)

10: while !activelist.empty() do . large node phase
11: processLargeNodes(nodelist, activelist, nextlist, smalllist, particles)
12: activelist ← nextlist
13: end while
14: activelist ← smalllist
15: while !activelist.empty() do . small node phase
16: processSmallNodes(nodelist, activelist, nextlist, particles)
17: activelist ← nextlist
18: end while
19: treeHeight ← max level of all nodes in nodelist
20: for level ← treeHeight to 0 do
21: upPass(nodelist, particles, level)
22: end for
23: tree ← new list()
24: for level ← 0 to treeHeight do
25: downPass(nodelist, tree, level)
26: end for
27: end function

Large node phase In the large node phase, all large nodes are split in two child nodes in the middle
of their longest dimension. Their particles are distributed to the children depending on their position.
This step is repeated until no more large nodes are left. A large node is defined as a node containing at
least 256 particles. In this phase, the inter node parallelism is maximized, e.g. by reductions in local
memory and parallel prefix scans which are both known to perform well on GPUs [116]. While the
reductions in local memory are used to accelerate the bounding box calculation, parallel prefix scans
are needed to calculate the position of particles in the particle array in parallel after a node is split.
The application of the aforementioned techniques introduces several global synchronizations due to
data dependencies. However, the overhead introduced by additional synchronization is outweighed
by the increase of parallelism. Furthermore, in this phase the node splitting decision is designed
not to be affected by the number of particles inside the node in order to scale to bigger data-sets.
Algorithm 8.7 depicts the large node phase implementation. It is composed of six parallel loops, each
of which is implemented as a separate OpenCL kernel function.

Distributing the particles of a parent node to its two child nodes is the most time consuming
part of the large node phase, since it requires rearranging of the particles of the parent node. When
building a Kd-tree, this can be done only after selecting the splitting point, since the particles have
to be partitioned according to the splitting point along the splitting dimension. The particles don’t

122 CHAPTER 8. APPLICATIONS

Algorithm 8.7 Large Node Phase

1: function processLargeNodes(nodelist:list, activelist:list, nextlist:list, smalllist:list, particles:list)
2: chunklist ← new list()
3: . group particles to chunks
4: for all node in activelist in parallel do
5: Group all particles in node into fix sized chunks and store them in chunklist
6: end for
7: . calculate per-chunk bounding box
8: for all c in chunklist in parallel do
9: Compute bounding box for each chunk c

10: end for
11: . calculate per-node bounding box
12: for all node in activelist in parallel do
13: Compute bounding box for each node node using the bounding boxes of the chunks
14: end for
15: . split large nodes
16: for all node in activelist in parallel do
17: set node.splittingPoint to the spatial median along the longest dimension
18: Split node node at node.splittingPoint
19: Store generated child nodes in nextlist
20: end for
21: nodelist.add(nextlist) . add all new nodes to nodelist
22: . sort particles to children
23: for all node in activelist in parallel do
24: for all particle in node.particles do
25: if particle.pos[splitDim] ¡ node.splittingPoint then
26: node.leftChild.particles.append(particle)
27: else
28: node.rightChild.particles.append(particle)
29: end if
30: end for
31: end for
32: . small node filtering
33: for all node in nextlist in parallel do
34: if node is small node then
35: smalllist.add(node)
36: nextlist.remove(node)
37: end if
38: end for
39: end function

have to be sorted, but all particles belonging to the left child have to be at the beginning of the
parent’s node particle sub-array, while all the particles belonging to the right child have to be moved
to the end of that array. This can be done in linear time in each timestep. When executing our
implementation on a CPU, one OpenCL work item is started for each active node which assigns the
particles to the child nodes in a sequential loop. This approach works well for CPUs. However, it
does not expose enough parallelism to reach a good performance on GPUs, since there are not many

8.2. KD-TREE BASED N-BODY SIMULATIONS 123

active nodes in this phase. Therefore, we use a parallel prefix scan to determine for each particle its
index in the particle list of the left and right child, respectively. Using the result of the prefix scan,
the particles can be inserted into the particle lists of the two child nodes in parallel.

Small node phase When no more large nodes are left, the program enters the small node phase. In
this phase we aim at reducing the synchronization overhead (it needs only one synchronization at the
end of each iteration) by starting only one single thread per active node. Increasing the parallelism
any further would not improve the performance, since the number of active nodes is very high in
most iterations. In order to improve the quality of the tree, this phase uses a splitting strategy based
on VMH as described in Section 8.2.2. In our environment, each particle inside a node introduces
one splitting candidate (along the node’s longest dimension). The VMH cost has to be evaluated
on each splitting candidate, which makes this strategy infeasible for large nodes. After the split, the
particles of the parent node are assigned to the two child nodes, depending on their position. Each
node is split according to the candidate giving minimal VMH, until the leaf nodes, containing only
one single particle, are reached. The implementation of this phase is shown in Algorithm 8.8. It is
composed of one parallel loop which is mapped to an OpenCL kernel function. Due to the typically
high number of active nodes during this phase, the splitting of nodes into chunks is not necessary.
Starting one OpenCL work item for each active node is sufficient to keep all processing elements of a
GPU busy.

Kd-tree output phase During the first two phases, new nodes are added to the nodelist in the
same order as they are created, which means, they are not sorted. In order to enable an efficient
tree walk, the nodes are ordered in a depth-first manner, which is done in the last phase of our tree
construction. To sort the nodes of the Kd-tree, two passes have to be performed: First a bottom-up
pass which calculates the center of mass and the mass of each node (which corresponds to the proxy-
body in the node or the potential’s monopole moment) as well as the size of the subtree underneath
it. The size of the subtree is important in order to calculate the actual position of a node in the final
tree. The implementation of this pass is described in Algorithm 8.9. The second pass is building the
final tree top down. The root is written at the beginning of the array. For each node at position i,
the left child will be written to position i+1 and the right child to position i+1+sizeof(leftChild).
Sorting the nodes in that way, a linear traversal of the node array is equal to a depth-first traversal
of the tree. A detailed description of this pass can be found in Algorithm 8.10.

8.2.2 Volume-Mass Heuristic (VMH)

When analyzing the requirements of an optimal Kd-tree for an N-body simulation, we determined that
they are very similar to the requirements for ray-tracing. In both cases, it is not really important that
the tree is balanced, but that the average path length of the walks through the trees are minimized.
However, there is a slight difference between those two applications. In ray-tracing each ray walks
from the root to a leaf, deciding at each node if it should advance to the left or the right child of
it. Therefore, the SAH heuristic tries to even the probability of taking the left or right path at each
node. In contrast to that, for the N-body simulation, the path of each particle is highly divergent,
since it always advances to both children of a node, unless in the cases when no further descent is
needed on that node (i.e. the cell opening criterion is not fulfilled). Therefore we want a tree where,

124 CHAPTER 8. APPLICATIONS

Algorithm 8.8 Small Node Phase

1: function processSmallNodes(nodelist:list, activelist:list, nextlist:list, particles:list)
2: . split small nodes
3: for all node in activelist in parallel do
4: . calculate VMH
5: VMH ←∞
6: for all potential splitting points sp of node do
7: VMHsp ← calcVMH(node, sp)
8: if VMH > VMHsp then
9: VMH ← VMHsp

10: node.splittingPoint ← sp
11: end if
12: end for
13: Split node at node.splittingPoint
14: Store generated child nodes in nextlist
15: nodelist.add(nextlist) . add all new nodes to nodelist
16: . sort particles to child nodes
17: for all particle in node.particles do
18: if particle.pos[splitDim] ¡ node.splittingPoint then
19: node.leftChild.particles.append(particle)
20: else
21: node.rightChild.particles.append(particle)
22: end if
23: end for
24: . Leaf node filtering
25: for all node in nextlist do
26: if node.particles.size = 1 then
27: nextlist.remove(node)
28: end if
29: end for
30: end for
31: end function

on each node the probability to stop the decent at the left child is equal to the probability to stop it
on the right child.

Due to this similarity of requirements on the tree, we used a variation of the SAH to determine
the splitting point of the nodes in our tree (at least for the small nodes, see Section 8.2.1). In our
case, the heuristic is ported to 3D and the surface area is replaced by the mass of the corresponding
node. This leads to the following equation:

VMH(x) = V oll(x) ·Massl(x) + V olr(x) ·Massr(x)

where V oll(x) and Massl(x) correspond to the volume and mass of the potential left child of the
node, splitting the node at an axis aligned plane crossing the parent node at position x in the splitting
dimension. V olr(x) and Massr(x) denote the volume and mass of the node’s right child when split
at position x. VMH(x) is the volume-mass heuristic cost for the splitting position x. The cost is
evaluated once for each particle inside the node, whereas the position of the particle in the splitting

8.2. KD-TREE BASED N-BODY SIMULATIONS 125

Algorithm 8.9 Up pass

1: function upPass(nodelist:list, particles:list, position:int)
2: for all node in nodelist at level position in parallel do
3: if node.isLeaf then
4: node.size ← 1
5: node.mass ← node.particles[0].mass
6: node.centerOfMass ← node.particles[0].pos
7: node.l ← 0
8: else
9: node.size ← node.leftChild.size + node.rightChild.size + 1

10: node.mass ← node.leftChild.mass + node.rightChild.mass
11: node.centerOfMass ← (node.leftChild.centerOfMass
12: ·node.leftChild.mass + node.rightChild.centerOfMass
13: ·node.rightChild.mass) / node.mass
14: node.l ← maximum side length of node.boundingBox
15: end if
16: end for
17: end function

Algorithm 8.10 Down pass

1: function downPass(nodelist:list, tree:list, position:int)
2: for all node in nodelist at level position in parallel do
3: if !node.isLeaf then
4: node.leftChild.offset ← node.offset + 1
5: node.rightChild.offset ← node.offset + 1 + node.leftChild.size
6: end if
7: tree[node.offset] ← node
8: end for
9: end function

dimension determines the splitting position x. The node is split at the position x which minimizes
the VMH cost.

8.2.3 Force calculation with Kd-trees

As described in the previous section, trees can be used to efficiently reduce the computational effort
to solve the N-body problem numerically. In our implementation we are using a Kd-tree since they
proved to be very efficient in other fields like e.g. ray tracing [180].

Gravitational force calculation The main idea of tree algorithms is to reduce the computational
cost of the force computation on a single particle by using a hierarchical multipole expansion. All
particles in the simulation domain are hierarchically grouped into cells, the tree nodes for which the
multipole expansion is calculated. For the force contribution of distant particles, a larger grouping of
particles, namely a node in a higher level of the tree, can be used. Using the cell opening criterion,
it can be decided whether a group of particles can be used or the tree needs to be traversed further.
This approach allows to compute the force on a single particle with approximately log(#nodes)

126 CHAPTER 8. APPLICATIONS

interactions.

Unlike other implementations which are using quadrupole (e.g. Bonsai [20]) or even higher mo-
ments (e.g. Gasoline [170]), we follow the approach of GADGET-2 and only use monopole moments
with the advantage that less memory is required, as just the total mass in a node and the center-of-
mass coordinates need to be stored. Furthermore, the computational effort is lower while constructing
the tree as higher moments do not need to be calculated and the monopole moments can be calcu-
lated conveniently during tree construction (see Section 8.2.1). However, using monopole moments
lowers the force accuracy. Still, the force accuracy can be controlled by the cell opening criterion
e.g. by using a smaller cell opening angle. Depending obviously on the problem to be solved and on
the implementation, opening more cells is still a small trade-off compared to computing higher order
moments during tree construction.

Cell opening criterion In our implementation, as we are using monopole moments for tree nodes,
we apply the same strategy used in GADGET-2 [140], and use their optimal cell opening criterion.
A cell (i.e. a node in the Kd-tree) is accepted if

G ·Mass

d2

(
len

d

)2

≤ α · |acc|

evaluates to true, with G being the gravitational constant, Mass the total mass in the node, d the
distance of the particle under consideration to the center-of-mass of the node, and len the largest
side-length of the axis aligned bounding box around all nodes inside the corresponding node. Finally,
acc is the acceleration of the particle from the last timestep and α a tolerance parameter, used to
control the force accuracy. However, in some cases this criterion is fulfilled also if the actual particle
is located within a considered node which would lead to large force errors. To prevent against this, we
additionally require the particle to lie sufficiently outside the bounding box of a node to be accepted.
For more details we refer to [140].

Parallel force calculation using a Kd-tree

After the tree has been built, the actual force on each particle can be calculated by walking through
the tree in a depth first manner. For each particle an OpenCL work item is started, walking the tree
beginning from the root. On each node, the cell opening criterion is evaluated. If it is fulfilled, the
walk will advance to both child nodes of the current node. If not, the force acting on the particle
is calculated, using the current node as a proxy for all particles within the node. The pseudocode
for our tree walk is shown in Algorithm 8.11. Although the tree walk is highly divergent, it can be
implemented as a single loop, due to the depth-first ordering of the nodes.

8.2.4 Time Integration

To carry out full N-body simulations, we implement a time-centered leapfrog integration scheme (e.g.
[18, 130]) with constant timesteps. Positions of the particles are advanced at full timesteps (drift)
while new velocities are calculated at halfsteps (kick),

8.2. KD-TREE BASED N-BODY SIMULATIONS 127

Algorithm 8.11 Force calculation for each particle using the previously constructed Kd-tree.

1: function TreeWalk(particles:list, tree:list)
2: for all particle in particles in parallel do
3: for currentNode← 0 to tree.size do
4: node← tree[currentNode]
5: if node.isLeaf or !openCell(particle, node) then
6: particle.force ← particle.force+ calcForce(particle, node)
7: currentNode← currentNode + node.size . skip entire subtree of current node
8: else
9: currentNode← currentNode + 1 . continue depth-first walk

10: end if
11: end for
12: end for
13: end function

xi+1 =xi + vi+ 1
2

∆t

vi+ 1
2

=vi− 1
2

+ acci ∆t

with xi being the position and vi the velocity of a particle at time i and ∆t being the timestep. At
each full timestep, the acceleration acci is calculated using the Kd-tree implementation presented in
the previous sections. Dynamic tree updates are used to prevent rebuilding the tree in each timestep:
after calculating the new positions of the particles, the center of mass and bounding box of each tree
node are updated. This update is performed by propagating the updated positions/bounding boxes
bottom up the Kd-tree in a single pass. The tree is rebuilt when the computational cost (measured
in numbers of interactions per particle) exceeds the initial value (when the tree was rebuilt the last
time) by 20%. Initially, vi− 1

2
is calculated by kicking the system of particles by half a timestep.

Being of O(n), the time needed for the time integration is negligible with respect to the tree
building and force calculation.

8.2.5 Results and Evaluation

In this section we evaluate the result of our implementation in comparison to the state of the art
simulation codes in terms of accuracy and execution speed.

Accuracy

In order to demonstrate the accuracy and quality of our implementation, we observe and compare the
energy conservation of our implementation to other N-body codes. As comparison we use the widely
spread GADGET-2 code, also because we use the same monopole and cell opening criterion, and to
Bonsai, the state of the art N-body code for GPUs.

For our tests we are using a particle distribution according to a Hernquist density profile [71], an
analytical model to describe dark-matter halos, spherical galaxies and bulges. For accuracy evaluation,

128 CHAPTER 8. APPLICATIONS

0 20 40 60 80 100
time [Myr]

10−6

10−5

10−4

10−3

10−2

δ
E

GPUKdTree

GADGET-2

Bonsai

Figure 8.9: Relative energy error δE throughout the simulation

we use 250,000 particles with a total mass of 1.14×1012M�. In Figure 8.9 we plot the relative energy
error

δE =
Energy0 − Energyi

Energy0

with Energy0 being the total energy (kinetic plus potential energy of the particle distribution) at
the beginning of the simulation and Energyi the total energy at simulation time i. For GPUKdTree
and Bonsai we chose a fixed timestep of 0.003Myr. In GADGET-2 we set this value as the maxi-
mum allowed timestep in order to prevent the usage of the individual timestepping (differently sized
timestep for each particle depending on the current acceleration acting on the particle) for a fair com-
parison between all codes. The results show that our GPUKdTree implementation provides a small
energy error throughout the whole simulation, comparable to GADGET-2. Bonsai however shows a
somewhat higher but at the same time also more constant error. Both, GPUKdTree and GADGET-2
show more scatter in the error with some spikes in the distribution having a higher maximum error
than Bonsai.

Performance

We evaluate the performance of our implementation on various CPUs and GPUs from different ven-
dors, listed in Table 8.6. Our OpenCL implementation was designed to run on any device that
supports OpenCL. For performance reasons we use a dedicated algorithm to sort bodies during the
large node phase for GPUs and CPUs. NVIDIA GPUs could not run our OpenCL code correctly,

8.2. KD-TREE BASED N-BODY SIMULATIONS 129

Intel AMD AMD NVIDIA NVIDIA
Xeon Radeon Radeon GeForce Tesla
X5650 HD5870 HD7950 GTX 480 k20c

Chips 2 1 1 1 1
Frequency (MHz) 2670 850 860 1401 706
Compute Units 24 20 28 15 13
Parallel Ops 48 1600 1792 480 2496
FLOPS (SP) 256 2720 3082 1345 3524

Memory (GB) 24 1 3 1.5 5
Memory BW (GB/s) 62 153 240 177 208

Table 8.6: Used hardware

N. Particles 250k 500k 1M 2M

Xeon X5650 881 1795 3640 7278

GeForce GTX480 158 290 595 1202

Tesla k20c 167 293 586 1195

Radeon HD5870 262 381 675 -

Radeon HD7950 152 219 380 698

GADGET-2 (X5650) 50 90 180 370

Bonsai (GTX480) 24 43 83 167

Table 8.7: Tree building times in ms

giving wrong results without any error message. However, since we used LibWater [59] to implement
our program, it could easily be ported to CUDA without any changes in our code. The CUDA version
works flawlessly on the NVIDIA GPUs.

To evaluate the performance, we are using datasets containing different number of particles, all
using a Hernquist density profile as used in our accuracy experiments described in the previous para-
graph, with 250,000 to 2,000,000 particles. We also compare the performance of our implementation
with the one achieved with GADGET-2 [140] and Bonsai [20]. GADGET-2 contains no implementa-
tion for GPUs and can only be executed on CPUs. For our experiments we use the same dual socket
Intel Xeon X5650 system with a total of twelve cores that we used to evaluate the performance of
our implementation on CPUs. Bonsai is implemented in CUDA and is therefore limited to NVIDIA
GPUs. Furthermore, the version of Bonsai which is available online did not work on our Tesla k20c
GPU. On this hardware, the program crashed due to a CUDA driver error. Hence, we could evaluate
Bonsai’s performance only on a NVIDIA GeForce GTX480.

For a fair comparison, we set the accuracy parameters for each implementation to achieve an error
below 0.4% for 99% of the particles. This results in an α of 0.001 and 0.0025 for GPUKdTree and
GADGET-2, respectively. For Bonsai, Θ is set to 1.0.

130 CHAPTER 8. APPLICATIONS

Tree building Table 8.7 shows the time needed for tree building on different hardware with different
data sizes. The numbers show, that our tree building algorithm fits the GPU architecture quite well.
All GPUs show a speedup between 3.3 and 10.4 over the tested CPU. It is noteworthy, that the
NVIDIA GPUs are more effective for smaller datasets, while the AMD GPUs scale better with the
problem size. The relative bad performance of the AMD GPUs on small problem sizes is related to
the very high number of kernels that have to be called during the tree building (see Section 8.2.1) in
correlation with their high kernel invocation overhead, as mentioned in Chapter 4. The simulation
with two million particles could not be run on the AMD Radeon HD5870 due to its restriction to the
maximum size of a single buffer. It is interesting to note, that the NVIDIA GeForce GTX480 shows
almost the same performance as the much newer NVIDIA Tesla k20c, although the latter one has a
much higher peak performance (1.3 vs. 3.5 TFLOPs).

The times given for GADGET-2 and Bonsai include the sorting of the particles and the building
of the tree, since they can construct the tree only on pre-sorted particles. Building the octree used
in both GADGET-2 and Bonsai is much faster than building the Kd-tree used in our approach. This
is caused by the rearranging of the particles. To build an octree, the domain is decomposed using a
Peano-Hilbert curve [141]. At the beginning of the tree building, the particles are sorted according to
this domain composition. By doing so, the particles do not have to be rearranged during the rest of
the tree building. When building a Kd-tree, on the other hand, the particles have to be rearranged
in each iteration of the tree building step, which takes a significant amount of time.

Tree Walk As explained in Section 8.2.3, the force on each particle is calculated by walking through
the previously built tree. The performance for the tree walk is given in Table 8.8. Also, the tree walk is
faster on all tested GPUs than on the tested CPU. The speedup varies between 1.9 and 6.3 depending
on the GPU and data size. The AMD GPUs are suited better for the tree walk than both NVIDIA
GPUs. Even the old AMD Radeon HD5870 is able to outperform both NVIDIA GPUs. During
the tree walk, the large kernel invocation overhead of the AMD GPUs plays a minor role, since the
tree walk of all particles consists of only one single kernel call. Using a AMD Radeon HD7950, our
implementation can reach a throughput of 3 Mparticles/s.

The measurements clearly show, that our implementation is much faster than GADGET-2, mainly
due to the efficient use of the massively parallel GPUs. Also, using the same CPU, the tree walk of
our implementation is approximately twice as fast as in GADGET-2. However, GADGET-2 lacks
an OpenMp implementation and is handicapped by overhead due to the MPI library in these tests.
Bonsai shows a very high performance in our test case. However, this high performance comes at the
cost of a worse energy conservation, as depicted in Figure 8.9, which shows the energy error δE equal
to Energy0−Energyt

Energy0
.

8.2.6 Related Work

The following paragraphs give an overview of some related work in several relevant fields for this
section.

N-body simulations Historically, many researchers from both computer science and astrophysics
have developed parallel N-body simulations on supercomputers. Warren and Salmon [173] designed

8.2. KD-TREE BASED N-BODY SIMULATIONS 131

N. Particles 250k 500k 1M 2M

Xeon X5650 456 966 1996 4145

GeForce GTX480 236 476 934 1844

Tesla k20c 204 405 801 1588

Radeon HD5870 155 287 572 -

Radeon HD7950 85 169 332 651

GADGET-2 (X5650) 909 1940 4160 8580

Bonsai (GTX480) 40 81 163 325

Table 8.8: Force calculation using a previously constructed tree times in ms.

one of the first parallel implementation of the Barnes&Hut algorithm. The authors of [143] propose
a parallel implementation of an N-body code using a Kd-tree structure.

A very widespread code used in astrophysics, mainly for cosmological simulations and simulations
on galaxy scales, is the treePM code GADGET [141, 140]. This code implements a combination of a
particle-mesh and a Barnes&Hut tree code, massively parallelized for distributed memory machines
using MPI.

Nyland et al. [120] implemented a direct summation, brute-force technique. They improved their
code by means of loop unrolling and by manually prefetching a certain number of body descriptions on
the GPU. Elsen et. al [46] created a similar solution using the BrookGPU programming language [25].

The Gravity Pipe (GRAPE) [75] designated a very efficient hardware implementation of Newto-
nian pair-wise force calculations between particles in a self-gravitating N-body system. GRAPE-6
has been the first computer breaking the petaflops barrier.

Instead of direct summation, smarter approaches to attack the N-body problem use hierarchical
algorithms and three dimensional space partitioning strategies. Hamada et al. [67] implemented
a parallel, hierarchical N-body simulation which efficiently calculates the O(N logN) tree code and
O(N) fast multipole method (FMM) on multiple GPUs. Using this fast N-body solver, they performed
a gravitational N-body simulation using 1,608,044,129 particles and, in addition, the vortex particle
simulation of homogeneous isotropic turbulence using 16,777,216 particles. The tree code was used for
the gravitational simulation, while the FMM was used for the vortex particle simulation. Hamada and
Nitadori reached 190 TFlops [68] on DEGIMA, a cluster of 576 GPUs interconnected by InfiniBand,
using their tree code.

The parallel cosmological simulator ChaNGa [80] is a hierarchical N-body gravity solver written
in CHARM++, which has been run on the NCSA Lincoln GPU cluster.

2HOT [174] is a N-body simulation code based on a parallel hashed octree algorithm. It is designed
to run efficiently on up to 256k processors with an efficiency of 0.86. 2HOT also includes a CUDA,
as well as an OpenCL version for the gravitational interaction functions.

Bédorf et al. [20] implemented Bonsai2, a sparse octree gravitational N-body code that runs
entirely on the GPU, reaching up to 4 Mptcl/s on a Tesla 2075 and up to 17.6 Mptcl/s on a Tesla
k20c for the tree walk and force computation. In contrast to most other tree codes, Bonsai traverses

2Version 2, http://castle.strw.leidenuniv.nl/software/bonsai-gpu-tree-code.html

132 CHAPTER 8. APPLICATIONS

the tree breadth-first to calculate the force acting on each particle.

GPU data structures The recent rise of general-purpose GPU computing has given rise to a num-
ber of methods for efficiently constructing spatial data structures and hierarchies, such as bounding
volume hierarchies (BVHs), octrees, and Kd-trees. Karras [87] maximizes the parallelism with an in-
place algorithm for constructing binary radix trees, which have been used as a building block for other
types of trees. Feltmann et al. [50], in the context of ray tracing, show an optimized BVH building
which improves the traversal of shadow rays. Li et al. [103] implemented a simple method for finding
k approximate nearest neighbors (ANNs) on the GPU by exploiting a shifted sorting algorithm that
provides a more GPU-friendly basis for ANN searching than the more well-known Kd-tree algorithm.

Probabilistic Heuristics for Hierarchy Building An approach to improve the traversal time
of hierarchical data structures is to use a probabilistic heuristic while building it: the higher the
probability of a node to be accessed, the higher it will be placed in the hierarchy. Similar heuristics
have been largely used in the context of ray tracing, known as SAH (Surface Area Heuristics). Wald et
al. [171] introduced an algorithm to build SAH-based Kd-trees in O(N logN). Other approaches using
SAH have been used for BVH (bounding volume hierarchy) and other hierarchical approaches [172].
Zhou et al. [180], in particular, presented an algorithm for constructing Kd-trees on GPUs. They
achieve real-time performance by exploiting the streaming architecture of modern GPUs at all stages
of Kd-tree construction. They develop a special strategy for large nodes at upper tree levels to further
exploit the fine-grained parallelism of GPUs. Our work applies a similar method to build a tree for
N-body simulations.

8.2.7 Summary

We have observed, that octrees for N-body simulations can be built very fast, on both GPUs and
CPUs, when the particles are pre-sorted according to a Peano-Hilbert curve. Constructing a Kd-tree
takes more time, mainly due to the rearranging of the particles in every timestep. By using GPUs,
the Kd-tree construction can be accelerated up to 10 fold over the execution time on CPUs. The tree
building time of GPUKdTree scales linearly with the number of particles in the simulation.

Our implementation of the tree walk is noticeably faster than the one of GADGET-2, when using
the same hardware. It also shows better scalability than GADGET-2 with increasing problem sizes.
Even more, executing the treewalk of our implementation on GPUs gives another speedup of up to 6
times over the CPU. We achieve a throughput of up to 3 Mparticles/s which is the highest performance
reached on an AMD GPU that we are aware of. However, Bonsai achieves an even higher performance
using NVIDIA GPUs. This shows, that Bonsai’s breadth-first tree walk fits the GPU architecture
better than our implementation, performing a depth-first walk. However, Bonsai also shows a worse
energy conservation.

Chapter 9

Conclusion

Implementing high performance programs for parallel, heterogeneous hardware is a very time inten-
sive and error-prone task. New tools and techniques are needed to automate as many parts of the
optimization process of parallel programs as possible and thereby raise the programmers’ produc-
tivity. In this thesis we demonstrated that several optimization tasks can be automated using the
Insieme source-to-source compiler and runtime system infrastructure. In order to achieve this goal we
applied techniques from different fields, including various machine learning algorithms, graph theory,
the polyhedral model, iterative compilation and general differential algorithms.

9.1 Contributions

The implementation work performed in the course of this thesis added OpenCL support to the Insieme
compiler frontend, as described in [82], and extended the auto-tuning capabilities of the Insieme
compiler and runtime system. The version of Insieme applying the aforementioned contributions is
publicly available at [2]. By using the Insieme compiler and runtime system we can show how parts
of the optimization process for parallel and heterogeneous programs can be automated and thereby
address the problems listed in Section 1.1:

Characterization of Heterogeneous Processing Units We developed uCLbench, a system that
can analyze the performance characteristics of OpenCL devices to support programmers in
optimizing their programs for their OpenCL devices. uCLbench has been published in [161] and
proved to be useful to analyze the diversities of OpenCL devices, which cause low performance
portability, demonstrating the need of an automatic optimization process.

Heterogeneous Task Partitioning We introduced a system that can automatically distribute
OpenCL kernels over a given set of devices using an a-priori generated model based on ma-
chine learning. We demonstrated that not only the set of available devices and the executed
program, but also the input size influences the performance of different workload distributions.
We showed the effectiveness of machine learning based models in finding fast workload distri-
butions [58, 95].

Data Layout Optimization In [93] we highlighted the importance of the data layout for the perfor-
mance of programs executed on GPUs and presented a novel approach to deduce an optimized

133

134 CHAPTER 9. CONCLUSION

data layout for pairs of programs and GPUs using a two-step approach: The first is step based
on the Kernel Data Layout Graph, the second step uses a decision tree. In combination, these
two steps are effective at optimizing OpenCL programs for GPUs.

Multi-Objective Optimization of Parallel Programs To approach this problem we analyzed
the trade-offs arising from a multi-objective environment with conflicting objectives. To find
configurations that form a Pareto set, i.e. configurations that optimize the trade-off between dif-
ferent objectives, we developed a system that can automatically and effectively approximate the
Pareto set for OpenMP programs in a multi-objective environment using iterative compilation
with an auto-tuner based on general differential evolution with extensions.

Additionally, we demonstrated the advantages of massively parallel implementations for GPUs
in OpenCL for two exemplary scientific domain applications, that arose from collaborations with
other research institutes. The first one, published in [94] shows how OpenCL and modern GPUs
can be used to accelerate the simulation of large mosquito populations. The publication arose from
a collaboration with the Center for Research Computing at the University of Notre Dame, Indiana,
USA. The second one, published in [96], shows how GPUs, OpenCL and techniques from computer
vision can be applied to astrophysics simulations. It was developed as part of the Doktoratskolleg Plus
Computational Interdisciplinary Modelling (DK+CIM) [166] in collaboration with the Astrophysics
Group at the University of Innsbruck.

9.2 Future Work

The Insieme compiler and runtime system, which forms the base of most research presented in this
thesis, is continuously developed and extended by the Distributed and Parallel Systems group at the
University of Innsbruck. This ongoing development will allow the exploration of new research topics
as additional features are added to the framework.

The task partitioning system presented in Chapter 5 could be extended to support systems with
multiple, heterogeneous compute nodes and distributed memory, with the aid of a framework like
LibWater [59]. The task partitioning system could also be expanded to optimize additional objectives,
such as energy consumption or resource usage. Furthermore, the capabilities to accurately analyze
and efficiently distribute OpenCL programs with multiple kernel functions on heterogeneous systems
could be added. Another valid extension would be the support of multiple, device-optimized kernel
function versions to further increase the performance of the program. A good candidate to create
such device-optimized kernel function versions is the Insieme compiler.

The data layout transformation system presented in Chapter 6 is currently designed and tested
only for GPUs. However, it could be adapted also for CPUs and accelerators. Additional benchmarks
would be needed to see if the presented two step approach is suited also for CPUs and accelerators
or if it should be adapted to support such processing units.

The most obvious extension of our auto-tuner presented in Chapter 7 would be the addition of more
code transformations. Since the Insieme compiler is continuously extended, the number of available
optimizations will increase over time. While adding additional transformations will further increase
the search space, we are confident that the presented algorithm would still deliver solid performance.
Additionally, the approach could be extended by adding other tunable parameters such as varying

9.2. FUTURE WORK 135

loop scheduling policies [160] or controlling the CPU’s frequency [64]. Another useful extension of the
auto-tuner would be the support of OpenCL programs as well as programs that can be distributed
over multiple compute nodes.

List of Symbols

Notation Description Page
List

A The set of all task partitionings for a given set
of devices

58, 63,
66

Array A collection of an arbitrary number of ele-
ments

11

E A set edges, connecting statements in S 10
Energy The total amount of energy (kinetic plus po-

tential energy)
128

F The set of all available features 59
G Set of features selected by the Greedy Feature

Selection algorithm
59, 126

H The set of training programs to generate a
machine learning model

63

K A Pareto set, consisting of several Pareto op-
timal program configurations.

95

Mass The mass of a node 124,
126

Myr A million years 128
P The set of all programs 10
Pp The set of all parallel programs 10
S A set of statements 10
Struct A collection of tuples consisting of a name and

a data field
11

T Set of all types 11
Ts Set of all scalar types 11
Tuple A collection of data fields with varying types 11
V (K) The hypervolume of the Pareto set K. 95, 98,

102
VMH Volume Mass Heuristic xi, 120,

123–
125

V ol The volume of a node 124

137

138 List of Symbols

Notation Description Page
List

X The set {0,10,20,30,40,50,60,70,80,90,100} 63
∆t The size of the time step 127
Θ The cell opening angle parameter 129
α The tolerance parameter for the cell opening

criterion
126,
129

δE The relative energy error 128,
130,
142

γ The RBF parameter for a SVM 66
M� A million solar masses 128
a A task partitioning over several devices 58
acc The acceleration of a particle 126,

127
b Achieved performance in percentage of opti-

mal performance
64

c Regulaization parameter of the SVM 66
d The distance between the center of mass of

two nodes
126

f A feature 59
g A feature selected by the Greedy Feature Se-

lection algorithm
59

h A training program for the machine learning
model

63

k A configuration for a program, consisting of a
set of parameter values.

92, 95,
99–101

len The largest side length of an axis aligned
bounding box

126

m An arbitrary natural number 79
mse The mean squared error 59
n An arbitrary natural number 58, 67,

79, 93,
95

p A program ∈ P 10
q A set of parameter values for a single code

region.
92

r A code region 91, 92
t A type in T 11
tactual Achieved execution time 64
tbest Optimal execution time 64
ts A natural number representing the tile size of

a loop or data structure.
79

List of Symbols 139

Notation Description Page
List

v The velocity of a particle 127
x The position of a particle 127
|K| The number of program configurations in the

Pareto set K.
95, 98

ANN Artificial neural network 54, 60,
62, 66–
69, 71

SVM Support vector machine 54, 59,
60, 62,
66, 67,
69–71

List of Figures

2.1 Generic compute node . 7

2.2 Examples for PUs used in this thesis . 8

2.3 A parallel program represented as a graph. 11

2.4 Examples for scalar types, an array, a struct and an array of structs (AoS). 12

3.1 OpenCL view of the underlying hardware . 15

3.2 Example for an OpenCL NDRange with 256 work items, arranged in 2 × 2 × 2 work
groups with 2× 4× 4 work items each. 16

3.3 OpenCL memory architecture, taken from [161] . 16

3.4 Interactions of the Insieme Compiler’s main components 18

3.5 Example program representation in INSPIRE . 19

3.6 Schematic view of the Insieme frontend when compiling an OpenCL program 22

3.7 OpenCL kernel performing a vector addition. 23

3.8 INSPIRE code performing a vector addition . 24

3.9 INSPIRE code of the OpenCL built-in function get global id. 25

3.10 INSPIRE code of the OpenCL function clCreateBuffer. 26

3.11 INSPIRE code of the OpenCL function clEnqueueWriteBuffer. 27

3.12 Exemple for a buffer initialization in OpenCL. 27

3.13 INSPIRE representation of the code shown in Figure 3.12. 28

3.14 Exemplary code fragments setting the arguments for and calling the OpenCL kernel
function in Figure 3.7. 29

3.15 INSPIRE representation of the code fragments shown in Figure 3.14, calling the kernel
function in Figure 3.8. 30

3.16 Exemple of a simple C program with a OpneMP parallel for loop, performing a vector
addition. 31

3.17 INSPIRE representation of a parallel a vector addition, generated from the C code in
Figure 3.16 . 32

4.1 Arithmetic Testing Kernel. Example to test the throughput of the sinus operation. . . 37

4.2 Latency benchmark offset array for a cache line size of 4 elements used for latency
benchmark. 38

4.3 Memory latency kernel. Example for testing the latency of global memory. 38

4.4 Branch penalty testing kernel . 39

141

142 LIST OF FIGURES

4.5 Measurement layout options used for branch penalty benchmark. 39
4.6 Floating point multiplication throughput . 43
4.7 Vectorization Impact . 44
4.8 Bandwidth measurements . 45
4.9 Bandwidth of one compute unit to its local memory 46
4.10 Memory access latency of various OpenCL address spaces 47
4.11 Impact of caching on global memory latency. 48
4.12 Branching penalty with varying branch width. 49
4.13 Kernel invocation overhead . 49

5.1 Performance behavior of linear regression. 52
5.2 Performance behavior of a parallel chunked reduction. 53
5.3 Framework Overview . 55
5.4 Performance behavior of matrix multiplication. 65
5.5 Performance behavior of bytewise integer compression 66
5.6 Error curves showing the means squared error. 68

6.1 Declaration of variables containing two arrays of N elements with different memory
layout. 74

6.2 Excerpt of SAMPO’s Optimization Space. 75
6.3 A KDLG generated by a sample input data layout and kernel. 77
6.4 Different output partitions using different ε values on a KDLG 79
6.5 Work-flow of our data layout optimization process . 81
6.6 Speedup over AoS implementation on N-body using different data layouts. 83
6.7 Speedup over AoS implementation on Bitonic sorting using different data layouts. . . 83
6.8 Speedup over AoS implementation on SAMPO using different data layouts. 84

7.1 Examples for the evolution of two region-aware auto-tuners. 93

8.1 Mosquito life cycle . 104
8.2 Control flow of SAMPO. 107
8.3 Segments for the three prefix sum calculations. 110
8.4 Execution time of the agent-state updating kernel with and without atomic operations

for statistical counters. 112
8.5 Histogram of the number of eggs generated per mosquito for SAMPO and AGiLESim. 113
8.6 Average number of adult agents on each day of a one-year-long simulation, created

with SAMPO and AGiLESim. 114
8.7 Age in days of the adult mosquitoes at the end of a one-year-long simulation as well

as the hypothetical age structure. 115
8.8 Execution times for the Java implementation used in AGiLESim [56] and our OpenCL

implementation. 117
8.9 Relative energy error δE throughout the simulation 128

List of Tables

3.1 Type syntax of INSPIRE . 20

4.1 OpenCL devices benchmarked in this chapter . 41

5.1 Experimental target architectures . 54
5.2 Description of test cases used for model training and performance of various task par-

titioning strategies. 60
5.3 Static program and run-time features used . 61
5.4 Properties and performance of different machine learning algorithms. 67

6.1 Properties determined using our algorithms . 79
6.2 Used hardware . 81
6.3 Test programs . 82

7.1 Theoretical potential of different auto-tuning approaches. 89
7.2 Search space description for the evaluated programs. 97
7.3 Pareto set size |K| of several auto-tuner variants. 97
7.4 Hypervolume V (K) of several auto-tuner variants. 98
7.5 Tuning time in seconds of several auto-tuner variants. 98
7.6 Improvement over non-optimized versions achieved by the RS-GDE3 Recombination

GPT auto-tuner. 99
7.7 Performance of two individual configurations in bt. 100
7.8 Performance of two individual configurations in heated-plate. 101

8.1 Data structure representing an agent, i.e. one mosquito. 106
8.2 Memory used and transferred during the simulation 108
8.3 Time required to generate the random seeds and transfer them to the device. 111
8.4 Used hardware . 115
8.5 OpenCL run-time-compilation time for the used processing units. 116
8.6 Used hardware . 129
8.7 Tree building times in ms . 129
8.8 Force calculation using a previously constructed tree times in ms. 131

143

List of Definitions

1.1 Definition (Compiler) . 1
1.2 Definition (Runtime System) . 2

2.1 Definition (Compute Node) . 7
2.2 Definition (Program) . 10
2.3 Definition (Types) . 11

3.1 Definition (Array) . 17
3.2 Definition (Pointer) . 17

145

List of Algorithms

5.1 Greedy Feature Selection algorithm . 59
6.2 Algorithm to partition the KDLG based on the relation between its nodes. 78
6.3 Algorithm to optimize the data layout of a struct. 80
7.4 Multi-region auto-tuner using a combination of general evolution and recombination. . 94
8.5 Formula calculating the number of eggs produced for a single mosquito. 113
8.6 Kd-tree construction . 121
8.7 Large Node Phase . 122
8.8 Small Node Phase . 124
8.9 Up pass . 125
8.10 Down pass . 125
8.11 Force calculation for each particle using the previously constructed Kd-tree. 127

147

Bibliography

[1] Insieme Compiler Runtime Framework. http://insieme-compiler.org/.

[2] Insieme Source Code Repository. https://github.com/insieme/insieme/tree/inspire_1.

3.

[3] OpenACC Application Program Interface. http://openacc.org/, 2012.

[4] Repast - recursive porus agent simulation toolkit, October 2013.

[5] Omni OpenMP Compiler website. http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/

download/download-benchmarks.html, 2016.

[6] Top 500 Supercomputer. http://www.top500.org/lists/2016/06/, 2016.

[7] Advanced Micro Devices Inc. Bolt. http://hsa-libraries.github.io/Bolt/html/index.

html, 2013.

[8] Advanced Micro Devices Inc. OpenCL Optimization Case Study: Simple Reductions . http:

//developer.amd.com/resources/documentation-articles/articles-whitepapers/

opencl-optimization-case-study-simple-reductions/, 2013.

[9] Saman P. Amarasinghe. Petabricks: a language and compiler based on autotuning. In HiPEAC,
page 3, 2011.

[10] J. Ansel, C. Chan, Y.L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. Amarasinghe.
PetaBricks: a language and compiler for algorithmic choice, volume 44. ACM, 2009.

[11] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom,
Una-May O’Reilly, and Saman Amarasinghe. Opentuner: An extensible framework for program
autotuning. In International Conference on Parallel Architectures and Compilation Techniques,
Edmonton, Canada, August 2014.

[12] Ryo Aoki, Shuichi Oikawa, Takashi Nakamura, and Satoshi Miki. Hybrid OpenCL: enhancing
OpenCL for distributed processing. In ISPA, pages 149–154, 2011.

[13] Apple Inc. Clang/LLVM. http://clang.llvm.org/, 2012.

149

http://insieme-compiler.org/
https://github.com/insieme/insieme/tree/inspire_1.3
https://github.com/insieme/insieme/tree/inspire_1.3
http://openacc.org/
http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/download/download-benchmarks.html
http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/download/download-benchmarks.html
http://www.top500.org/lists/2016/06/
 http://hsa-libraries.github.io/Bolt/html/index.html
 http://hsa-libraries.github.io/Bolt/html/index.html
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-optimization-case-study-simple-reductions/
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-optimization-case-study-simple-reductions/
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-optimization-case-study-simple-reductions/
http://clang.llvm.org/

150 BIBLIOGRAPHY

[14] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Hus-
bands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf, Samuel Webb
Williams, and Katherine A. Yelick. The landscape of parallel computing research: A view from
berkeley. Technical Report UCB/EECS-2006-183, EECS Department, University of California,
Berkeley, Dec 2006.

[15] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. Starpu:
A unified platform for task scheduling on heterogeneous multicore architectures. In Euro-Par,
pages 863–874, 2009.

[16] Prasanna Balaprakash, Ananta Tiwari, and Stefan Wild. Multi-objective optimization of hpc
kernels for performance, power, and energy. In 4th International Workshop on Performance
Modeling, Benchmarking, and Simulation of HPC Systems (PMBS12), 2013.

[17] A. Barak and A. Shilo. The Virtual OpenCL (VCL) Cluster Platform. In Proc. Intel European
Research & Innovation Conference, page 196, 2011.

[18] J. Barnes and P. Hut. A hierarchical O(N logN) force-calculation algorithm. Nature, 324:446–
449, December 1986.

[19] K. E. Batcher. Sorting networks and their applications. In Proc. of the April 30–May 2, 1968,
Spring Joint Computer Conference, AFIPS’68 (Spring), pages 307–314, New York, NY, 1968.
ACM.

[20] Jeroen Bédorf, Evghenii Gaburov, and Simon Portegies Zwart. A sparse octree gravitational
n-body code that runs entirely on the GPU processor. J. Comput. Physics, 231(7):2825–2839,
2012.

[21] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. The Journal
of Political Economy, 81, 1973.

[22] Blaise Barney. Message Passing Interface (MPI). https://computing.llnl.gov/tutorials/
mpi/, 2016.

[23] G. E. P. Box and M. E. Muller. A note on the generation of random normal deviates. Annals
of Mathematical Statistics, 29:610–611, 1958.

[24] I. Buck, K. Fatahalian, and P. Hanrahan. GPUBench, 2004.

[25] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Houston, and
Pat Hanrahan. Brook for GPUs: stream computing on graphics hardware. ACM Trans. Graph.,
23(3):777–786, August 2004.

[26] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguad, and J. Labarta. Pro-
ductive programming of GPU clusters with ompss. In 2012 IEEE 26th International Parallel
and Distributed Processing Symposium, pages 557–568, May 2012.

[27] J. M. Bull. Measuring synchronisation and scheduling overheads in OpenMP. In Proc. of 1st
Europ. Workshop on OpenMP, pages 99–105, 1999.

https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/mpi/

BIBLIOGRAPHY 151

[28] John Burkardt. HEATED PLATE OPENMP. http://people.sc.fsu.edu/~jburkardt/c_

src/heated_plate_openmp/heated_plate_openmp.html, March 2016.

[29] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron. Rodinia: A
benchmark suite for heterogeneous computing. IEEE Workload Characterization Symposium,
0:44–54, 2009.

[30] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee, and
Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing. In IISWC, pages
44–54, 2009.

[31] Shuai Che, Jiayuan Meng, and Kevin Skadron. Dymaxion++: a Directive-Based API to Opti-
mize Data Layout and Memory Mapping for Heterogeneous Systems. AsHes’14, 2014.

[32] Shuai Che, Jeremy W. Sheaffer, and Kevin Skadron. Dymaxion: Optimizing memory access
patterns for heterogeneous systems. In SC’11, pages 13:1–13:11, New York, NY, 2011. ACM.

[33] Dehao Chen, Wenguang Chen, and Weimin Zheng. CUDA-Zero: a framework for porting
shared memory GPU applications to multi-GPUs. SCIENCE CHINA Information Sciences,
55(3):663–676, 2012.

[34] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-conscious structure layout. In
PLDI’99, pages 1–12, New York, NY, 1999. ACM.

[35] Matthias Christen, Olaf Schenk, and Helmar Burkhart. Patus: A code generation and au-
totuning framework for parallel iterative stencil computations on modern microarchitectures.
In Proceedings of the 2011 IEEE International Parallel & Distributed Processing Symposium,
IPDPS ’11, pages 676–687, Washington, DC, USA, 2011. IEEE Computer Society.

[36] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2006.

[37] Simon Coakley, Marian Gheorghe, Mike Holcombe, Shawn Chin, David Worth, and Chris Gree-
nough. Exploitation of high performance computing in the flame agent-based simulation frame-
work. In Proceedings of the 2012 IEEE 14th International Conference on High Performance
Computing and Communication & 2012 IEEE 9th International Conference on Embedded Soft-
ware and Systems, HPCC ’12, pages 538–545, Washington, DC, USA, 2012. IEEE Computer
Society.

[38] C.C. Coello, D.A. Van Veldhuizen, and G.B. Lamont. Evolutionary Algorithms for Solving
Multi-Objective Problems. Genetic Algorithms and Evolutionary Computation. Springer US,
2013.

[39] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford, V. Tipparaju, and
J. S. Vetter. The scalable heterogeneous computing (shoc) benchmark suite. In GPGPU ’10:
Proc., pages 63–74, New York, NY, USA, 2010. ACM.

http://people.sc.fsu.edu/~jburkardt/c_src/heated_plate_openmp/heated_plate_openmp.html
http://people.sc.fsu.edu/~jburkardt/c_src/heated_plate_openmp/heated_plate_openmp.html

152 BIBLIOGRAPHY

[40] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C. Roth, Kyle
Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. The scalable heterogeneous computing (shoc)
benchmark suite. In GPGPU, pages 63–74, 2010.

[41] Pablo de Oliveira Castro, Yuriy Kashnikov, Chadi Akel, Mihail Popov, and William Jalby.
Fine-grained benchmark subsetting for system selection. In Proceedings of Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO ’14, pages 132:132–
132:142, New York, NY, USA, 2014. ACM.

[42] Yong Dong, Juan Chen, Xuejun Yang, et al. Energy-oriented OpenMP parallel loop schedul-
ing. In Parallel and Distributed Processing with Applications, 2008. ISPA’08. International
Symposium on. IEEE, 2008.

[43] J. J. Durillo, A. J. Nebro, C. A. C. Coello, J. Garcia-Nieto, F. Luna, and E. Alba. A study of
multiobjective metaheuristics when solving parameter scalable problems. IEEE Transactions
on Evolutionary Computation, 14(4):618–635, Aug 2010.

[44] Eckhoff PA. A malaria transmission-directed model of mosquito life cycle and ecology. Malaria
Journal, 2011;12:303. doi: 10.1186/1475-2875-10-303, 2011.

[45] Vinoth Krishnan Elangovan, Rosa. M. Badia, and Eduard Ayguadé. Scalability and Parallel
Execution of OmpSs-OpenCL Tasks on Heterogeneous CPU-GPU Environment, pages 141–155.
Springer International Publishing, Cham, 2014.

[46] Erich Elsen, Mike Houston, Vaidyanathan Vishal, Eric Darve, Pat Hanrahan, and Vijay S.
Pande. Poster reception - n-body simulation on GPUs. In SC, page 188, 2006.

[47] Ethem, Alpaydin. Introduction to Machine Learning. The MIT Press, Cambridge, MA, USA,
2004.

[48] K. Fatahalian, T.J. Knight, M. Houston, M. Erez, D.R. Horn, L. Leem, J.Y. Park, M. Ren,
A. Aiken, W.J. Dally, et al. Sequoia: programming the memory hierarchy. In SC 2006 Confer-
ence, Proceedings of the ACM/IEEE, pages 4–4. IEEE, 2006.

[49] Paul Feautrier and Christian Lengauer. Encyclopedia of Parallel Computing, chapter Polyhedron
Model, pages 1581–1592. Springer, 2011.

[50] Nicolas Feltman, Minjae Lee, and Kayvon Fatahalian. Srdh: Specializing bvh construction and
traversal order using representative shadow ray sets. In High Performance Graphics, pages
49–55, 2012.

[51] J.A. Fisher. Very long instruction word architectures and the ELI-512. In Proceedings of the
10th annual international symposium on Computer architecture, pages 140–150. ACM, 1983.

[52] Vincent Freeh and David Lowenthal. Using multiple energy gears in mpi programs on a power-
scalable cluster. In Proc. of the 10th ACM SIGPLAN PPoPP. ACM, 2005.

[53] M. Frigo. A fast fourier transform compiler. In Acm Sigplan Notices, volume 34, pages 169–180.
ACM, 1999.

BIBLIOGRAPHY 153

[54] W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic warp formation and scheduling
for efficient GPU control flow. In MICRO 40., pages 407–420, Washington, DC, USA, 2007.
IEEE Computer Society.

[55] Grigori Fursin, Abdul Memon, Cristophe Gillon, and Anton Lokhmotov. Collective mind, part
ii: Towards performance- and cost-aware software engineering as a natural science. In 18th
International Workshop on Compilers for Parallel Computing (CPC15), 2015.

[56] James E. Gentile, Gregory J. Davis, and Samuel S. C. Rund. Verifying agent-based models
with steady-state analysis. Computational and Mathematical Organization Theory, 18:404–418,
2012.

[57] Anirban Ghose, Soumyajit Dey, Pabitra Mitra, and Mainak Chaudhuri. Divergence aware auto-
mated partitioning of OpenCL workloads. In Proceedings of the 9th India Software Engineering
Conference, ISEC ’16, pages 131–135, New York, NY, USA, 2016. ACM.

[58] Ivan Grasso, Klaus Kofler, Biagio Cosenza, and Thomas Fahringer. Automatic problem size
sensitive task partitioning on heterogeneous parallel systems. In ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’13, Shenzhen, China, February
23-27, 2013, pages 281–282, 2013.

[59] Ivan Grasso, Simone Pellegrini, Biagio Cosenza, and Thomas Fahringer. LibWater: heteroge-
neous distributed computing made easy. In Proceedings of the 27th international ACM confer-
ence on International conference on supercomputing, ICS ’13, pages 161–172, New York, NY,
USA, 2013. ACM.

[60] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, , and John Cavazos.
Auto-tuning a high-level language targeted to GPU codes. In InPar, 2012.

[61] Chris Gregg and Kim M. Hazelwood. Where is the data? why you cannot debate CPU vs.
GPU performance without the answer. In ISPASS, pages 134–144, 2011.

[62] Dominik Grewe and Michael F.P. O’Boyle. A static task partitioning approach for heterogeneous
systems using OpenCL. In CC, 2011.

[63] Dominik Grewe, Zheng Wang, and Michael F. P. O’Boyle. OpenCL Task Partitioning in the
Presence of GPU Contention, pages 87–101. Springer International Publishing, Cham, 2014.

[64] Philipp Gschwandtner, Charalampos Chalios, Dimitrios S. Nikolopoulos, Hans Vandierendonck,
and Thomas Fahringer. On the potential of significance-driven execution for energy-aware hpc.
Computer Science - Research and Development, 30(2):197–206, 2015.

[65] Philipp Gschwandtner, Juan J. Durillo, and Thomas Fahringer. Multi-Objective Auto-Tuning
with Insieme: Optimization and Trade-Off Analysis for Time, Energy and Resource Usage,
pages 87–98. Springer International Publishing, Cham, 2014.

[66] Weidong Gu and Robert J. Novak. Agent-based modelling of mosquito foraging behaviour for
malaria control. In Transactions of the Royal Society of Tropical Medicine and Hygiene, volume
103, pages 1105–1112. Oxford University Press, 2009.

154 BIBLIOGRAPHY

[67] Tsuyoshi Hamada, Tetsu Narumi, Rio Yokota, Kenji Yasuoka, Keigo Nitadori, and Makoto
Taiji. 42 tflops hierarchical n-body simulations on gpus with applications in both astrophysics
and turbulence. In Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, SC ’09, pages 62:1–62:12, New York, NY, USA, 2009. ACM.

[68] Tsuyoshi Hamada and Keigo Nitadori. 190 tflops astrophysical n-body simulation on a cluster
of GPUs. In SC, pages 1–9, 2010.

[69] Julia Handl, Simon C. Lovell, and Joshua Knowles. Multiobjectivization by decomposition
of scalar cost functions. In Proceedings of the International Conference on Parallel Problem
Solving from Nature, 2008, 2008.

[70] J. Harnois-Déraps, U.-L. Pen, I. T. Iliev, H. Merz, J. D. Emberson, and V. Desjacques. High-
performance P3M N-body code: CUBEP3M. MNRAS, 436:540–559, November 2013.

[71] Lars Hernquist. An analytical model for spherical galaxies and bulges. The Astrophysical
Journal, 356:359, June 1990.

[72] Chuntao Hong, Dehao Chen, Wenguang Chen, Weimin Zheng, and Haibo Lin. Mapcg: writing
parallel program portable between CPU and GPU. In PACT, pages 217–226, 2010.

[73] Kenneth Hoste and Lieven Eeckhout. Cole: compiler optimization level exploration. In Proc.
of the 6th Intl. Symposium on Code generation and optimization. ACM, 2008.

[74] Robert Hundt, Sandya Mannarswamy, and Dhruva Chakrabarti. Practical structure layout
optimization and advice. In CGO’06, pages 233–244, Washington, DC, 2006. IEEE Computer
Society.

[75] Piet Hut, Jeffrey M. Arnold, Junichiro Makino, Stephen L.W. McMillan, and Thomas L. Ster-
ling. Grape-6: A petaflops prototype. In proceedings of the 1997 Petaflops Algorithms Workshop
(PAL’97), 1997.

[76] Institut für Neuroinformatik, Ruhr-University Bochum. Shark Machine Learning Library. http:
//shark-project.sourceforge.net/, 2012.

[77] MPI Intel. Benchmarks: Users Guide and Methodology Description. Intel GmbH, Germany,
2004.

[78] Carlos Isidoro, Nuno Fachada, Fbio Barata, and Agostinho Rosa. Agent-Based Model of Aedes
aegypti Population Dynamics. In Lus Seabra Lopes, Nuno Lau, Pedro Mariano, and Lus Mateus
Rocha, editors, Progress in Artificial Intelligence, 14th Portuguese Conference on Artificial
Intelligence, EPIA 2009, Aveiro, Portugal, October 12-15, 2009. Proceedings, volume 5816 of
Lecture Notes in Computer Science, pages 53–64. Springer, 2009.

[79] Tor E. Jeremiassen and Susan J. Eggers. Reducing false sharing on shared memory multipro-
cessors through compile time data transformations. In PPOPP’95, pages 179–188, New York,
NY, 1995. ACM.

http://shark-project.sourceforge.net/
http://shark-project.sourceforge.net/

BIBLIOGRAPHY 155

[80] Pritish Jetley, Lukasz Wesolowski, Filippo Gioachin, Laxmikant V. Kalé, and Thomas R. Quinn.
Scaling hierarchical n-body simulations on GPU clusters. In SC, pages 1–11, 2010.

[81] Herbert Jordan. Insieme: A Compiler Infrastructure for Parallel Programs. PhD thesis, Uni-
versity of Innsbruck, 8 2014.

[82] Herbert Jordan, Simone Pellegrini, Peter Thoman, Klaus Kofler, and Thomas Fahringer.
INSPIRE: the insieme parallel intermediate representation. In Proceedings of the 22nd Inter-
national Conference on Parallel Architectures and Compilation Techniques, Edinburgh, United
Kingdom, September 7-11, 2013, pages 7–17, 2013.

[83] Herbert Jordan, Peter Thoman, Juan J. Durillo, Simone Pellegrini, Philipp Gschwandtner,
Thomas Fahringer, and Hans Moritsch. A multi-objective auto-tuning framework for parallel
codes. In Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, SC ’12, pages 10:1–10:12, Los Alamitos, CA, USA, 2012. IEEE
Computer Society Press.

[84] Ma Kai, Li Xue, Chen Wei, Zhang Chi, and Wang Xiaorui. GreenGPU: A holistic approach to
energy efficiency in GPU-CPU heterogeneous architectures. In ICPP, 2012.

[85] M. Kandemir, A Choudhary, J. Ramanujam, and P. Banerjee. A framework for interprocedural
locality optimization using both loop and data layout transformations. In Proc. of the Int.
Conference on Parallel Processing, pages 95–102, 1999.

[86] S. Kanur, W. Lund, L. Tsiopoulos, and J. Lilius. Determining a device crossover point in
CPU/GPU systems for streaming applications. In 2015 IEEE Global Conference on Signal and
Information Processing (GlobalSIP), pages 1417–1421, Dec 2015.

[87] Tero Karras. Maximizing parallelism in the construction of bvhs, octrees, and kd trees. In
Eurographics/ACM SIGGRAPH Symposium on High Performance Graphics, pages 33–37. The
Eurographics Association, 2012.

[88] Stephen W. Keckler, Kunle Olukotun, and H. Peter Hofstee. Multicore Processors and Systems.
Springer Publishing Company, Incorporated, 1st edition, 2009.

[89] Khronos OpenCL Working Group. The OpenCL 1.2 specification. http://www.khronos.org/
opencl, 2015.

[90] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo, and Jaejin Lee. OpenCL as
a unified programming model for heterogeneous CPU/GPU clusters. In PPoPP, pages 299–300,
2012.

[91] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo, and Jaejin Lee. SnuCL: an
OpenCL framework for heterogeneous CPU/GPU clusters. In ICS, pages 341–352, 2012.

[92] Klaus Kofler. SAMPO source code repository. https://github.com/klois/SAMPO.

http://www.khronos.org/opencl
http://www.khronos.org/opencl
https://github.com/klois/SAMPO

156 BIBLIOGRAPHY

[93] Klaus Kofler, Biagio Cosenza, and Thomas Fahringer. Automatic data layout optimizations
for GPUs. In Euro-Par 2015: Parallel Processing - 21st International Conference on Parallel
and Distributed Computing, Vienna, Austria, August 24-28, 2015, Proceedings, pages 263–274,
2015.

[94] Klaus Kofler, Gregory J. Davis, and Sandra Gesing. SAMPO: an agent-based mosquito point
model in OpenCL. In Proceedings of the Agent-Directed Simulation Symposium, part of the
2014 Spring Simulation Multiconference, SpringSim ’14, Tampa, FL, USA, April 13-16, 2014,
page 5, 2014.

[95] Klaus Kofler, Ivan Grasso, Biagio Cosenza, and Thomas Fahringer. An automatic input-
sensitive approach for heterogeneous task partitioning. In International Conference on Su-
percomputing, ICS’13, Eugene, OR, USA - June 10 - 14, 2013, pages 149–160, 2013.

[96] Klaus Kofler, Dominik Steinhauser, Biagio Cosenza, Ivan Grasso, Sabine Schindler, and Thomas
Fahringer. Kd-tree based n-body simulations with volume-mass heuristic on the GPU. In 2014
IEEE International Parallel & Distributed Processing Symposium Workshops, Phoenix, AZ,
USA, May 19-23, 2014, pages 1256–1265, 2014.

[97] Joseph B. Kruskal. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman
Problem. Proc. of the American Mathematical Society, 7(1):48–50, 1956.

[98] Prasad A. Kulkarni, David B. Whalley, Gary S. Tyson, and Jack W. Davidson. Practical
exhaustive optimization phase order exploration and evaluation. ACM Trans. Archit. Code
Optim., 6(1):1:1–1:36, April 2009.

[99] P. E. Kyziropoulos, C. K. Filelis-Papadopoulos, and George A. Gravvanis. N-body simulation
based on the particle mesh method using multigrid schemes. In FedCSIS, pages 471–478, 2013.

[100] James H. Laros, III, Kevin T. Pedretti, Suzanne M. Kelly, Wei Shu, and Courtenay T. Vaughan.
Energy based performance tuning for large scale high performance computing systems. In
Proceedings of the 2012 Symposium on High Performance Computing, HPC ’12, pages 6:1–6:10,
San Diego, CA, USA, 2012. Society for Computer Simulation International.

[101] P. L’Ecuyer. Maximally Equidistributed Combined Tausworthe Generators. Mathematics of
Computation, 65:203–213, 1996.

[102] Dong Li, Bronis R. de Supinski, Martin Schulz, Dimitrios S. Nikolopoulos, and Kirk W.
Cameron. Strategies for energy-efficient resource management of hybrid programming mod-
els. IEEE Trans. Parallel Distrib. Syst., 24(1):144–157, 2013.

[103] Shengren Li, Lance Simons, Jagadeesh Bhaskar Pakaravoor, Fatemeh Abbasinejad, John D.
Owens, and Nina Amenta. kann on the GPU with shifted sorting. In High Performance
Graphics, pages 39–47, 2012.

[104] Michael D. Linderman, Jamison D. Collins, Hong Wang, and Teresa H. Y. Meng. Merge: a
programming model for heterogeneous multi-core systems. In ASPLOS, pages 287–296, 2008.

BIBLIOGRAPHY 157

[105] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: exploiting parallelism on heterogeneous
multiprocessors with adaptive mapping. In MICRO, pages 45–55, 2009.

[106] Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan. Mason: A
multiagent simulation environment. Simulation, 81(7):517–527, July 2005.

[107] Lianjie Luo, Yang Chen, Chengyong Wu, Shun Long, and Grigori Fursin. Finding representative
sets of optimizations for adaptive multiversioning applications. arXiv preprint arXiv:1407.4075,
2014.

[108] Robert F. Lyerly. Automatic Scheduling of Compute Kernels Across Heterogeneous Architec-
tures. PhD thesis, Virginia Polytechnic Institute and State University, 5 2014.

[109] J. D. McCalpin. Memory bandwidth and machine balance in current high performance com-
puters. IEEE Comp. Soc. Tech. Comm. on Computer Architecture (TCCA) Newsletter, pages
19–25, December 1995.

[110] R. Membarth, F. Hannig, J. Teich, M. Krner, and W. Eckert. Generating device-specific GPU
code for local operators in medical imaging. In 2012 IEEE 26th International Parallel and
Distributed Processing Symposium, pages 569–581, May 2012.

[111] Richard Membarth, Frank Hannig, Jürgen Teich, Mario Körner, and Wieland Eckert. Mastering
Software Variant Explosion for GPU Accelerators, pages 123–132. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[112] I. D. Mironescu and L. Vinan. Coloured petri net modelling of task scheduling on a het-
erogeneous computational node. In 2014 IEEE 10th International Conference on Intelligent
Computer Communication and Processing (ICCP), pages 323–330, Sept 2014.

[113] Technische Universität München. AutoTune, Automatic Online tuning. http://www.

autotune-project.eu/, 2016.

[114] Ken Naono, Keita Teranishi, John Cavazos, and Reiji Suda. Software Automatic Tuning (From
Concepts to State-of-the-Art Results). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2010.

[115] NASA. The NAS Parallel Benchmarks. http://www.nas.nasa.gov/Software/NPB/, 2016.

[116] Hubert Nguyen. GPU Gems 3. Addison-Wesley Professional, first edition, 2007.

[117] M. J. North, N. T. Collier, and R. J. Vos. Experiences creating three implementations of the
Repast agent modeling toolkit. ACM Transactions on Modeling and Computer Simulation,
16(1):1–25, 2006.

[118] NVIDIA Corporation. CUDA Programming Model. https://developer.nvidia.com/

cuda-toolkit, 2012.

[119] NVIDIA Corporation. What do K20 users think? http://www.nvidia.com/docs/IO/122634/

K20-testimonial.pdf, 2013.

http://www.autotune-project.eu/
http://www.autotune-project.eu/
http://www.nas.nasa.gov/Software/NPB/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
http://www.nvidia.com/docs/IO/122634/K20-testimonial.pdf
http://www.nvidia.com/docs/IO/122634/K20-testimonial.pdf

158 BIBLIOGRAPHY

[120] Lars Nyland, Mark Harris, and Jan Prins. Fast n-body simulation with cuda. In Hubert Nguyen,
editor, GPU Gems 3, chapter 31. 2007.

[121] M. F. P. O’Boyle and P. M. W. Knijnenburg. Efficient parallelization using combined loop
and data transformations. In PACT’99, pages 283–, Washington, DC, 1999. IEEE Computer
Society.

[122] K. Olukotun and L. Hammond. The future of microprocessors. Queue, 3(7):26–29, 2005.

[123] OpenMP Architecture Review Board. OpenMP Application Program Interface. http://www.

openmp.org/mp-documents/OpenMP3.1.pdf, 2015.

[124] Alexandros Panagiotidis, Daniel Kauker, Filip Sadlo, and Thomas Ertl. Distributed computa-
tion and large-scale visualization in heterogeneous compute environments. In Proceedings of the
11th International Symposium on Parallel and Distributed Computing, 2012.

[125] Karl Pearson. On lines and planes of closest fit to a system of points in space. In Philosophical
Magazine, Series 6, vol. 2, no. 11, pages 557–572, 1901.

[126] Joshua Peraza, Ananta Tiwari, Michael Laurenzano, et al. PMaC’s green queue: A framework
for selecting energy optimal DVFS configurations in large scale MPI applications. Submission to
CCPE Special Issue on Analysis of Performance and Power for Highly Parallel Systems, 2012.

[127] Carolyn L. Phillips, Joshua A. Anderson, and Sharon C. Glotzer. Pseudo-random number
generation for Brownian Dynamics and Dissipative Particle Dynamics simulations on GPU
devices. Journal of Computational Physics, 230(19):7191 – 7201, 2011.

[128] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in
FORTRAN: The Art of Scientific Computing. Cambridge University Press, second edition,
1992.

[129] M. Puschel, J.M.F. Moura, J.R. Johnson, D. Padua, M.M. Veloso, B.W. Singer, J. Xiong,
F. Franchetti, A. Gacic, Y. Voronenko, et al. Spiral: Code generation for dsp transforms.
Proceedings of the IEEE, 93(2):232–275, 2005.

[130] T. Quinn, N. Katz, J. Stadel, and G. Lake. Time stepping N-body simulations. ArXiv Astro-
physics e-prints, October 1997.

[131] Mohammed Rahman, Louis-Noël Pouchet, and P. Sadayappan. Neural network assisted tile
size selection. In International Workshop on Automatic Performance Tuning (IWAPT’2010),
Berkeley, CA, June 2010. Springer Verlag.

[132] Shah Rahman, Jichi Guo, Akshatha Bhat, et al. Studying the impact of application-level opti-
mizations on the power consumption of multi-core architectures. In Proc. of the 9th conference
on Computing Frontiers. ACM, 2012.

[133] Easwaran Raman, Robert Hundt, and Sandya Mannarswamy. Structure layout optimization for
multithreaded programs. In CGO’07, pages 271–282, Washington, DC, 2007. IEEE Computer
Society.

http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf

BIBLIOGRAPHY 159

[134] P. Richmond, S. Coakley, and D. Romano. Cellular level agent based modelling on the graph-
ics processing unit. In High Performance Computational Systems Biology, 2009. HIBI ’09.
International Workshop on, pages 43–50, 2009.

[135] Rodinia. LavaMD, November 2014.

[136] Shai Rubin, Rastislav Bod́ık, and Trishul Chilimbi. An efficient profile-analysis framework for
data-layout optimizations. In POPL’02, pages 140–153, New York, NY, 2002. ACM.

[137] RULEQUEST RESEARCH. Data mining tools see5 and c5.0, October 2014.

[138] Kamal Sharma, Ian Karlin, Jeff Keasler, James R. McGraw, and Vivek Sarkar. User-specified
and automatic data layout selection for portable performance. Technical report, Lawrence
Livermore National Laboratory, 2013.

[139] Fadi N. Sibai. Performance analysis and workload characterization of the 3dmark05 bench-
mark on modern parallel computer platforms. ACM SIGARCH Computer Architecture News,
35(3):44–52, 2007.

[140] Volker Springel. The cosmological simulation code gadget-2. Monthly Notices of the Royal
Astronomical Society, 364(4):1105–1134, December 2005.

[141] Volker Springel, Naoki Yoshida, and Simon D.M. White. GADGET: a code for collisionless and
gasdynamical cosmological simulations. New Astronomy, 6(2):79–117, April 2001.

[142] Robert Springer, David Lowenthal, Barry Rountree, et al. Minimizing execution time in mpi
programs on an energy-constrained, power-scalable cluster. In Proc. of the eleventh ACM SIG-
PLAN PPoPP. ACM, 2006.

[143] J. G. Stadel. Cosmological N-body simulations and their analysis. PhD thesis, University Of
Washington, 2001.

[144] Mark Stephenson and Saman Amarasinghe. Predicting unroll factors using supervised classi-
fication. In Proceedings of the international symposium on Code generation and optimization,
CGO ’05, pages 123–134, Washington, DC, USA, 2005. IEEE Computer Society.

[145] Rainer Storn and Kenneth Price. Differential evolution – a simple and efficient heuris-
tic for global optimization over continuous spaces. J. of Global Optimization, 11(4):341–359,
December 1997.

[146] John A. Stratton, Christopher I. Rodrigues, I-Jui Sung, Li-Wen Chang, Nasser Anssari,
Geng (Daniel) Liu, Wen mei W. Hwu, and Nady Obeid. Algorithm and data optimization
techniques for scaling to massively threaded systems. IEEE Computer, 45(8):26–32, 2012.

[147] Magnus Strengert, Christoph Muller, Carsten Dachsbacher, and Thomas Ertl. Cudasa: Com-
pute unified device and systems architecture. In EGPGV, pages 49–56, 2008.

[148] Robert Strzodka. Data layout optimization for multi-valued containers in OpenCL. J. Parallel
Distrib. Comput., 72(9):1073–1082, 2012.

160 BIBLIOGRAPHY

[149] E. Sun, D. Schaa, R. Bagley, N. Rubin, and D. Kaeli. Enabling task-level scheduling on hetero-
geneous platforms. In Proceedings of the 5th Annual Workshop on General Purpose Processing
with Graphics Processing Units, pages 84–93, 2012.

[150] I-Jui Sung, Nasser Anssari, John A. Stratton, and Wen mei W. Hwu. Data layout transformation
exploiting memory-level parallelism in structured grid many-core applications. International
Journal of Parallel Programming, 40(1):4–24, 2012.

[151] C. Tapus, I.H. Chung, and J.K. Hollingsworth. Active harmony: Towards automated perfor-
mance tuning. In Supercomputing, ACM/IEEE 2002 Conference, pages 44–44. IEEE, 2002.

[152] A. Tarakji and N. O. Salscheider. Runtime behavior comparison of modern accelerators and co-
processors. In 2014 IEEE International Parallel Distributed Processing Symposium Workshops,
pages 97–108, May 2014.

[153] R. C. Tausworthe. Random Numbers Generated by Linear Recurrence Modulo Two. Mathe-
matics of Computation, 19:201–209, 1965.

[154] TechTarget . integrated circuit (IC). http://whatis.techtarget.com/definition/

integrated-circuit-IC, 2005.

[155] TechTarget. Arithmetic-logic unit. http://whatis.techtarget.com/definition/

arithmetic-logic-unit-ALU, 2005.

[156] TechTarget. program counter. http://whatis.techtarget.com/definition/

program-counter, 2012.

[157] TechTarget. operating system (OS). http://whatis.techtarget.com/definition/

operating-system-OS, 2014.

[158] The Khronos Group Inc. Khronos group. https://www.khronos.org/. Accesses: 08.02.2015.

[159] Peter Thoman. Insieme-RS: A Compiler-supported Parallel Runtime System. PhD thesis,
University of Innsbruck, 7 2013.

[160] Peter Thoman, Herbert Jordan, Simone Pellegrini, and Thomas Fahringer. Automatic OpenMP
Loop Scheduling: A Combined Compiler and Runtime Approach, pages 88–101. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[161] Peter Thoman, Klaus Kofler, Heiko Studt, John Thomson, and Thomas Fahringer. Automatic
OpenCL device characterization: guiding optimized kernel design. In Euro-Par, pages 438–452,
2011.

[162] Ananta Tiwari, Michael Laurenzano, Laura Carrington, et al. Auto-tuning for energy usage in
scientific applications. In Euro-Par 2011: Parallel Processing Workshops. Springer, 2012.

[163] J. Torrellas, M.S. Lam, and J.L. Hennessy. False sharing and spatial locality in multiprocessor
caches. IEEE Transactions on Computers, 43(6):651–663, 1994.

http://whatis.techtarget.com/definition/integrated-circuit-IC
http://whatis.techtarget.com/definition/integrated-circuit-IC
http://whatis.techtarget.com/definition/arithmetic-logic-unit-ALU
http://whatis.techtarget.com/definition/arithmetic-logic-unit-ALU
http://whatis.techtarget.com/definition/program-counter
http://whatis.techtarget.com/definition/program-counter
http://whatis.techtarget.com/definition/operating-system-OS
http://whatis.techtarget.com/definition/operating-system-OS
https://www.khronos.org/

BIBLIOGRAPHY 161

[164] Ehsan Totoni, Mert Dikmen, and Maŕıa Jesús Garzarán. Easy, fast, and energy-efficient object
detection on heterogeneous on-chip architectures. ACM Trans. Archit. Code Optim., 10(4):45:1–
45:25, December 2013.

[165] Ying-Yu Tseng, Yu-Hao Huang, Bo-Cheng Charles Lai, and Jiun-Liang Lin. Automatic Data
Layout Transformation for Heterogeneous Many-Core Systems. In Ching-Hsien Hsu, Xuanhua
Shi, and Valentina Salapura, editors, 11th IFIP International Conference on Network and Par-
allel Computing (NPC), volume LNCS-8707 of Network and Parallel Computing, pages 208–219,
Ilan, Taiwan, September 2014. Springer. Part 2: Parallel and Multi-Core Technologies.

[166] University of Innsbruck. Doctoral Programme Computational Interdisciplinary Modelling (DK
CIM). https://www.uibk.ac.at/dk-cim/, 2016.

[167] Jan Verschelde. Memory Coalescing Techniques. http://homepages.math.uic.edu/$\

sim$jan/mcs572/memory_coalescing.pdf, 2012.

[168] V. Volkov and James W. Demmel. Benchmarking GPUs to Tune Dense Linear Algebra. In SC
’08: Proc., pages 1–11, Piscataway, NJ, USA, 2008. IEEE Press.

[169] R. Vuduc, J.W. Demmel, and K.A. Yelick. Oski: A library of automatically tuned sparse matrix
kernels. In Journal of Physics: Conference Series, volume 16, page 521. IOP Publishing, 2005.

[170] J. W. Wadsley, J. Stadel, and T. Quinn. Gasoline: a flexible, parallel implementation of
TreeSPH. New astronomy, 9:137–158, February 2004.

[171] Ingo Wald and Vlastimil Havran. On building fast kd-trees for ray tracing, and on doing that
in O(N log N). In Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing, pages
61–69, 2006.

[172] Ingo Wald, William R. Mark, Johannes Günther, Solomon Boulos, Thiago Ize, Warren Hunt,
Steven G. Parker, and Peter Shirley. State of the art in ray tracing animated scenes. In Dieter
Schmalstieg and Jǐŕı Bittner, editors, STAR Proceedings of Eurographics 2007, pages 89–116.
The Eurographics Association, September 2007.

[173] M. S. Warren and J. K. Salmon. Astrophysical n-body simulations using hierarchical tree data
structures. In Proceedings of the 1992 ACM/IEEE conference on Supercomputing, Supercom-
puting ’92, pages 570–576, Los Alamitos, CA, USA, 1992. IEEE Computer Society Press.

[174] Michael S. Warren. 2hot: An improved parallel hashed oct-tree n-body algorithm for cosmo-
logical simulation. In Proceedings of SC13: International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’13, pages 72:1–72:12, New York, NY, USA,
2013. ACM.

[175] Nicolas Weber and Michael Goesele. Auto-tuning complex array layouts for GPUs. In Proc. of
Eurographics Symposium on Parallel Graphics and Visualization, EGPGV14. EG.

[176] R.C. Whaley and J.J. Dongarra. Automatically tuned linear algebra software. In Proceedings of
the 1998 ACM/IEEE conference on Supercomputing (CDROM), pages 1–27. IEEE Computer
Society, 1998.

https://www.uibk.ac.at/dk-cim/
http://homepages.math.uic.edu/$\sim $jan/mcs572/memory _coalescing.pdf
http://homepages.math.uic.edu/$\sim $jan/mcs572/memory _coalescing.pdf

162 BIBLIOGRAPHY

[177] H. Wong, M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. Demystifying GPU
microarchitecture through microbenchmarking. In ISPASS, pages 235–246, 2010.

[178] P. y. Li, Q. h. Zhang, R. c. Zhao, and H. n. Yu. Data layout transformation for structure
vectorization on simd architectures. In 2015 IEEE/ACIS 16th International Conference on
Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing
(SNPD), pages 1–7, June 2015.

[179] Yutao Zhong, Maksim Orlovich, Xipeng Shen, and Chen Ding. Array regrouping and structure
splitting using whole-program reference affinity. In PLDI’04, pages 255–266, New York, NY,
2004. ACM.

[180] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-time kd-tree construction on
graphics hardware. In ACM SIGGRAPH Asia 2008 papers, SIGGRAPH Asia ’08, pages 126:1–
126:11, New York, NY, USA, 2008. ACM.

[181] Ying Zhou, S. M. Niaz Arifin, James Gentile, Steven J. Kurtz, Gregory J. Davis, and Bar-
bara A. Wendelberger. An agent-based model of the anopheles gambiae mosquito life cycle. In
Proceedings of the 2010 Summer Computer Simulation Conference, SCSC ’10, pages 201–208,
San Diego, CA, USA, 2010. Society for Computer Simulation International.

[182] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative case study
and the strength pareto approach. Trans. Evol. Comp, 3(4):257–271, November 1999.

	Certificate of Authorship
	Abstract
	Acknowledgements
	Table of Contents
	Introduction
	Open Problems
	Organization

	Model
	Hardware Model
	Levels of parallelism

	Software Model
	Program Model
	Data Model

	Background
	OpenCL
	OpenCL Hardware View
	The OpenCL NDRange
	OpenCL Address Spaces

	OpenMP
	Insieme
	Insieme Compiler
	Insieme Compiler Frontend
	Insieme Backend
	Insieme Runtime System

	Summary

	OpenCL Device Characterization
	Benchmark Design and Methodology
	Arithmetic Throughput
	Memory Subsystem
	Branching Penalty
	Runtime Overheads

	Device Characterization – Results
	Arithmetic Throughput
	Memory Subsystem
	Branching Penalty
	Runtime Overheads

	Related Work
	Summary

	Heterogeneous Task Partitioning
	Framework Overview
	Architecture
	Implementation
	Limitations

	Partitioning Data-Parallel Task
	Predicting the Optimal Partitioning
	Extracting Features
	Generating Training Data
	Building the Model

	Experimental Methodology
	Test Cases
	Experimental Setup

	Experimental Results
	Performance Results
	Comparison of Different Models/Techniques
	Analysis of the Results

	Related Work
	Summary

	Data Layout Optimization
	Method
	Kernel Data Layout Graph Model
	Per-Cluster Layout Selection
	Final Algorithm

	Experimental Results
	Discussion
	Related Work
	Summary

	A Region-Aware Multi-Objective Auto-Tuner for Parallel Programs
	Motivation
	Multi-objective Tuning of Multi-Region Programs
	Background on Multi-Objective Auto-Tuning
	Challenges in Tuning Multi-Region Programs
	Method

	Implementation
	Regions

	Testing Methodology
	Experimental Results
	Discussion
	Related Work
	Summary

	Applications
	SAMPO
	Implementation
	Correctness
	Performance
	Summary

	KD-tree based N-body simulations
	Parallel Kd-tree building
	Volume-Mass Heuristic (VMH)
	Force calculation with Kd-trees
	Time Integration
	Results and Evaluation
	Related Work
	Summary

	Conclusion
	Contributions
	Future Work

	List of Figures
	List of Tables
	List of Definitions
	List of Algorithms
	Bibliography

