
University of Innsbruck

Institute of Computer Science
Research Group DPS

(Distributed and Parallel Systems)

Topology Aware Data Organisation
for Large Scale Simulations

Master Thesis

Supervisor: Herbert Jordan, PhD

Markus Walzthöni, Bsc. (1018830)

markus.walzthoeni@uibk.ac.at

Innsbruck
5 June 2017

mailto:markus.walzthoeni@uibk.ac.at

Abstract

Partitioning meshes for large scale simulations with sufficient quality is a hard
task and even advanced methods have a high time and memory complexity.
We present methods to reorganize and partition meshes for large scale simula-
tions with geometry topology aware methods. Compared with more elaborate
methods the presented methods should be able to structure data with minimal
effort in memory space and computation time. This thesis defines the neces-
sary data structures, functions and algorithms to perform the transformations
as well as quality metrics to compare the results. The thesis concludes with a
set of experiments evaluating the quality of the selected methods as well as the
state-of-the-art approach and compares the outcome of the experiments with
each other.

Contents

1. Introduction 3
1.1. Motivation . 6
1.2. Objectives . 7
1.3. Challenges . 7
1.4. Overview . 8

2. Related Work 10

3. Definitions 12
3.1. Mesh . 12
3.2. Simulation . 17
3.3. Partition of a mesh . 20
3.4. Quality Metrics for Partitions . 26

3.4.1. Node Distribution . 26
3.4.2. Node-closure Distribution 28
3.4.3. Coverage . 29
3.4.4. Summary of Quality Metrics for Partitions 30

3.5. Locality of Reference . 30
3.6. Quality Metrics for Data Organization 31

4. Mesh Partitioning 32
4.1. Overview / Architecture . 32

4.1.1. Work-flow Overview . 32
4.1.2. Intermediate Steps . 32
4.1.3. Assigning . 33
4.1.4. Propagation . 35
4.1.5. Reordering . 35

4.2. Partitioning Methods . 38
4.2.1. Space-Filling Curves . 38
4.2.2. Multi-Level / k-way Partitioning 47

5. Experimental Section 50
5.1. Experiment Setup . 50

5.1.1. Meshes . 50
5.1.2. Partitioning methods . 51
5.1.3. Data organization methods 51
5.1.4. Evaluation Methods . 51

5.2. Evaluation of the Partitioning . 52
5.2.1. 2D Grid Structure . 53

iv

5.2.2. 3D Grid Structure . 54
5.2.3. 2D Delaunay Mesh Structure 55
5.2.4. 3D Delaunay Mesh Structure 56
5.2.5. 2D Random Mesh . 57
5.2.6. 3D Random Mesh . 58

5.3. Evaluation of Computation Time 60

6. Conclusion and Future Work 62
6.1. Conclusion . 62
6.2. Future Work . 63

Bibliography 64

A. Additional data 66
A.1. Target Architecture used in Experiment Section 66

List of Figures

1.1. Initial mesh . 4
1.2. After 3 steps . 4

3.1. Grid with 25 nodes . 16
3.2. Unstructured mesh with close neighbourhood inhabiting 13 nodes 18
3.3. Initial mesh . 19
3.4. After 3 steps . 19
3.5. Mesh after 8 steps . 19
3.6. Mesh after 18 steps . 19
3.7. Two partitions of a mesh . 21
3.8. Dotted arrows mark available attributes, dash/dotted arrows in-

dicate necessary data transfer . 23
3.9. Partition of M with 5 sub-meshes 27
3.10. Partition P1 . 29
3.11. Partition P2 . 29

4.1. The workflow used to partition the meshes 33
4.2. Mesh with partition-numbers . 34
4.3. Initialized mesh with partition-numbers 36
4.4. Propagation after 1 propagation-step 36
4.5. Propagation after 2 propagation-steps 36
4.6. Propagation after 3 propagation-steps 36
4.7. Mesh M and N . 38
4.8. Base case of Hilbert 2D curve . 40
4.9. First iteration shown with base cases 40
4.10. First iteration of the curve connected 41
4.11. Second iteration of the Hilbert 2D curve 41
4.12. Second iteration connected . 41
4.13. Shape of Hilbert 2D after third iteration 41
4.14. Base case of the Hilbert 3D curve 42
4.15. Hilbert 3D curve with one iteration 42
4.16. Base case of the Z-curve . 44
4.17. Z-curve with one iteration . 44
4.18. Bitwise interleaving after 2 steps 44
4.19. Z-curve after two iterations . 44
4.20. Base case of the Peano curve . 45
4.21. Peano curve with one iteration 45
4.22. Peano 2D curve after two iterations 46

1

List of Figures

4.23. The Peono-3D-curve base case 48
4.24. The phases of a multi-level partitioning illustrated [20] 49

5.1. Coverage . 53
5.2. Node distribution error . 53
5.3. Node closure distribution . 53
5.4. Partition with 2 sub-meshes created by Peano 2D 54
5.5. Coverage . 54
5.6. Node distribution error . 54
5.7. Node closure distribution . 55
5.8. Coverage . 55
5.9. Node distribution error . 55
5.10. Node closure distribution . 56
5.11. Coverage . 56
5.12. Node distribution error . 56
5.13. Node closure distribution . 57
5.14. Coverage . 57
5.15. Node distribution error . 57
5.16. Node closure distribution . 58
5.17. Coverage . 58
5.18. Node distribution error . 58
5.19. Node closure distribution . 59
5.20. Reordered 2D grid structured meshes execution times 60
5.21. Reordered 3D grid structured meshes execution times 60
5.22. Reordered 2D random meshes execution times 60
5.23. Reordered 3D random meshes execution times 60
5.24. Reordered 2D delaunay meshes execution times 61
5.25. Reordered 3D delaunay meshes execution times 61

2

1. Introduction

The field of computer science covers a wide range of different sub-fields i.e. logic,
databases, artificial intelligence or security. In this thesis we focus on computa-
tional physics, more precisely the field of physically based simulations. The goal
of these simulations is to model real world physical behaviour. To accomplish
this, a model is established and algorithms and functions from numerical math-
ematics are used to approximate the desired behaviour. The model is typically
represented by a mesh.

Meshes are data structures consisting of sets of nodes of different kinds and
edges connecting the nodes. Different properties can be associated to nodes
like positions, temperature, pressure, etc. These meshes take an important role
in many fields in computer science. They are used as e.g. models for computer
graphics, information networks or finite state machines. In this thesis we take
a closer look at meshes for physically based simulations, in particular for finite
element simulations.

These simulations consist of a mesh, associated attributes and a kernel. The
kernel is an algorithm, which is applied on each single node in the mesh. De-
pending on the type of the node the algorithmic steps of the kernel can vary.
The kernel simulates the change of the properties of the nodes over discretized
time points. Typically there is a fixed time step ∆t between two discretized
points in time ti+1 = ti+∆t. The computation from one time point to an other
is called iteration. For further understanding, here is a small and simplified
example of a temperature propagation simulation in a 2 dimensional space:

Example 1.1. The mesh consists of two node-types, cells and faces. The
space is divided into areas of equal size. These areas are called cells. A face
is connected with two spaces. The resulting mesh has two node-types (cells
and faces) and two edge-types (cells to faces and faces to cells). The mesh
is shown in Figure 1.1, where circles refers to cells and rectangles to faces.
Additionally the cells have a attribute of temperature. The kernel consist of
one step. in this step the kernel determines the new temperature of a cell,
depending on the temperatures of the nodes connected to the neighbouring
faces. E.g. two neighbouring cells have a temperature difference. So in one
step of the simulation a part of the temperature/energy of the cell with the
higher temperature will be transferred to the one with lower temperature.

This mesh with its initial step t0 is shown in Figure 1.1. Figure 1.2 shows the

3

1 Introduction

Figure 1.1.: Initial mesh Figure 1.2.: After 3 steps

mesh after the third iteration of the kernel.

One important criterion of these simulations is the execution time. To minimize
the execution time different approaches can be considered:

1. To compute the data of step ti+1 only data of step ti is used. While the
kernel is computing the data of step ti+1, the list of properties accessed is
data independent. This leads to a great opportunity for parallelizing and
distributing the computation of the kernel.

2. Optimization of the organization of the data in the memory. The memory
hierarchy of a modern computer is aimed at exploiting the principles of
locality. Hence, data organized in the right order can lead to a decrease
in execution time.

To use large scale parallel systems for the computation of the simulation the
meshes and their calculations have to be separated into sub-meshes and com-
puted on different systems. This brings up the need to partition meshes.

The partitioning of a mesh is defined as splitting up a mesh into a particular
number of sub-meshes. A sub-mesh of a mesh includes a sub-set of the nodes
of the original mesh and all edges, whose start and end point is in the node-set
of the sub-mesh. The resulting cuts of a partition are all edges not covered
by the sub-meshes of the partition. The set of edges from one sub-mesh to its
neighbouring sub-meshes is called the node-closure of a sub-mesh.

The simulation of the sub-meshes are then computed on different nodes of a
cluster. Before computing the attributes for a point in time, information from
other sub-meshes and their attributes could be required. The nodes, which
hold the mandatory information, are given by the closure of a sub-mesh. To

4

compute a time step the attributes of the closure first need to be transferred to
the node calculating the sub-mesh. When the transfer of the data is done, the
next computational step can be performed. Performing a data transfer and a
computational step is called a cycle.

What can be noticed is that a node of a cluster has to wait until all neighbouring
sub-meshes has finished their computation to start a new cycle. Thus, to speed
up the computation we need to minimize the time of a cycle. Since the longest
running cycle becomes the bottleneck of the simulation, the goal is to minimize
the maximal execution time of a single system. The execution time of one cycle
consist of the time it takes to transfer data and to compute the kernel.

First lets take a look on the computation step. Lets assume, that the computa-
tional power of all nodes in a cluster computing a sub-mesh is about the same.
Hence the execution time of a kernel applied to a node of the mesh on all nodes
is about the same. To minimize the overall execution time of the computation
phase we need to distribute the number of nodes of a mesh equally to all com-
puting units. So one goal of the methods presented in this thesis is to distribute
the number of nodes of a mesh evenly to all sub-meshes of a partition.

The next part is the time to transfer the required data. For simplification
lets assume, that sending a data unit takes a constant amount of time, despite
of network topology, installed hardware, used protocols and other elements
differing elements. The data to be transferred is given by the attributes of the
nodes of the node-closure of the sub-mesh. Therefore, the optimization target
for the data transfer is that the total amount of data to be sent should be
minimal. Keeping in mind that the duration of the computation phase of all
systems is about the same, we need to minimize the maximal transfer time of
all participant systems to minimize the cycle duration of all systems.

Consequently the optimal partition of a mesh is a partition where the maximal
computation and transfer time of an executing system are kept minimal. So
the properties of a good partition are:

• Evenly distribute the nodes over all sub-meshes

• Minimize the number of edges in the cuts of a partition

• Evenly distribute the cuts over all closures of the sub-meshes

But even the problem of finding a partition with evenly distributed nodes over
the sub-meshes and the minimal number of edges in the cut is proven to be
NP-complete [8].

So solving this problem by checking each single possibility is no option and to
solve this problem in a reasonable amount of time heuristics are used. Standard

5

1 Introduction

heuristic algorithms creating partitions, like the Kernighan-Lin algorithm[12],
have O(n2 logn) complexity. More advanced approximation algorithms such
as the k-way algorithm used in the METIS library are able to calculate good
partitions in O(n logn). But this upper limit may be still be too slow for very
big problems. In this thesis we attempt to investigate the quality of suitable
heuristically methods for meshes exhibiting spatial coordinates for (some) of the
node-types of a mesh. Suitable methods to partition meshes are methods, which
give a result in O(n) with no or tiny memory overhead. To accomplish this we
exploit the structure of the meshes used for these simulations. Typically nodes
for these simulations have attributes like positions in R2 or R3 and there are
rarely connections to nodes which are not a direct spatial neighbour. Possible
approaches are based on mapping spatial coordinates to coordinates/values
along space-filling curves

An other important factor for minimizing the execution time of a simulation
is addressing the organization of the data structures of a mesh and the cor-
responding attributes in the memory. Facing the problem of optimal memory
organization of the data to minimize the execution time of a simulation we
have to take a closer look on the principle of locality of reference, specifically
the principle of spatial-/memory- and temporal-locality. Spatial or memory lo-
cality states that if some data is required at a certain point of the computation,
it is likely that neighbouring memory locations will be used in a short period of
time afterwards. Temporal locality denotes that if data from a particular mem-
ory location is used, that there is a high probability the same data will be used
again in a short period of time afterwards. As kernels of simulations typically
calculate the next time-step with the attributes of neighbouring nodes, these
neighbouring elements should also be placed close together in the memory.

Caches typically exploit these presented principles very efficiently. So if the
organization of the data is in a fashion that neighbouring nodes are close to each
other, hardware caches can exploit the resulting data locality and will speed up
the simulation. More detailed information is presented in Section 3.5.

1.1. Motivation

The main motivation for this thesis is to investigate on methods to partition
meshes

• in a minimal amount of time

• requiring no additional memory

Beside these 2 restrictions the quality of the partition should be still sufficient.
Both bullet points are important when either dealing with big meshes or limited

6

1.2 Objectives

main memory. State-of-the-art k-way partitioning methods have a O(nlog(n))
complexity. But even this could take too much time, when dealing with meshes
holding billions of nodes. An other problem occurs, when the mesh almost ex-
ceeds the main memory. All non-heuristic partitioning methods need additional
memory, which may be not available. These state-of-the-art approach i.e. need
typically about O(n+ (nk)2) additional memory 4.2.2.

1.2. Objectives

The objectives for this master thesis are the following:

• Finding suitable O(n)-methods to partition meshes exhibiting spatial in-
formation

• Defining a suitable set of quality metrics for evaluating identified methods

• Evaluation and comparison of the implemented methods in a set of test
cases

The quality metric should give the reader a better understanding, if a method
is creating a suitable partition. Therefore metrics have to established which
measure the quality of the cuts, the cohesion of the sub-meshes, and the balance
of the number of contained nodes of the sub-meshes. This will be accomplished
with statistical analysis and metrics i.e. evaluating the coherence of the created
sub-meshes.

1.3. Challenges

The first challenge is to establish a work-flow which will partition a given mesh.
This work-flow uses different algorithms to perform the necessary steps to:

1. Creation of a mesh

2. Applying a method to partition the mesh

3. Reordering the whole structure to increase locality

4. Testing the outcome of the partition

To accomplish this lots of intermediate steps and additional structures will be
needed. The intermediate steps and the used data structures will be accurately

7

1 Introduction

described in the thesis.

An other challenge is to find out, if there are methods which are faster than
state-of-the-art methods for the computation of a partition. These meth-
ods should also produce suitable solutions compared to the state-of-the-art
method.

An important factor is the quality of the outcome of a partitioned mesh. The
quality of an outcome includes:

• The partitioned sub-meshes should be balanced in terms of the number
of nodes they contain

• The number of edges in cuts, which separate the sub-meshes should be as
minimal as possible

• The closures of the computed sub-meshes should be as minimal as possible

• Increased locality of the nodes to provide higher cache-locality and cache-
efficiency

1.4. Overview

The first chapter after this is devoted the related work. In Chapter 2 articles
and papers handling similar topics are presented.

The next part of the thesis given in Chapter 3 defines the basic structures,
utility-functions and algorithms. The Chapter clarifies the descriptions given
in this Chapter and explains how a meshes, attributes, mesh structures, kernels,
partitionings, partitions, cuts etc. are defined. A part of the Chapter explains
what a good partitioning is and how the quality of a partition is measured.

Chapter 4 of this thesis is devoted to the partitioning of a mesh. To partition a
mesh and reorder it according to the partitioning a work-flow is presented and
each step explained in detail. The last part of this chapter is giving an overview
of the used partitioning method used in the thesis.

In Chapter 5 we present a comparison of different partitioning methods, test
results and quality metrics. The tests will include measurements of the com-
putation time to partition the meshes and the execution time of the reordered
meshes used in various simulations. This section should give an overview about
the advantages and disadvantages of the used methods establishing a partition
compared to state-of-the-art methods.

8

1.4 Overview

The last chapter of this thesis is concluding the experimental section and pre-
senting future work.

9

2. Related Work

Because the mesh partitioning is a big topic in computer science there are
several contributions related to the topic of this thesis. A lot of papers also try
to find partitioning methods which have linear time complexity regarding the
number of nodes of a mesh. Another category of contributions finds ways to
organize the memory in a fashion that improves the execution time.

Most contributions accomplish linear time complexity for partitioning using
space-filling curves. The most popular curves are the Hilbert-3D-, the Sierpinski-
and the Z-curve i.e. used by Stefan Schamberger and Jens-Michael Wierum et al. [16]
and Hui Liu et al. [14]. Schamberger et al. [16] additionally uses the βΩ-curve
presented by Wierum et al. [18]. In all of these contributions the Sierpinski-
curve gave the least promising results. This curve is therefore not used in this
thesis. This thesis will cover the 2D and 3D variants of the Hilbert-, the Z-
curve, the Peano-curve and as state-of-the-art partitioning method the k-way
algorithm of the METIS-library.

The meshes used for evaluation differ in the mentioned contributions of Scham-
berger et al. [16] and Liu et al. [14]. Schamberger et al. [16] uses a variation of
2D and 3D meshes used for finite element simulations and a standard 100×100
grid for the partitioning with a range of 4253 to 320194 nodes and 12000 to 3.7
million edges. Instead Liu et al. [14] apply the mentioned partitioning meth-
ods on a 3D cylinder with 2.5 million nodes and a 2D irregular structure with
holes and 3.7 million nodes. For the evaluation of the partitioning method this
thesis will present a wider variety of meshes. The presented mesh-types are
structured meshes / grids, unstructured meshes with randomly arranged nodes
fulfilling the Delaunay triangulation shown in Definition 3.25, and unstructured
meshes with random nodes and random edges between the nodes. The used
mesh-shapes are 2D and 3D variations of all mesh-types. From each mesh-type
a mesh is created with different numbers of nodes, to get a broad overview.

To evaluate the partitions Schamberger et al. [16] uses the number of edges in
the cut and the number of boundary nodes of the single sub-meshes. Different
to this the quality metrices used in [14] focus on the distribution of the nodes to
the sub-meshes, the maximal communication overhead by one single system and
the overall communication of all systems. The paper of Liu et el. [14], similar
to this thesis, also uses the distribution as a metric to evaluate the spreading
of the nodes and the number of edges in the node-closure (Definition 3.37).
Additional to the other contributions this thesis utilize to analyze the created

10

sum-meshes of a partitioning Coverage value [3] (Definition 3.50).

All contributions, including this thesis, use the k-way algorithm from the METIS-
library [11] as state-of-the-art partitioning method to compare their solutions
with.

Addressing the organization of the data in memory two interesting papers,
one by Yoon et al. [19] and the other by Dennis et al. [6], are related to this
thesis. The main purpose of Yoon et al. [19] is to investigate metrics which
help in predicting the number of cache-misses and cache-hits as a function of
the organization of the data of a mesh in memory. Nevertheless, this thesis also
presents detailed execution time and cache related measurements of structures
organized with space-filling curves. Dennis et al. [6] uses the space-filling curves
to organize a two dimensional structure of the world map to speed up their finite
difference simulation of the world’s oceans.

Both contributions try to accomplish their goal with different approaches. Yoon
et al. [19] partitions with the help of the βΩ-curve, Hilbert-curve, Z-curve, H-
order, row-by-row- and diagonal-by-diagonal-layout. Dennis et al. [6] instead
uses a combination of the Hilbert-2D-, a variation of the Peano- and the Cinco-
curve to organize the data of their mesh. The best results have been provided
by Hilbert- and the βΩ-curve.

The sizes of the meshes of both papers are quite small. Dennis et al. [6] used
meshes consisting of around 115000 nodes in a 2D structure. The basic struc-
tures organized in Yoon et al. [19] have 4000 to 60000 nodes with a regular 2D
structure and one experiment is done with a 3D structure consisting of 150000
nodes. The biggest data structure this thesis has 1 · 109 nodes. An overview
of the structure-types used in this thesis can be found in a detailed description
given in Section 5.1.1.

The quality metrics used in Yoon et al. [19] are cache-related measurements.
Dennis et al. [6] are only interested in the final computation speed. The com-
parison of the individual data organization methods is done by the execution
time of the restructured meshes running a simulation kernel. This thesis uses
the same metric to evaluate the organization of the data structures.

11

3. Definitions

This chapter is devoted to formalize the informal the descriptions of Chap-
ter 1. The structures, operations on the structures, challenges and task from
the introduction will be defined.

The initial step is to introduce the mesh through a formal definition.

3.1. Mesh

To get a sufficient definition we first need to define nodes and edges.

Definition 3.1 (Nodes). Let n ∈ N be the number of different node-types and
V1, . . . , Vn be sets of nodes of different node-types. The number of nodes in a
set Vi of nodes is denoted by |Vi|. V ∗ = {V1, . . . , Vn} is a set of sets of nodes
of different node-types. |V ∗| =

∑
1≤i≤n |Vi| denotes the sum of the number

of nodes of all sets. Let V be the set of all sets of sets of nodes of different
node-types.

Definition 3.2 (Edges). Let V1, . . . , Vn be sets of nodes. Let 1 ≤ i, j ≤ n.
An edge is defined as a pair (a, b) ∈ Vi × Vj . Let Eij ⊆ Vi × Vj be an edge-set
describing a set of edges from nodes in Vi to nodes in Vj of edge-type Vi × Vj .
The number of edges in an edge-set is given by |Eij |. Let E be the set of all
sets of different edge-types.

As our mesh definition will provide multiple edge-sets of the same edge-type
we need further structures to describe those.

Definition 3.3 (Relations). Let V1, . . . , Vn be sets of nodes. Let k be a Nn×n
matrix. Let 1 ≤ i, j ≤ n and kij denoting the number of different edge-sets of
the edge-type Vi × Vj . The relation-set is a set of edge-sets of the same kind
and defined as Rij = {E1

ij , . . . , E
kij

ij }. The number of different edge-set in a
relation-set is given by kij = |Rij |. Let R∗ = {R11, . . . , R1n, . . . , Rn1, . . . , Rnn}
be the set of all sets of relation-sets. Let L be the set of all sets of different
relation-types.

Definition 3.4 (Mesh). Let V ∗ be a set of sets of nodes. Let R∗ be a set of
relation-sets. A mesh M is defined as M = (V ∗, R∗). Let M be the set of all
meshes.

12

3.1 Mesh

To elaborate the initial Example 1.1 from the Introduction in Chapter 1 on
page 3, lets define that mesh structure.

Example 3.5 (Mesh definition). This example consists of two different node-
types, namely the types of Cell and Face. These two are given as V1 and V2.
So V ∗ = {V1, V2}. Inferring from these node-types we get 4 different edge-types
V1 × V1, V1 × V2, V2 × V1, V2 × V2. In the initial Example 1.1 we only need 1
edge-set in the relations of V1 × V2, and V2 × V1 and none of the other. So we
get

k =
(

0 1
1 0

)
.

So our resulting R∗ = {{}, {E1
12}, {E1

21}, {}} where E1
12 and E1

21 are edge-sets.
Concluding we get our mesh M = (V ∗, R∗) = ({V1, V2}, {{}, {E1

12}, {E1
21}, {}})

To work with meshes additional utility functions are required. To access the
data of the mesh, functions to gather different sets - node-sets, relation-sets or
edge-sets - are required.

Definition 3.6 (Node-set operator). Let M = (V ∗, R∗) be a mesh. Let n =
|V ∗| ∈ N be the number of different node-types in V ∗ and 1 ≤ i ≤ n. Let

nodeseti : V −→ V ∗

{V1, . . . , Vn} 7−→ Vi

be the function to extract Vi from M .

Definition 3.7 (Relation-set operator). Let M = (V ∗, R∗) be a mesh. Let
n = |V ∗| ∈ N be the number of different node-types in V ∗. For 1 ≤ i, j ≤ n let

relationsetij : M −→ R∗

(V ∗, {R11, . . . , Rnn}) 7−→ Rij

be the function returning the relation-set Rij .

Definition 3.8 (Edge-set operator). Let M = (V ∗, R∗) be a mesh. Let n =
|V ∗| ∈ N be the number of different node-types in V ∗. For 1 ≤ i, j ≤ n and
1 ≤ k ≤ |Rij | let

edgesetij,k : R∗ −→ Rij

Rij 7−→ Ekij

be the function returning the k-th edge-set from the relation-set Rij .

13

3 Definitions

An other important utility for a mesh is to get the neighbours of a certain
edge-type of a given node.

Definition 3.9 (Partial neighbourhood of a node). Let M = (V ∗, R∗) =
({V1, . . . , Vn}, R∗) be a mesh and v ∈ Vi ⊆ V ∗ be a node of this mesh. Let
Rij be the relation-set of edge-type Vi × Vj containing kij edge-sets. Let
W ∗ = {W1, . . . ,Wn} be a set of node-sets with Wi ⊆ Vi for 1 ≤ i ≤ n. Let
1 ≤ l ≤ kij Then

neighij : M× Vi −→W ∗

(M, v) 7−→Wj = {w|(v, w) ∈
⋃

1≤l≤kij

edgesetij,l(relationsetij(M))}

is the set containing all nodes from Vj being connected to v with an edge of
type Vi × Vj .

The next step is to get all neighbours from a node of certain type.

Definition 3.10 (Neighbourhood of a node). LetM = (V ∗, R∗) be a mesh and
v ∈ Vi ⊆ V ∗ be a node of this mesh. Let n = |V ∗| be the number of different
node-types in V ∗. Then

neigh : M× Vi −→ V

(M, v) 7−→W ∗ =
⋃

1≤j≤n
neighij(v)

be the set of sets containing the nodes connected with v.

We now have a sufficient structure to define nodes of different types with
the appropriate edges. But to compute a physically based simulation we need
more. We need the possibility to define properties for certain node-types as
temperature, pressure or positions. The nodes of a mesh should have the ability
to hold attributes.

Definition 3.11 (Attributes). Let V ∗ be a set of sets of node-types. A attribute
A is a function with the domain of a certain node-type N ∈ V ∗ and the image
of an arbitrary set B.

A : N −→ B

Let A be the set of all attributes.

Example 3.12 (Attributes). LetM = (V ∗, R∗) be the mesh from Example 3.5.
We would like that the nodes in V1 have the attribute of temperature. The
temperature in this example both values in the set of R. So the attribute is
defined as

A1 : V1 −→ R
v 7−→ A1(v) := temperature of cell v

14

3.1 Mesh

Similar we can now also introduce attributes like acceleration, velocity, pres-
sure, positions, ids or measures of length. To simplify the handling of all at-
tributes a sufficient structure is established.

Definition 3.13 (Attribute-set). LetM = (V ∗, R∗) be a mesh. Let A1, . . . , Am
be attributes of the mesh. A attribute-set A = {A1, . . . , Am} is defined as a
set holding these attributes. The number of all attributes of a attribute-set is
given by |A|.

Definition 3.14 (Attribute operator). Let A = {A1, . . . , Am} be a attribute-
set. For 1 ≤ i ≤ m let

attribute : A× N −→ A

({A1, . . . , Am}, i) 7−→ Ai

be the function to extract Ai from A.

This thesis will focus on meshes M = (V ∗, R∗) with spatial attributes. Spa-
tial attributes or positions in a m-dimensional space are typically defined as
A : V ∗ → Rm. W.l.o.g all spatial attributes of a given mesh have the same
dimension.

Definition 3.15 (Spatial attribute operator). Let M = (V ∗, R∗) be a mesh.
Let A = {A1, . . . , Am} be an attribute-set associated with the mesh M . Let
I = {i | 1 ≤ i ≤ m ∧Ai is a spatial attribute of M} Then

spatial-attributes : A× 2N −→ A
(A, I) 7−→ B = {attribute(A, i) | i ∈ I}

Definition 3.16 (Structured and unstructured mesh). Let M = (V ∗, R∗) be a
mesh, A = {A1, . . . , Am} an attribute-set ofM and S = spatial-attributes(M,A)
the set of all spatial attributes of A. A structured mesh or grid is a mesh where
the positions of all nodes n ∈ (Vi)i∈I are uniformly distributed in each dimen-
sion. All other meshes with spatial attributes will be stated unstructured mesh.

Example 3.17. Let M = (V ∗, R∗) = ({V1}, {{E11}}) be a mesh with V1 =
{(x, y) | 1 ≤ x, y ≤ 5} ⊆ N2. Let

A1 : V1 −→ R2

x 7−→ x

be an attribute of V1. M is a grid or structured mesh. Figure 3.1 shows the
nodes with their spatial distribution.

But we also cover different unstructured meshes with special properties. One
property of interest is when nodes are triangulated to other node which are
close to them. This property ensures that no edge cross over an other. To get
a mesh with this property we use the n-dimensional Delaunay triangulation.

15

3 Definitions

Figure 3.1.: Grid with 25 nodes

Definition 3.18 (n-simplex). Let u0, . . . , un ∈ R be a be linear independent
points in a n-dimensional space. A n-simplex is a n-dimensional set of points
defined as

S = {α0u0 + · · ·+ αkuk |
k∑
i=0

αi = 1 and 0 ≤ i ≤ k : αi ≥ 0}

Example 3.19. A 2 dimensional simplex is a triangle and a 3 dimensional
simplex is a tetrahedron.

Definition 3.20 (n-contact). Let a1, . . . , an the linear independent points in a
n-dimensional space. A n-contact is defined as the a set of points

n-contact = {α1a1 + · · ·+ αkuk |
k∑
i=1

αi = 1 and 1 ≤ i ≤ k : αi ≥ 0}

Definition 3.21 (n-D triangulation). Let M = (V ∗, R∗) be a mesh, A =
{A1, . . . , Am} an attribute-set ofM and I ⊆ {i | 1 ≤ i ≤ |V ∗|}×{j | 1 ≤ j ≤ m}
with |I| ≥ 1. (x, y) ∈ I denote to a node-types Vx in V ∗ with a corresponding
n-dimensional spatial attribute Ay. A n-dimensional triangulation [7] of a mesh
M is a set of n-Simplex τ , such that

• The set of all points ⋃
(i,j)∈I

⋃
1≤k≤|Vi|

Aj(vk), vk ∈ Vi

is equal to all points from the set of n-Simplex

• Convex hull of the set of points⋃
(i,j)∈I

⋃
1≤k≤|Vi|

Aj(vk), vk ∈ Vi

is equal to
⋃
T∈τ T

16

3.2 Simulation

• ∀T,U ∈ τ | T 6= U the intersection of T
⋂
U is either a n-contact or empty

Definition 3.22 (n-ball). A n-ball with radius r is a set of points Sn = {x ∈
Rn | ||x||2 ≤ r}

Example 3.23. A 1-ball with radius r is a set of points of an interval [−r, r]
forming a line from −r to r, a 2-ball with radius r is the area bounded by a
circle.

Definition 3.24 (n-circumsphere). The n-circumsphere in an n-dimensional
space of a triangle is defined as the (n)-ball that passed through all three vertices
of the triangle. The center of this (n)-ball is the cross of all lines that are
orthogonal and passing the midpoint of the edges connecting the triangle.

Definition 3.25 (n-dimenional Delaunay triangulation). Let M = (V ∗, R∗)
be a mesh with a finite number of nodes and I ⊆ {i | 1 ≤ i ≤ |V ∗|} × {j |
1 ≤ j ≤ m} with |I| ≥ 1. (x, y) ∈ I denote to a node-types Vx in V ∗ with a
corresponding n-dimensional spatial attribute Ay. A triangulation of a finite
point set

P =
⋃

(i,j)∈I

⋃
1≤k≤|Vi|

Aj(vk), vk ∈ Vi

is called a n-dimensional Delaunay triangulation [7], if the n-circumsphere of
every triangle is empty, that is, there is no point from P in its interior.

Definition 3.26 (Unstructured mesh with close neighbourhood). Let M =
(V ∗, R∗) be a unstructured mesh with a finite number of nodes and I ⊆ {i |
1 ≤ i ≤ |V ∗|} × {j | 1 ≤ j ≤ m} with |I| ≥ 1. (x, y) ∈ I denote to a node-types
Vx in V ∗ with a corresponding n-dimensional spatial attribute Ay. M is an
unstructured mesh with close neighbourhood if the nodes⋃

(i,j)∈I

⋃
1≤k≤|Vi|

Aj(vk), vk ∈ Vi

and edges in {Rij | i, j ∈ I} ⊆ R∗ fit the definition of a n-dimensional Delaunay
triangulation.

Example 3.27. Let M = (V ∗, R∗) = ({V1}, {R11}) be a unstructured mesh
with close neighbourhood with one node-type and one edge-type E11 in the
corresponding relation-type R11 = {E11}. Figure 3.2 shows the mesh with its
spatial distribution.

3.2. Simulation

With the previous definition various mesh structures with corresponding at-
tributes can be defined.

17

3 Definitions

Figure 3.2.: Unstructured mesh with close neighbourhood inhabiting 13 nodes

A physically based simulation typically consists of a mesh structure with at-
tributes and a kernel executing the simulation. The simulation itself is dis-
cretized over time. This means, that the simulation starts at a time t0. The
task of the kernel is to approximate the attributes of the mesh for the next
time t1, occurring after a time step ∆t after t0. The approximation is based
on the attributes P t0 of the mesh at the time t0. The new calculated values
are the attribute-set P t1 . The calculation step for all node is also called the
computation phase.

These simulations have to be computed on a computer. As there are various
types of architectures and compositions of computers we need a general defini-
tion.

Definition 3.28 (Node, Cluster). In this thesis we refer to a computing node
as a hardware unit with at least one central processing unit and random access
memory. Additional the computing node can have a mass storage device, I/O-
devices or a graphic processing unit. A distributed system consisting of more
than one node is called a cluster.

Example 3.29 (Kernel). Elaborating on the Example 1.1 from the Introduc-
tion, we define a function applied to each node of the mesh which calculates the
temperature diffusion from a time ti to ti+1. Let M = (V ∗, R∗) be the mesh
defined in Example 3.5 with the attributes defined in Example 3.12 with the
attribute-set At = {A1} at time t. Let

NC(v) := {c ∈ V1 | ∀f ∈ neigh(v) : ∀c ∈ neigh(f) : c 6= v}

be an auxiliary function. Let

At+1 = At(v) +
∑

c∈NC(v)
At(c)−At(v)

be the function applied to all nodes of M .

18

3.2 Simulation

The following Figures 3.3 to 3.6 illustrate the iterative process of the heat
diffusion kernel. To show the spread of the temperature the node in the middle
has a constant value of 50.

Figure 3.3.: Initial mesh Figure 3.4.: After 3 steps

Figure 3.5.: Mesh after 8 steps Figure 3.6.: Mesh after 18 steps

These simulations have interesting properties.

The data used to compute a solution for a time ti+1 is given by the data from
the attribute-set of time ti. While computing the attribute-set of time ti+1
there are no writing operations on the data of ti. Also there is no attribute in
the attribute-set of ti+1 depending on an attribute of the same time. Therefore
the computation of the attribute-set of time ti+1 can be executed in a paral-
lel fashion on a cluster. From this property we gain advantages. One is the
acceleration of the simulation, using the parallel computing possibilities of one
computing node or the computation power of a cluster or a combination of
both.

19

3 Definitions

Also the dependencies of the computation of a single node n is locality-bound.
Most computational kernel functions use the information from the direct neigh-
bours neigh(v) to calculate the attributes of the next step. It provides the
possibility to split the mesh and its data structure up into numerous parts and
compute the single parts on a cluster. To perform the computational kernel
functions for the nodes on the boundary of such a part, the information for
other parts has to be gathered. This property can be used when the mesh and
its attributes are exceeding the capacity of the memory of a computing node.
However, this brings up the need to partition a mesh.

3.3. Partition of a mesh

Definition 3.30 (Partition). A partition P = {M1, . . . ,Mk} of a mesh M =
(V ∗, R∗) with n = |V ∗| is the resulting set of splitting up a mesh into k ∈ N
parts M1, . . . ,Mk having the properties

• For 1 ≤ i ≤ n

Mi = (V ∗i , R∗i) = ({V i
1 , . . . , V

i
n}, {Ri11, . . . , R

i
1n, . . . , R

i
n1, . . . , R

i
nn})

is a mesh. Rixy ⊆ R∗i is defined as a relation-set of edge-sets of edges
connecting nodes of node-type x with nodes of type y. iElxy is defined as
an l-th edge-set of the relation-set Rixy.

• For 1 ≤ i ≤ k the disjoint set union of the node-sets of all sub-meshes

V 1
i

⊎
· · ·
⊎
V k
i = Vi

equals the node-set of the original mesh.

• For 1 ≤ u, v ≤ n, 1 ≤ i ≤ k and 1 ≤ l ≤ |Riuv| the edge-sets

iEluv = {(x, y) ∈ Eluv | x ∈ V i
u, y ∈ V i

v }

contains all edges of the original mesh where the outgoing an incoming
nodes are in a set of the set V ∗i .

The parts M1, . . . ,Mk are called sub-meshes.

Let P = 2M be the set of all different partitions.

To demonstrate the creation of a partition of a mesh, lets look on the following
example.

20

3.3 Partition of a mesh

Figure 3.7.: Two partitions of a mesh

Example 3.31. Let M = (V ∗, R∗) = ({V1}, {R11}) be a mesh with one node-
type and one edge-type E11 in the corresponding relation-type R11 = {E11}.

Displayed in Figure 3.7 are 2 different results for a partition of a mesh.

1. Partition P1 = {M1,M2}:

• M1 = (V ∗1 , R∗1) with V ∗1 = {{1, 2}} and R∗1 = {{{(1, 2)}}}

• M2 = (V ∗2 , R∗2) with V ∗2 = {{3, 4, 5, 6}} andR∗2 = {{{(3, 4), (3, 5), (4, 5), (4, 6), (5, 6)}}}

2. Partition P2 = {M1,M2}:

• M1 = (V ∗1 , R∗1) with V ∗1 = {{1, 2, 3}} and R∗1 = {{{(1, 2), (1, 3)}}}

• M2 = (V ∗2 , R∗2) with V ∗2 = {{4, 5, 6}} andR∗2 = {{{(4, 5), (4, 6), (5, 6)}}}

Not included by a partition are the edges between the sub-meshes of a par-
tition.

Definition 3.32 (Edge-set cuts). Let M = (V ∗, R∗) be a mesh with n = |V ∗|
and P a partition ofM . Let Rij ∈ R∗, 1 ≤ i, j ≤ n a relation-set. Let k ∈ Nn×n
be a matrix, which entries kij denoting the number of edge-sets in a relation-set

21

3 Definitions

Rij , 1 ≤ i, j ≤ n. Then

edge-cutsij,l : M× P −→ E

(M,P) 7−→ F = {Elij \
⊎

1≤m≤|P |

mElij}

Definition 3.33 (Relation-set cuts). Let M = (V ∗, R∗) be a mesh with n =
|V ∗| and P a partition of M . Let k ∈ Nn×n be a matrix, which entries kij
denoting the number of edge-sets in a relation-set Rij , 1 ≤ i, j ≤ n. Then

relation-cutsij : M× P −→ E

(M,P) 7−→ F =
⋃

1≤m≤|Rij |
edge-cutij,m(M,P)

Definition 3.34 (Cuts). Let M = (V ∗, R∗) be a mesh with n = |V ∗| and P a
partition of M . The cuts of a partition are represented by

cuts : M× P −→ E

(M,P) 7−→ S =
⋃

1≤i,j≤|V ∗|
relation-cutsij(M,P)

expressing the edges between the sub-meshes M1, . . . ,Mk.

Example 3.35. We calculate the cuts of a partition based on the defined mesh
and their partitions of Example 3.31. For P1 we have cuts(P1) = {(1, 3), (2, 4)}.
For P2 we have cuts(P2) = {(2, 4), (3, 4), (3, 5)}.

Definition 3.36 (Closure). Let M = (V ∗, R∗) be a mesh, nV = |V ∗| and
P = {M1, . . . ,Mm} a partition of M . Let 1 ≤ k, l ≤ nV and 1 ≤ m ≤ |Rikl|.
The closure of a sub-meshMi is defined as the set of indices of the neighbouring
sub-meshes

closureMi = {j | 1 ≤ j ≤ m, j 6= i, x ∈ V i
k , y ∈ V

j
l , ∃(x, y) ∈ Emkl} ⊆ N

Definition 3.37 (Node-closure). Let M = (V ∗, R∗) be a mesh and P =
{M1, . . . ,Mm} a partition of M . The node-closure of a sub-mesh Mi ∈ P
is defined as the set of all nodes connected in

node-closure : P −→ V

Mi 7−→W =
{ ⋃
v∈V i

j

neigh(v)
}

1≤j≤|V ∗
i |
\ V ∗i

Example 3.38. We calculate the closure and the node-closure of the partition
P1 based on the defined mesh and their partitions of Example 3.31. The closure
for M1 is closureM1 = {2}. The closure for M2 is closureM2 = {1}. The
node-closure for M1 is node-closureM1 = {{3, 4}}. The node-closure for M2 is
node-closureM2 = {{1, 2}}.

22

3.3 Partition of a mesh

The initial motivation to create partitions of meshes was, to parallelize the
computation. Computing a partitioned mesh on a cluster works different than
on a single node. Lets start with a small example:

Example 3.39. Let M = (V ∗, R∗) = ({V1}, {R11}) be a mesh with one node-
type and one edge-type E11 in the corresponding relation-type R11 = {E11}.
V1 inhabits 6 nodes v1, . . . , v6 and the connections are define in the edge-set
E11 = {(v1, v2), (v2, v3), (v3, v4), (v4, v5), (v5, v6)} where the bidirectional edges
are not listed. The node-type V1 has a attribute of temperature

Temp : V1 −→ R
v 7−→ Temp(v) := temperature of node v.

which is initialized at time t0. The partition P = {M1,M2,M3} illustrated in
Figure 3.8 consist of three sub-meshes, each containing 2 nodes. The kernel
for this simulation is kept simple. The temperature attribute of each node ni
will be updated with the mean of the sum of its own temperature and the
temperature of the neighbouring nodes.

Figure 3.8.: Dotted arrows mark available attributes, dash/dotted arrows indi-
cate necessary data transfer

So to calculate the temperature for time t1 the node v2 will need the temperature
of node v3 and v1 to compute the mean temperature. To compute each node of
the sub-meshM2 information from v2 ∈M1 and v5 ∈M3 will be needed and the
calculations for M3 can be done with the information of v4 ∈M2 in addition to
the information present in the local sub-mesh. As a result the computation of a
sub-mesh Mi will need the information of it node-closure(Mi). For the special
case, that the computation only need information from the direct neighbours,
the nodes contained by the node-closureMi have the sufficient information.

What can be seen in this example is, that before every computation step of
the kernel the computing node needs to gather information from the computing
nodes calculating the sub-meshes from the closure. To keep the information
from the attributes of the sub-meshes, we also need to adapt the attributes of
a single sub-mesh.

Definition 3.40 (Attribute of a sub-mesh). Let M = (V ∗, R∗) be a mesh and
P = {M1, . . . ,Mm} a partition of the mesh. For a sub-meshMi = (V ∗i , R∗i), 1 ≤

23

3 Definitions

i ≤ m with the closure closureMi = Ci a attribute with the image of an arbitrary
type B is defined as

Ai : V ∗i ∪ (
⋃
c∈Ci

V ∗c) −→ B

v 7−→ Ai(v)

nAi refers to a attribute of a sub-mesh Mi at a certain step n.

An other observation from the last example is, that before a computation
phase a data transfer is mandatory. The combination of a data transfer and
subsequent computation phase is called a cycle. To perform a data transfer for
a sub-mesh, the computation phase of all neighbouring sub-meshes has to be
done.

Concluding to this a adaptation on the kernel has to be made, if it should be
able to compute a partition of a mesh on a cluster.

Example 3.41. Lets look on the kernel-function defined in Example 3.29 and
find out what we need to change that a computing node can apply the kernel-
function to all nodes of a sub-mesh Mi = {V ∗i , R∗i }.

Let C = closure(Mi) be the set of all indices of the closure ofMi. The attributes
of the nodes of the meshes indexed by C has to to be gathered from the com-
puting nodes executing the kernel-function to the sub-meshes of the closure C.
Let 1 ≤ m ≤ |C|. Let 1 ≤ n ≤ |V ∗m|. Let vo ∈ V m

n . Then the function

tAi(vo) = attribute(tAm, vo)

is gathering the attributes of all node-types.

Then the same kernel is applied to the nodes od the sub-meshes.

NC(v) := {c ∈ V i
1 | ∀f ∈ neigh(v) : ∀c ∈ neigh(f) : c 6= v}

t+1Ai(v) = tAi(v) +
∑

c∈NC(v)

tAi(c)− tAi(v)

Distributing the computation on a cluster can bring benefits when it comes
to computation time. The computation time of one calculation step can be
reduced by the number of participating computing nodes. This gives a great

24

3.3 Partition of a mesh

opportunity for speed-up. The downside is, that after every computational step
each computing node has to gather data from other nodes computing the sub-
meshes of its closure. An other problem is, that the transfer of data can only
be done, when the processing of the data in the last step is done. Therefore a
computing node processing a sub-mesh has to wait for the data transfer until
the nodes computing the sub-meshes of closures are done. This brings up the
need for synchronization.

So the question arises what is a good partition in respect to the given benefits
and disadvantages of the distributed computation of a simulation. Broadly
speaking a good partition is a partition which minimizes the execution time
of the distributed simulation. The execution time of the whole simulation is
depending on the time it takes to compute one cycle. All computing nodes have
to wait until the last node computing a sub-mesh of the closure has finished
its computation, hence the execution time of a cycle is the maximal execution
time of all computing nodes. Therefore the goal of a partition is to minimize
the maximal execution time of a cycle carried out on a computing node.

The time a computing node takes to compute on cycle is depending on a lot
of different factors. The estimation of the time for transferring the data is de-
pending on the amount of data, the partitions of the sub-meshes of the closure
are holding, the network topology, on which the different computing nodes are
connected, the protocols used to transfer the data and many other. The calcu-
lation of computation time of one cycle is depending on the nodes processor, the
memory layout, other processes running on the same node, the operating sys-
tem managing the node, the number of nodes of the sub-mesh to calculate, and
many other factors. Accounting to all of these factors would exceed the scope
of this master thesis. Hence, assumptions are made to simplify the modeling of
the execution time of a cycle.

Definition 3.42 (Computation time factor). All computation time dependent
factors are summarized to a single factor indicating the computation time per
node of a computational node. This factor is indicated by CT .

The factor CT displaying the mean computation time for a single node of a
mesh on a computation node.

Definition 3.43 (Data transfer time factor). All data transfer time dependent
factors are summarized to a single factor indicating the data transfer time per
node of between two computational nodes. This factor is indicated by TT .

The factor TT could display the mean data transfer time for a single node of
a mesh to an other computation node of a cluster.

Definition 3.44 (Cycle time). LetM = (V ∗, R∗) be a mesh and P = {M1, . . . ,Mm}
a partition of the mesh. The number of all nodes of a sub-mesh Mi = (V ∗i , R∗i)

25

3 Definitions

is given by ni = |V ∗i |. The indexes of the sub-meshes of the closure of a single
sub-mesh Mi is given by Ii = closureMi . The execution and transfer time of a
single computing node is given by CT and TT . Concluding, the execution time
of a cycle can be processing on the sub-mesh Mi can be approximated by

cycle-timeMi
=

 ni∑
j=1
|V i
j |

 · CT +

∑
j∈Ii

|V ∗
j |∑

k=1
|V j
k |

 · TT

For simulations computing a kernel using only the direct neighbours of a node
to compute the next step the cycle-time can be reduced to:

cycle-timeMi
=

 ni∑
j=1
|V i
j |

 · CT + |node-closure(Mi)| · TT

Concluding a good partition is a partition P = {M1, . . . ,Mm} which mini-
mizes the maximal cycle time

min(max1≤j≤m(cycle-timeMj
)).

3.4. Quality Metrics for Partitions

To compare different partitions quality metrics are necessary. These quality
metrics should give an overview how good a partition is, in respect to the
quality of the cuts, the cohesion of the sub-meshes, the balance of the number
of contained nodes of the sub-meshes and many more. This will be achieved
with a set of statistical analysis tools and other metrics described below.

3.4.1. Node Distribution

A interesting metric is, how the nodes of a mesh M are distributed over the
sub-meshes of a partition P = {M1, . . . ,Mm}. This property is important,
since the computing nodes applying a kernel the same number of nodes of a
sub-mesh they have the same computational load. Hence their computation
time will also be about the same. This helps reducing the maximal execution
time of a cycle’s computation phase.

Definition 3.45 (Node distribution). Let M = (V ∗, R∗) be a mesh and P =
{M1, . . . ,Mm} a partition. Let n = (n1, . . . , nm) = (|V ∗1 |, . . . , |V ∗m|) be a m-
tuple where each entry ni expresses the number of nodes of the corresponding
sub-meshMi. Measuring the property of distribution of the nodes in a partition

26

3.4 Quality Metrics for Partitions

is done with themean value and the standard deviation. The standard deviation
σ defined as

σ =
√
s2

where variance s2 is determined by

s2 =
∑

1≤i≤m(ni − n)2

|P | − 1

where n is defined as the mean of all values ni.

Example 3.46. Let M = (V ∗, R∗) = ({V1}, {R11}) be a mesh with one node-
type and one edge-type E11 in the corresponding relation-type R11 = {E11}.
Let P = {M1, . . . ,M5} be the partition of M illustrated in Figure 3.9.

Figure 3.9.: Partition of M with 5 sub-meshes

To calculate the standard deviation of the node distribution first the mean has
to be known

n =
∑
v∈V ∗ |v|
|P |

= 2 + 3 + 3 + 1 + 4
5 = 2.6

The next step is to compute the variance

s2 =
∑
v∈V ∗(|v| − n)2

|P | − 1 = 1.3

Then the standard deviation of the node distribution is

σ =
√
s2 =

√
1.3 = 1.14

The standard deviation is used as a metric for the node distribution, as it is
giving a better overview on the statistical distribution of sub-mesh sizes than
just comparing the maximal to the minimal number of nodes.

27

3 Definitions

Example 3.47. Let M = (V ∗, R∗) = ({V1}, {R11}) be a mesh with one node-
type and one edge-type E11 in the corresponding relation-type R11 = {E11}.
Let P = {M1, . . . ,M10} be a partition ofM . The sub-meshesM1 toM9 inhabit
each 5 nodes. The sub-mesh M10 has only one node.

Comparing the maximal to the minimal value would give as a result the value
4.

The mean and the standard deviation provide as a result

n = 4.6
σ = 1.26

which illustrates a more accurate picture of the present sub-mesh size distribu-
tion.

3.4.2. Node-closure Distribution

An other important metric is the distribution of nodes of the node-closure.
Many kernel functions only depend in the attribute of their direct neighbours.
So the necessary amount of data to send during the transfer phase is propor-
tional to the number of nodes in the node-closure.

Definition 3.48 (Node-closure distribution). LetM = (V ∗, R∗) be a mesh and
P = {M1, . . . ,Mm} a partition. Let c = (c1, . . . , cm) be a m-tuple where each
entry ci expresses the number of nodes in the node-closure of the corresponding
sub-mesh Mi. Measuring the distribution of the nodes in the node-closure of
the sub-meshes will be performed by the mean value and the standard deviation
as defined in Definition 3.45.

Example 3.49. LetM be a mesh and P = {M1, . . . ,M5} a partition ofM from
Example 3.46. To calculate the standard deviation of the closure distribution
first the mean has to be known

e =
∑|P |
i=1 |node-closure(Mi)|

|P |
= 5 + 6 + 8 + 2 + 7

5 = 5.6

The next step is to compute the variance

s2 =
∑|P |
i=1(|node-closure(Mi)| − e)2

|P | − 1 = 5.3

Then the standard deviation of the closure distribution is

σ =
√
s2 =

√
5.3 = 2.3

28

3.4 Quality Metrics for Partitions

3.4.3. Coverage

Definition 3.50 (Coverage). LetM = (V ∗, R∗) be a mesh and P = {M1, . . . ,Mm}
a partition. The Coverage [3] value of a partition P is the fraction of the number
of edges in the sub-meshes of a partition and the total number of all edges.

coverage(P) =
∑|P |
i=1

∑
1≤j,k≤|V ∗

i |
∑|Rjk|
l=1 |iEljk|∑

1≤i,j≤|V ∗|
∑|Rij |
k=1 |Ekij |

Intuitively a high value of the coverage(P) is indicating a better quality of a
partition P . A higher value indicates, that lesser edges are in the cuts(M,P) and
more edges are inhabited inside the sub-meshes. But this metric is insensitive
to the distribution of nodes in the sub-meshes of a partition. I.e. this metric
gives the highest values when a partition consist of 2 sub-meshes, where one
sub-mesh inhabits only one node with one edge to the neighbouring cluster.
Hence when using this metric the node-distribution and deviation has to be
taken into account to get a complete overview.

Example 3.51. Let M = (V ∗, R∗) = ({V1}, {R11}) be a mesh with one node-
type and one edge-type E11 in the corresponding relation-type R11 = {E11}.
Two different partitions P1 and P2 are created, illustrated in Figure 3.10 and
Figure 3.11.

Figure 3.10.: Partition P1 Figure 3.11.: Partition P2

The Coverage value of P1 is

Coverage(P1) = 5 + 4
11 = 0.818.

29

3 Definitions

The coverage value of P2 is

Coverage(P1) = 10 + 0
11 = 0.909.

3.4.4. Summary of Quality Metrics for Partitions

In Section 3.4 4 different quality metrics are presented. The presented metrics
provide an overview to important characteristics of a partition.

Metric Objective Value range
Node distr. Distr. of the nodes in the sub-meshes

Node-closure distr. Distr. of the nodes in the node-closures
Coverage value # of edges compared to total # of edges [0,1]

3.5. Locality of Reference

Locality of reference [5] is stating that data references recently used or adjacent
storage locations to the recently used data, are likely accessed in future steps.
These two principals are also called:

• Temporal locality

• Spatial locality

Temporal locality states that references to a memory location is grouped by
time. This means that there is a high probability that data used at a specific
point in time is used in the near future again. Therefore the data recently used
should be kept in the cache memory, as there is a high likelihood that it will be
used again.

Spatial locality references the property of programs that memory locations lo-
cated close to recently accessed locations are more likely to be referenced in
the near future than other memory locations. Hence it would be beneficial to
pre-fetch certain memory references, as it will be likely that these will be used
in the near future.

Caches typically exploit these program characteristics. To gain maximum ad-
vantage out of the hardware exploitation, the data of the mesh and its attributes
has to be organized in a fashion, that data used in the near future is close to
data used currently by the kernel. To achieve this, we will reorder the mesh and
its attributes according to their sub-mesh index, as it is assumed, that nodes
with the same sub-mesh index lie close to each other.

30

3.6 Quality Metrics for Data Organization

3.6. Quality Metrics for Data Organization

Measuring the quality of a data organization is complicated. The optimal data
layout of a mesh and its attributes is depending on the kernel of the simulation.
The kernel decides which elements are used during the computation. So one
data organization could work perfectly fine with a kernel, but not with an other
kernel accessing different elements. Hence, it would undermine the credibility
using only metrics just focusing on the data organization itself.

An other problem comes up, as it is hard to model the caches [1]. Their internal
structures, the different techniques used in caches e.g. pre-fetching and their
hierarchical structure make it nearly impossible to model them accurately.

An expressive metric, however, is to actually measuring the execution time of a
simulation. This gives a good comparison of the different organization methods
of the data structure. Hence this is the method chosen to measure and evaluate
the organization of mesh data in memory.

31

4. Mesh Partitioning

This chapter is denoted to the process of creating a partition of a mesh. The
first section explains the architecture and the intermediate steps of the work-
flow forming the framework for all partitioning methods investigated by this
thesis. Section 4.2 covers the methods used to create partitions. In this section
further explanations of the used methods are provided.

4.1. Overview / Architecture

This section is all about the process of creating a partition of a mesh. First we
introduce a work-flow forming a framework for a class of partitioning methods.
Subsequently we give further information to all intermediate structures needed
to establish the work-flow and give examples for a better understanding of each
intermediate step. Section 4.2 is investigating on methods used to partition the
meshes.

4.1.1. Work-flow Overview

As illustrated, Figure 4.1 outlines the overall framework for the class of methods
to be investigated. The first step is a input step. In the input step meshes
with different structures and node-types can be assigned. The next step it to
partition the selected node-types of the mesh. The result will be a new attribute
for a selected node-types mapping each node of this type to the index of the sub-
mesh it should belong to - according to the selected partitioning method. In the
next step the remaining node-types and their elements have to get an index of
a sub-mesh. This is happening in a subsequent propagation step. Following to
that, the mesh will be reordered according to the given position of its assigned
sub-mesh.

4.1.2. Intermediate Steps

Lets take a closer look on the work-flow and its intermediate steps. This section
is devoted to define all the essential steps to create a partition of a mesh and

32

4.1 Overview / Architecture

Figure 4.1.: The workflow used to partition the meshes

modify it according to its properties.

Loading a file and filling a mesh structure covered in Definition 3.1 is the first
step of the workflow.

4.1.3. Assigning

The next step is to assign the selected nodes of the mesh a number. The assigned
number i to a certain node corresponds to the index of the sub-mesh Mi of the
partition to be created. This process is called assigning. The assigned index
of the sub-mesh is called partition-number. Therefore a function is established
taking a mesh and a set of indices and a partition method. This function returns
a set of attributes with the domain of the selected node-sets of the mesh and
the image stating the partition-number.

Definition 4.1. Let M = (V ∗, R∗) be a mesh and A correspond to the set of
all attributes assigned to the node-types of M . Let

I ⊆ {(i, j) | 1 ≤ i ≤ |V ∗| ∧ 1 ≤ j ≤ |A|}

a set of tuples of selected indices of node-types, where the first element of the
tuple corresponds to node-types which are intended to get a partition-number
assigned and the second element of the tuple the corresponding attribute index.
Let P = {Pi}(i,j)∈I be an attribute-set. The following algorithm illustrates, how
the selected node-types get a partition-number assigned.

33

4 Mesh Partitioning

function Assigning(M,A, I, P, f)

for all (i, j) ∈ I do
a← attribute(A, j)
p← attribute(P, i)
for all vk ∈ Vi do p(vk) = f(vk, aj))
end for

end for
end function

The result from the procedure Assigning is then stored the resulting attribute-
set P .

Example 4.2. Let M = (V ∗, R∗) = ({V1}, {R11}) be a mesh with one node-
type V1 = {v1, . . . , v9} and one edge-type E11 in the corresponding relation-type
R11 = {E11}. Let 1 ≤ i ≤ |V1|. The mesh has a 2 dimensional spatial attribute

a : V1 → R2

vi 7−→ (i%3, i/3)

The function

function f(v, a)
(x, y)← a(v)
result← floor(y) ∗ 3 + floor(x)
return result

end function

take a node and returns the corresponding partition-number. The result for
some M and a is shown in Figure 4.2.

Figure 4.2.: Mesh with partition-numbers

34

4.1 Overview / Architecture

4.1.4. Propagation

So far only selected node-types have a partition number assigned, however, all
nodes from the remaining node-sets need one too. Hence a mechanism is needed,
which distributes the partition-numbers from the nodes of the selected node-
types to the remaining nodes. This process is called propagation of partition-
numbers.

Definition 4.3 (Propagation Algorithm). Let M = (V ∗, R∗) be a mesh and
A correspond to the set of all attributes assigned to the node-types of M . Let
I ⊆ {(i, j) | 1 ≤ i ≤ |V ∗| ∧ 1 ≤ j ≤ |A|} a set of tuples of indices, where the
first element of the tuple corresponds to node-types which are intended to get
a partition-number assigned and the second element of the tuple to the spatial
attribute to be considered. Let P = {P1, . . . , P|V ∗|} be a set of attributes
devoted to map the nodes of the different node-types to a partition-number.
For (i, j) ∈ I the attributes Pi have already been assigned with partition-
numbers. Let vm ∈ nodesetm(V ∗). Let Pm = attribute(P,m). Let Di(vm) =
{d ∈ nodesetk(neigh(vm))|1 ≤ k ≤ |neigh(v)| ∧ iPk(d) is defined}. Then

i+1Pm(vm) =

iPm(vm) if iPm(vm) is defined
mind∈Di(vm)(iPm(d)) where Di(vm) 6= ∅
undefined otherwise

propagates the partition number iteratively until all nodes are assigned. This
will create sub-meshes with a strong connectivity, as nodes share their partition-
number with other nodes directly connected to them.

Example 4.4. Let M = (V ∗, R∗) be a mesh illustrated in Figure 4.3. The
node-types indexed in set I = {1} are partitioned according to some partition
method. The Figures 4.3, 4.4, 4.5 and 4.6 illustrate how the partition-numbers
are propagated over the whole mesh.

4.1.5. Reordering

The last step to the work-flow is assigned to the organization of the data in
the mesh. With the reorganization of the mesh the access to the elements
should be accelerated by exploiting the capabilities of the CPUs caches. The
data should be organized in a way, that the principles of locality are fulfilled.
Already known is, that executing the kernels for a specific node is likely to
involve the data associated to neighbouring nodes connected through an edge.
The methods creating the partition yield partition-numbers that should give
the same or similar partition-numbers to nodes spatially located close to each
other. Partition-numbers with a bigger difference refer to nodes which are not

35

4 Mesh Partitioning

Figure 4.3.: Initialized mesh with
partition-numbers

Figure 4.4.: Propagation after 1
propagation-step

Figure 4.5.: Propagation after 2
propagation-steps

Figure 4.6.: Propagation after 3
propagation-steps

likely to be related. Sorting the nodes according to their partition-number
should therefore increase the locality.

At this point the partition-numbers of all nodes of the mesh are known. The
last step of the work-flow is the reordering of the mesh. The reordering is a
realized by all nodes according to their partition-number.

It is assumed, that the executing program is mapping the memory locations
according to the node-numbers in ascending order. Hence the reordering of the
nodes and their attributes is processed by a renaming step.

Definition 4.5. To reorder a mesh M = (V ∗, R∗) for each node-set Vi of a
mesh a list of pairs Pi is created, where the the i-th position of the list the
first entry of the pair is the number of the node in the node-set and the second
entry is the nodes partition-number. Let P =

⋃
1≤i≤|V ∗| Pi. These lists will be

sorted according to the second entry. The next step is to create a new mesh

36

4.1 Overview / Architecture

N = (W ∗, S∗) with a set of node-sets W ∗ = {W1, . . . ,Wn} where n = |Vi|. The
set of relations need to be transformed according to the results of Pi.

procedure RenamingRelations(M,N,P)
for 1 ≤ i, j ≤ n do

for 1 ≤ k ≤ |relationsetij(M)| do
edgeset-old← edgesetij,k(M)
edgeset-new← edgesetij,k(N)
for all (v1, v2) ∈ edgeset-old do

new-pos1 ← position of v1 in Pi
new-pos2 ← position of v2 in Pj
edgeset-new← (edgeset-oldnew-pos1

, edgeset-oldnew-pos2
)

end for
end for

end for
end procedure

After renaming the nodes and the corresponding relations the attributes have
to be changed. To accomplish this an algorithm similar to the one presented to
reorder the relations is introduced. Let A be the attribute-set of mesh M and
B the attribute-set of N .

procedure ReorderAttributes(M,A,B, P)
n← |A|
for 1 ≤ i ≤ n do

attributeset-old← attributeseti(A)
attributeset-new← attributeseti(B)
V ← node-set according to attributeseti(A)
for all v ∈ V do

new-pos← position of v in Pi
attributeset-new(vnew-pos) = attributeset-old(v)

end for
end for

end procedure

After this step the renamed version of the mesh M is in N .

Example 4.6. Let M = (V ∗, R∗) = ({V1}, {R11}) be a mesh with one node-
type and one edge-type E11 in the corresponding relation-type R11 = {E1

11}.
The node-set consist of 3 nodes. The edge-set is defined as E11 = {(v1, v2), (v2, v3)}.
The node-set V1 has a attribute a with an image in N and a attribute p : V1 → N
representing the partition number of a node. The nodes of V1 are mapped to
the following values in attribute a: a(v1) = 5, a(v2) = 6, a(v3) = 7. The nodes
of V1 are mapped to the following values in attribute p: p(v1) = 2, p(v2) = 3,
p(v3) = 1. The Figure 4.7 shows the mesh, the structure and the partition-
numbers of the nodes.

37

4 Mesh Partitioning

Figure 4.7.: Mesh M and N

The mesh N = (W ∗, S∗) is the reordered mesh M according to the partition-
numbers given. W ∗ = {W1} is a set of node-sets with one node-set, which
has 3 elements. S∗ = {S11}, S11 = {E1

11} with E1
11 = {(w1, w3,), (w2, w3)}.

The nodes of W1 are assigned to the following values: a(w1) = 7, a(w2) = 5,
a(w3) = 6.

4.2. Partitioning Methods

This section is devoted to the different methods used to create a partition
of a mesh. The first methods to be covered are the space-filling curves in
Section 4.2.1. These curves enable a fast assignment of a position in a n-
dimensional space to a number.

In Section 4.2.2 the state-of-the-art partition method is presented. This method
is called k-way partitioning. The state-of-the-art k-way partitioning technique is
utilized in Section 4.2.2 to establish a reference line for the partitioning schemes
evaluated in this thesis.

4.2.1. Space-Filling Curves

Space-filling curves are continuous curves in a n-dimensional space. The theo-
retical fundamentals have been described by George Cantor in 1878. In 1887
the mathematician Camille Jordan gave a precise description of space-filling
curves in I2:

A curve (with endpoints) is a continuous function whose domain is
the unit interval I = [0, 1].

38

4.2 Partitioning Methods

So the research was focused on searching for functions describing curves in
the form of c : I → I2. In 1879 a proof was found, that those curves can’t be
bijective. So the research focused on finding curves, which provide a continuous
surjective mapping from I to I2.

In the year 1890 the mathematician Giuseppe Peano was the first one construct-
ing such a curve. Since then the space-filling curves are sometimes also called
the Peano-curves. This name also refers to the curve created by Peano, which
will be discussed in Section 4.2.1. Since then a whole variety of curves have been
presented. But not all of them are sufficient for the purpose of partitioning. We
will present curves with a high potential to create a good partition and give an
order for a satisfiable data organization. Curves which have already proven to
deliver poor results e.g. the Sierpinski-curve are not taken into account.

Generating Space-filling curves is an iterative process. Each curve has a base-
form, in which the curve should fit the assigned space. With every iterative
step the space is divided according to the definition of the curve and the curve
itself get refined, so the curve fit into the newly divided space.

Hilbert 2D curve

The Hilbert 2D curve is a steady curve in a 2 dimensional space. The structure
was invented by David Hilbert [10] in 1891. He was also the first mathematician
who came up with the idea, that those curves are best understood when they
are graphically illustrated.

Definition 4.7. The Hilbert 2D curve is defined by an algorithm [4] calculating
the pre-image of the function describing the space-filling curve:

procedure Rotate(n, a, b, x, y)
if x = 0 then

if y = 0 then
a← n− a− 1
b← n− b− 1

end if
Swap(a, b)

end if
end procedure

function CalculateCurvePosistion(n, x, y)
result← 0
a← n/2
for a > 0 do

u← (x & a) > 0
v ← (y & a) > 0

39

4 Mesh Partitioning

result← result + a2 · ((3u)⊕ v) . ⊕ stand for XOR
Rotate(a, x, y, u, v)
a← a/2

end for
return result

end function

To get a position on the Hilbert 2D curve the procedure CalculateCurvePosistion
is called. The call has the parameters n indicating log2n recursive steps, x, y
indication the position in a 2D space.

In Figure 4.8 the base case of the Hilbert 2D curve is illustrated. The first
iterative step is shown in Figure 4.9 and Figure 4.10. Figure 4.11 and Fig-
ure 4.12 illustrate the construction of the second iteration. The third iteration
is displayed in Figure 4.13.

Figure 4.8.: Base case of Hilbert 2D
curve

Figure 4.9.: First iteration shown
with base cases

Hilbert-3D-curve

The Hilbert 3D curve is space-filling curve inspired by the classic Hilbert 2D
curve. According to Haverkort [9] there are 10694807 different possibilities to
construct a curve based on the properties of the Hilbert 2D-curve. An other
paper [2] states that there are only 1536 unique structurally different solutions.
The base pattern of the Hilbert 2D curve is preserved in the Hilbert 3D curve.
The base case of the Hilbert 3D curve is illustrated in Figure 4.14. The second
iteration is shown in Figure 4.15.

Definition 4.8. A number given in the fashion of 08t1t2t3 . . . states a number

40

4.2 Partitioning Methods

Figure 4.10.: First iteration of the
curve connected

Figure 4.11.: Second iteration of
the Hilbert 2D curve

Figure 4.12.: Second iteration
connected

Figure 4.13.: Shape of Hilbert 2D
after third iteration

between 0 and 1 in octal representation. The function fhilbert3D : I −→ I3 with

fhilbert3D(08t1t2t3 . . .) = Ht1 ◦Ht2 ◦Ht3 ◦ · · ·

0
0
0

with operators Hi defined as

41

4 Mesh Partitioning

H0

xy
z

 =

1
2x+ 0
1
2z + 0
1
2y + 0

 H1

xy
z

 =

 1
2z + 0
1
2y + 1

2
1
2x+ 0

H2

xy
z

 =

1
2x+ 1

2
1
2y + 1

2
1
2z + 0

 H3

xy
z

 =

 1
2z + 0
−1

2x+ 1
2

−1
2y + 1

2

H4

xy
z

 =

−1
2z + 1
−1

2x+ 1
2

1
2y + 1

2

 H5

xy
z

 =

1
2x+ 1

2
1
2y + 1

2
1
2z + 1

2

H6

xy
z

 =

−1
2z + 1

2
1
2y + 1

2
−1

2x+ 1

 H7

xy
z

 =

 1
2x+ 0
−1

2z + 1
2

−1
2y + 1

Figure 4.14.: Base case of the
Hilbert 3D curve

Figure 4.15.: Hilbert 3D curve with
one iteration

Z-curve

The Z-curve, also called Lebesgue curve, was introduced by Guy Macdonald
Morton in 1966. The calculation of a point on the Z-curve is straight forward.
The number of a point is calculated by the bitwise interleaving the binary
coordinates. This is shown in Figure 4.16 and Figure 4.18.

Definition 4.9. The n-dimensional Z-curve is a space-filling curve defined as
a function [15] fZ-curve : I → In. Calculating the pre-image of a n-dimensional
coordinate is defined by following algorithm:

42

4.2 Partitioning Methods

function Z-curve(n, x[m])
result = 0
for 1 ≤ i ≤ n do

y[m]← (0, . . .)
for 1 ≤ j ≤ m do

if x[j] > 0.5 then
y[j]← 1

end if
result← ShiftLeft(x, 1)
result = result & y[j]

end for
for 1 ≤ j ≤ m do

if y[j] = 1 then
x[j]← (x[j]− 0.5) · 2

else
x[j]← x[j] · 2

end if
end for

end for
return result

end function

The parameters for the call of Z-curve are the number of iterative steps n and
the position x ∈ Im.

The base case of the Z-curve is illustrated in Figure 4.16 Figure 4.18 shows
the first, Figure4.18 the second iteration step. Figure 4.16 and Figure 4.18
also illustrate how the result of the function Z-curve is bitwise created. The
numbers in these Figures are given in binary representation.

Peano 2D curve

The Peano 2D curve was the first space-filling curve invented by Giuseppe
Peano in the year 1890. Different to the other presented structures, this curve
splits per iteration the space into 9 more fine grain pieces.

Definition 4.10. A number given in the fashion of 03t1t2t3 . . . states a number
in ternary representation. The function fPeano2D : I −→ I2 with

fPeano2D(03t1t2t3 . . .) = P xt1 ◦ P
y
t2 ◦ P

x
t3 ◦ P

y
t4 ◦ · · ·

0
0
0

43

4 Mesh Partitioning

Figure 4.16.: Base case of the Z-
curve

Figure 4.17.: Z-curve with one
iteration

Figure 4.18.: Bitwise interleaving
after 2 steps

Figure 4.19.: Z-curve after two
iterations

with operators P xt2i+1 and P yt2i
defined as

P x0

(
x
y

)
=
(
x+ 0
1
3y + 0

)
P x1

(
x
y

)
=
(
−x+ 1
1
3y + 1

3

)

P x2

(
x
y

)
=
(
x+ 0

1
3y + 2

3

)
P y0

(
x
y

)
=
(

1
3x+ 0
y + 0

)

P y1

(
x
y

)
=
(

1
3x+ 1

3
−y + 1

)
P y2

(
x
y

)
=
(

1
3x+ 2

3
y + 0

)

44

4.2 Partitioning Methods

For a better understanding of the Peano curve the Figures 4.20, 4.21 and 4.22
show an illustration of the first 2 iterations.

Figure 4.20.: Base case of the Peano
curve

Figure 4.21.: Peano curve with one
iteration

Peano 3D curve

The Peano 3D curve is inspired by the Peano 2D curve. The structure of the
original Peano curve is preserved and reused. The unit cube I3 if divided in 27
equal parts with 3 planes each consisting of 9 parts. Each plane is constructed
by a Peano curve and all three are connected to each other to preserve the
property of a continuous curve.

Definition 4.11. The Peano 3D curve is a function fPeano3D : I → I3 describ-
ing a space-filling curve. Calculating the pre-image is defined as a an iterative
algorithm:

function getPosition(x, length)
if x < length

3 then
return 0

else if x > 2 · length3 then
return 2

end if
return 1

end function

function Peano-2D((x, y),mirrored, direction, length)
field← 0
x-pos← getPosition(x, 1)
y-pos← getPosition(y, 1)
field← x-pos · 3

45

4 Mesh Partitioning

Figure 4.22.: Peano 2D curve after two iterations

y-num← 0
if x-pos! = 1 then

y-num← y-pos
else

y-num← 2− y-pos
end if
if mirrored = 1 then

y-num← 2− y-num
end if
field← field + y-num
if direction = 1 then field← 8− field
end if
return field

end function

procedure Peano-3D((x, y, z),mirrored, direction, length, result)
x-pos← getPosition(x, length)
y-pos← getPosition(y, length)
z-pos← getPosition(z, length)
direction-2D← direction
if ()mirrored⊕ (z-pos mod 2) = 1) then

direction-2D← 1− direction-2D
end if

46

4.2 Partitioning Methods

x-pos-2D← 3·x
length

y-pos-2D← 3·y
length

xy-num←Peano-2D((x-pos-2D, y-pos-2D),mirrored,direction-2D)
z-num← 0
if mirrored = 0 then

z-num← 9 · z-pos
else

z-num← 9 · (2− z-pos)
end if
result← (xy-num + z-num) · 3 · lenght
if length > 0 then

a← x · x-pos·length
3

b← y · y-pos·length
3

c← z · z-pos·length
3

mirrorednew ← mirrored⊕ (xy-num mod 2)
directionnew ← direction⊕ (x-pos mod 2)⊕ ()y-pos mod 2)
Peano-3D((a, b, c),mirrorednew,directionnew, length/3, result)

end if
end procedure

The procedure Peano-3D is called with the parameters (x, y, z), mirrored, di-
rection, length, result. (x, y, z) is the position to map on the Peano 3D curve.
The parameters mirrored and direction state if the Peano 3D curve is either
mirrored or traversed in the other direction. Typically these two parameters
are initially kept 0. The last parameter length denotes the length of the cube,
which the Peano 3D curve fills.

The Peano 3D curve is illustrated in Figure 4.23

4.2.2. Multi-Level / k-way Partitioning

The multi-level partitioning is the state-of-the-art approach to create parti-
tions of meshes. These methods are fast and deliver good results for a parti-
tioning. These multi-level methods are applying different phases illustrated in
Figure 4.24. Nodes and edges of the mesh are pooled together. Typically the
first phase is a coarsening stage. There are different methods to coarsen a mesh
e.g. by spatial attributes or neighbourhood relationships. Finishing with a rea-
sonable amount of nodes m the next phase starts. In this phase the reduced
mesh is partitioned with an expansive method, which deliver very good results.
In this phase the mesh is partitioned into k different meshes. After the parti-
tion for the coarsened mesh is created, the partition-numbers are propagated
back to the nodes of the refined mesh. If the final amount of the nodes in the

47

4 Mesh Partitioning

Figure 4.23.: The Peono-3D-curve base case

generated sub-meshes is not well distributed, a final phase can be introduced,
which is responsible for rebalancing the sub-meshes.

The complexity is of this methods is typically O(n+ klog(k)) where n denotes
to the number of nodes and k is the number of sub-meshes of the partition.
Depending on the methods to coarsen the mesh and to partition the reduced
mesh the complexity can vary. The memory complexity is typically O(n +
m2) where m states the amount of nodes after the coarsening. During the
coarsening phase the algorithm need to remember its root nodes, to propagate
the computed partition-numbers to them. The partitioning methods used in
the second phase typically have O(m2) memory complexity [13].

48

4.2 Partitioning Methods

Figure 4.24.: The phases of a multi-level partitioning illustrated [20]

49

5. Experimental Section

In this chapter all experimental results and their evaluations are presented.
The first part of this chapter will elucidate the setup of the experiments. The
used mesh structures are specified as well as the used methods to create the
partitions. The system on which the performance tests will be executed is listed
in the Appendix.

5.1. Experiment Setup

5.1.1. Meshes

The first mesh type will be a simple grid structure or structured mesh as defined
in Definition 3.16 with one node-type. This regular structure is widely used for
simulations with less details in the model. It describes the uniformly distributed
spatial discretization of a real-world model. For the experiments we use grids
with 40, 400 Million and 1 Billion nodes. The 2 dimensional versions of the
meshes are forming a square. The 3 dimensional versions will form a cube.

The next mesh type is the unstructured mesh with close neighbourhood defined
in Definition 3.26 with one node-type. In this section this mesh-type is called
delaunay mesh. There will be different variations of this mesh type with which
the experiments will be proceeded. For the experiments we use meshes with 40,
400 Million and 1 Billion nodes. The confining shapes will be the same as for the
structured mesh. To construct the meshes of this type the required amount of
nodes are created. These nodes get random two or three dimensional coordinate
within the confining shape. The next step is to let the TETGEN-tool [17] do the
Delaunay triangulation for the created meshes. The result of the tool are the
edges of the delaunay triangulated mesh. These meshes are then used for the
execution of the experiments.

The third category of meshes used are random meshes described in Defini-
tion 3.16 with one node-type. These meshes do not have a restriction on how
the edges might be connected. Similar to the other 2 cases the shape of the
structures will be the same. The nodes will be connected in a random fashion
over the mesh with no restrictions. Each node will have 3 connections to other
nodes. Finally the mean number of edges per node is 6.

50

5.1 Experiment Setup

5.1.2. Partitioning methods

The used partitioning methods have been defined in Subsection 4.2. The main
focus is on creating partitions with space-filling-curves. These are

• Hilbert 2D curve

• Hilbert 3D curve

• Peano 2D curve

• Peano 3D curve

• Z-curve

As a reference and state-of-the-art partitioning method the k-way-partitioning
algorithm from the METIS-library [11] is used.

To compute partition numbers of 3D coordinates with 2D space-filling curves,
the coordinates are projected on a plane p with the properties

p = 〈

1
0
0

 ,
0

1
0

〉

5.1.3. Data organization methods

To test the organization of the data structure the reordering step from Defini-
tion 4.5 is used. The nodes, edges and attributes will be sorted in ascending
order according to the partitioning-number of the nodes. The resulting meshes
then run in a simulation with a simple kernel to measure the execution time.
Since all kernels are executing the same arithmetical operations in the same
order, the only factor varying the performance is the efficiency of the cache
utilization.

5.1.4. Evaluation Methods

To evaluate the created partition of the meshes we use the quality metrics
introduced in Section 3.4. Those have been the

• Coverage value

• Node distribution deviation

51

5 Experimental Section

• Mean nubmer of nodes in the node-closure

To evaluate the data structure organization of a mesh the execution time of
the mesh with a simple kernel will be measured. Therefore an attribute for the
only node-type is established. The initial attribute value for each node will be
set randomly. The kernel used will be the same as in Example 3.29. It will
calculate the mean value of the neighbours attributes.

5.2. Evaluation of the Partitioning

To provide a better overview the results of the evaluation are separated by the
different mesh types and the dimension of the coordinates of the nodes.

The figures presented provided for each mesh-type illustrate the measured qual-
ity metrics to the corresponding number of partitions. The coverage value is
stated in %. The node distribution error states the deviation in absolute num-
ber. The node closure distribution states the mean value of number of nodes
in the node-closure of the computed sub-meshes.

As the measured results for all different mesh-types with different sizes correlate
with little deviation - the coverage value, the node distribution deviation and
the number of nodes in the node closure changes in a linear fashion with different
slopes - only the results for the meshes with 40 Million nodes are presented.

The average of the number of nodes in the sub-meshes is the total number of
nodes divided by the number of sub-meshes. Hence this information is not
displayed in Section 5.2.

The deviation of the node-closure distribution is in all measured cases smaller
than 0.005%. Hence this information is not displayed in Section 5.2.

52

5.2 Evaluation of the Partitioning

5.2.1. 2D Grid Structure

The results for partitioning a 2D Grid with 21, . . . , 27 sub-meshes with 40 Mil-
lion nodes with the presented methods are shown.

Figure 5.1.: Coverage Figure 5.2.: Node distribution error

Figure 5.3.: Node closure distribution

In Figure 5.1 we can see that no partition created by a space-filling curve cut
more than 0.2% of all edges when computing 128 sub-meshes.

Illustrated in Figure 5.2 that the number of nodes in the sub-meshes is nearly
evenly distributed. The node distribution deviation of the space-filling curve
partitioned meshes is not exceeding 0.22% of the corresponding mean value.

According to the measured results, also the 2D curves are performing slightly
better than the 3D curves.

As we can see in Figure 5.3 the Peano curves are not performing as well as the
others. This is caused by the construction of the partitions. To compare the
partitions created by the Peano curve with all other curves, we have to create
2, 4, 8, . . . sub-meshes per partition. The highest assigned partition number
after partitioning with the Peano 2D with p iterations is maxn = 32p − 1. To

53

5 Experimental Section

Figure 5.4.: Partition with 2 sub-meshes created by Peano 2D

create i ∈ {2j+1 | j ∈ N} partitions a node with a partition number n is assigned
to the sub-meshm when m·maxn

i ≤ n < (m+1)·maxn

i − 1. Illustrated in Figure 5.4
the nodes inhabited in sub-mesh0 are the nodes in the grey area. The nodes in
the white area are assigned to sub-mesh1. We can see in Figure 5.4 that the
contact line, on which the nodes are separated, is longer than the length of the
line halves the mesh. Hence the mean number of nodes in the node-closure is
higher.

5.2.2. 3D Grid Structure

The results for partitioning a 3D Grid with 21, . . . , 27 sub-meshes with 40 Mil-
lion nodes with the presented methods are shown.

Figure 5.5.: Coverage Figure 5.6.: Node distribution error

In Figure 5.5 we can see that there is no partitioning method which cut more

54

5.2 Evaluation of the Partitioning

Figure 5.7.: Node closure distribution

than 0.5% of all edges when computing 128 sub-meshes. The partitions com-
puted by the space-filling curves deliver better coverage values than the one
computed by the METIS library, as exploiting the spatial domain is of advan-
tage when splitting structured grid.

Again the node distribution deviation is not exceeding 4% of the corresponding
mean value. This indicates, that the nodes are well distributed over the sub-
meshes.

The best results for partitioning these meshes are delivered by the Hilbert 3D
curve.

5.2.3. 2D Delaunay Mesh Structure

The results for partitioning a 2D delaunay triangulated mesh with 21, . . . , 27

sub-meshes with 40 Million nodes with the presented methods are shown.

Figure 5.8.: Coverage Figure 5.9.: Node distribution error

In Figure 5.8 we can see that the total number of edges in the cut of the

55

5 Experimental Section

Figure 5.10.: Node closure distribution

partitions is minimal when partitioned with the METIS library. The best results
of the space-filling curves are achieved with the Hilbert 2D curve.

The deviation of the node distribution shown in Figure 5.9 is not as good, as
in the case presented in Section 5.2.1. The Hilbert 3D partitioning with 128
sub-meshes has an error of 9.1% corresponding to the mean. The Peano 2D
curve and the Z-curve have a maximal error of 0.5%.

Looking at the number of nodes in the node-closure in Figure 5.10 we can see,
that the Hilbert 2D curve performed best. Compared with the state-of-the-art
partitioning method METIS the number of nodes in the closure is halved.

5.2.4. 3D Delaunay Mesh Structure

The results for partitioning a 2D delaunay triangulated mesh with 21, . . . , 27

sub-meshes with 40 Million nodes with the presented methods are shown.

Figure 5.11.: Coverage Figure 5.12.: Node distribution error

In Figure 5.11 is shown, that the coherency of the METIS partitioned meshes is

56

5.2 Evaluation of the Partitioning

Figure 5.13.: Node closure distribution

higher than the ones partitioned with the space filling curves. The space-filling
curve closest to the METIS library is the Z-curve.

Shown in Figure 5.12 is the deviation of node distribution. The Hilbert curves
are performing not as well as the other space-filling curves. The maximal error
of the Hilbert 2D curve is 2.15%. The best performance are stated by the Peano
curves with a maximal error of 0.27%. The overall best performance for this
mesh-type has the Z-curve.

5.2.5. 2D Random Mesh

The results for partitioning a 2D random mesh with 21, . . . , 27 sub-meshes with
40 Million nodes with the presented methods are shown. Each node of the mesh
is connected to 3 random neighbours. Finally the mean number of edges per
node is 6.

Figure 5.14.: Coverage Figure 5.15.: Node distribution error

In Figure 5.14 we can determine that the space-filling curves cut half already
in the first step. Only 50% of all edges of the mesh are inside a sub-mesh.

57

5 Experimental Section

Figure 5.16.: Node closure distribution

With each consecutive step the number of edges in the sub-meshes are cut in
half again. This lead to poor results for the coverage value. Only the METIS
library is able to compute good structured partitions.

Nevertheless the number node is well distributed over the sub-meshes. The
node distribution deviation for the space-filling curve partitioned meshes is not
exceeding 1% of the corresponding mean value.

5.2.6. 3D Random Mesh

The results for partitioning a 3D random mesh with 21, . . . , 27 sub-meshes with
40 Million nodes with the presented methods are shown. Each node of the mesh
is connected to 3 random neighbours. Finally the mean number of edges per
node is 6.

Figure 5.17.: Coverage Figure 5.18.: Node distribution error

The evaluation of the partitioning of 3D unstructured meshes is similar to the
2D unstructured meshes presented in Section 5.2.5.

58

5.2 Evaluation of the Partitioning

Figure 5.19.: Node closure distribution

In Figure 5.17 we can determine that partitioning unstructured meshes with
space-filling curves cut half of all edges when creating 2 sub-meshes. When
creating 4 sub-meshes only 25% of all edges are inside the sub-meshes.

59

5 Experimental Section

5.3. Evaluation of Computation Time

Subsequent to the partitioning the meshes, the nodes have been reordered ac-
cording to their partition number. To get good results for the reordering for the
space-filling curves the partition numbers are number in the interval [0, 263−1].
To reorder the METIS partitioned meshes, 1024 partitions have been created
and been reordered according to their partition number. Then simulations
with these reordered meshes are performed. The kernel for the simulation is
displayed in Example 3.29. Each simulation was executed with 20 time steps.

Figure 5.20.: Reordered 2D grid
structured meshes
execution times

Figure 5.21.: Reordered 3D grid
structured meshes
execution times

Figure 5.22.: Reordered 2D ran-
dom meshes execution
times

Figure 5.23.: Reordered 3D ran-
dom meshes execution
times

In Figure 5.20 the execution times for the reordered 2D grid structured meshes
are displayed. We can see that the Z-curve and the Hilbert curves have the same
performance. The Peano curves show an increase of maximal 23% compared
to the other space-filling curves. The METIS reordered mesh is execution the
simulation 15% faster than the Hilbert curves and the Z-curve.

Figure 5.21 is illustrating the execution times for the reordered 3D grid struc-
tured meshes. The execution times of the space-filling curve reorganized meshes
differs only about 2%. The state-of-the-art approach is executing 24% faster
than all the other methods.

60

5.3 Evaluation of Computation Time

Figure 5.24.: Reordered 2D delau-
nay meshes execution
times

Figure 5.25.: Reordered 3D delau-
nay meshes execution
times

Illustrated in Figure 5.22 and Figure 5.23 we can see that the space-filling curve
partitioned random meshes show poor results. The reordered mesh according
to the METIS partitioning is 48% faster than the Hilbert 3D approach and 38%
faster than the Peano 2D reordered mesh.

In Figure 5.24 and Figure 5.25 the execution times of the 2D and 3D delaunay
reordered meshes are presented. The best results for the space-filling curves in
both cases are shown by the Hilbert 2D curve. The Hilbert 2D curve reordering
performed 9% faster in the 2D case and 6% faster in the 3D case than the second
best space-filling curve reordered mesh. Remarkable is that this is the only case,
where the 2D space-filling curve provide better results than its 3D version on a
3D data structure. Again the METIS approach achieve the best results. It is
21% and 27% faster than the Hilbert 2D curve reordered mesh in the 2D and
3D case.

61

6. Conclusion and Future Work

6.1. Conclusion

As shown in Section 5 space-filling curves compute acceptable results for par-
titioning grid and delaunay structured meshes.

For partitioning grids with space-filling curves the number of nodes per sub-
mesh is balanced and coverage values for partitions constructed with space-
filling curves get similar results as the partitions created with a k-way algo-
rithm.

Partitioning delaunay triangulated meshes with space-filling curves show some
deficits. The number of nodes in the node-closure is nearly double as high
compared to the k-way partitioning. The best results for the 2D delaunay
triangulated meshes are provided by the Hilbert curves. For the 3D case the
Z-curve and the Hilbert 3D curve achieve the best results.

When it comes to partitioning unstructured meshes, the only useful approach
is to partition the meshes with a k-way algorithm. The partitions computed
with space-filling curves have a deficit when it comes to number of nodes in the
node-closure and number of edges in the cut of the partitioning.

The execution times of a simulation with the reordered structured meshes and
a kernel show that for the space-filling curves the z-curve and the Hilbert curves
perform best, but underlie the METIS reordered mesh.

The best results executing a simulation with delaunay triangulate meshes are
achieved by using a Hilbert reordered mesh as data structure.

The unstructured meshes reordered according to the space-filling curves achieve
poor results.

Conclusion: Using low-cost space-filling curves for partitioning meshes is a fast
and easy way to get a partitioning for a mesh with quality in node distribution
of the sub-meshes, coverage and the distribution of nodes to the node closures,
but compared to the reordering of the state-of-the-art partitioning method it
has huge deficits.

62

6.2 Future Work

6.2. Future Work

The presented partitioning methods with space filling curves are only tested on
artificially created meshes. Testing these partitioning methods with real-world
meshes is missing. This includes meshes of different sizes and shapes i.e. circles
or irregular structures is missing.

Further investigation should be done on the reason, why METIS reordered
meshes dominate the execution time measurement, even so the only 1024 dif-
ferent partition numbers are used.

The simulation with the reordered meshes was executed on a single system.
How simulations of the computed sub-meshes executed on a distributed memory
system was not investigated by this thesis either. The quality metrics of this
thesis has been derived by a model for computing sub-meshes on a cluster.
With the execution of the computed partitions on a cluster the impact of the
measured quality metrics could be investigated.

63

Bibliography

[1] Anant Agarwal, J Hennessy, and M Horowitz. An analytical cache model.
ACM Transactions on Computer Systems (TOCS), 7(2):184–215, 1989.

[2] Jochen Alber and Rolf Niedermeier. On multi-dimensional hilbert index-
ings. In Computing and Combinatorics: 4th Annual International Confer-
ence, COCOON’98, Taipei, Taiwan, RoC, August 1998. Proceedings, pages
1–1. Springer, 1998.

[3] Ulrik Brandes, Marco Gaertler, and Dorothea Wagner. Engineering graph
clustering: Models and experimental evaluation. ACM Journal of Experi-
mental Algorithmics, 12(1.1):1–26, 2007.

[4] Arthur R Butz. Alternative algorithm for hilbert’s space-filling curve.
IEEE Transactions on Computers, 100(4):424–426, 1971.

[5] Peter J Denning. The locality principle. Communications of the ACM,
48(7):19–24, 2005.

[6] John M Dennis. Inverse space-filling curve partitioning of a global ocean
model. In Parallel and Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International, pages 1–10. IEEE, 2007.

[7] Welzl Gaertner, Hoffmann. Computational geometry. University Lecture,
2013.

[8] Michael R Gary and David S Johnson. Computers and intractability: A
guide to the theory of np-completeness, 1979.

[9] Herman Haverkort. An inventory of three-dimensional hilbert space-filling
curves. arXiv preprint arXiv:1109.2323, 2011.

[10] David Hilbert. Über die stetige abbildung einer linie auf ein flächen-
stück. In Dritter Band: Analysis· Grundlagen der Mathematik· Physik
Verschiedenes, pages 1–2. Springer, 1935.

[11] George Karypis and Vipin Kumar. Metis–unstructured graph partitioning
and sparse matrix ordering system, version 2.0. 1995.

64

Bibliography

[12] Brian W Kernighan and Shen Lin. An efficient heuristic procedure for par-
titioning graphs. The Bell system technical journal, 49(2):291–307, 1970.

[13] Shen Lin and Brian W Kernighan. An effective heuristic algorithm for the
traveling-salesman problem. Operations research, 21(2):498–516, 1973.

[14] Hui Liu, Kun Wang, Bo Yang, Min Yang, Ruijian He, Lihua Shen,
He Zhong, Zhangxin Chen, et al. Dynamic load balancing using hilbert
space-filling curves for parallel reservoir simulations. In SPE Reservoir
Simulation Conference. Society of Petroleum Engineers, 2017.

[15] Guy M Morton. A computer oriented geodetic data base and a new tech-
nique in file sequencing. International Business Machines Company New
York, 1966.

[16] Stefan Schamberger and Jens-Michael Wierum. Graph partitioning in sci-
entific simulations: Multilevel schemes versus space-filling curves. In Inter-
national Conference on Parallel Computing Technologies, pages 165–179.
Springer, 2003.

[17] Hang Si. Tetgen, a delaunay-based quality tetrahedral mesh generator.
ACM Transactions on Mathematical Software (TOMS), 41(2):11, 2015.

[18] Jens-Michael Wierum. Definition of a new circular space-filling curve βω-
indexing. 2002.

[19] Sung-Eui Yoon and Peter Lindstrom. Mesh layouts for block-based caches.
IEEE Transactions on Visualization and Computer Graphics, 12(5):1213–
1220, 2006.

[20] Lei Zhang, Guoxin Zhang, Yi Liu, and Hailin Pan. Mesh partitioning
algorithm based on parallel finite element analysis and its actualization.
Mathematical Problems in Engineering, 2013, 2013.

65

A. Additional data

A.1. Target Architecture used in Experiment Section

Listed are the relevant technical specifications of the target architecture:

CPU:

CPU Type Intel(R) Xeon(R) CPU E5-4650
Clock Frequency 2.70 GHz

L1 Data Cache:

Total size 32 KB
Line size 64 B

Number of Lines 512
Associativity 8

L1 Instruction Cache:

Total size: 32 KB
Line size 64 B

Number of Lines 512
Associativity 8

L2 Unified Cache:

Total size 256 KB
Line size 64 B

Number of Lines 4096
Associativity 8

L3 Unified Cache:

Total size 20480 KB
Line size 64 B

Number of Lines 327680
Associativity 20

66

A.1 Target Architecture used in Experiment Section

Main Memory:

Memory Size 256 GB

Compiler:

Name g++
Version 5.1.0

Used Flags -O3
-std=c++14

The execution time measurements are performed in the system with a single
threaded on the specified architecture.

67

	Introduction
	Motivation
	Objectives
	Challenges
	Overview

	Related Work
	Definitions
	Mesh
	Simulation
	Partition of a mesh
	Quality Metrics for Partitions
	Node Distribution
	Node-closure Distribution
	Coverage
	Summary of Quality Metrics for Partitions

	Locality of Reference
	Quality Metrics for Data Organization

	Mesh Partitioning
	Overview / Architecture
	Work-flow Overview
	Intermediate Steps
	Assigning
	Propagation
	Reordering

	Partitioning Methods
	Space-Filling Curves
	Multi-Level / k-way Partitioning

	Experimental Section
	Experiment Setup
	Meshes
	Partitioning methods
	Data organization methods
	Evaluation Methods

	Evaluation of the Partitioning
	2D Grid Structure
	3D Grid Structure
	2D Delaunay Mesh Structure
	3D Delaunay Mesh Structure
	2D Random Mesh
	3D Random Mesh

	Evaluation of Computation Time

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Additional data
	Target Architecture used in Experiment Section

