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Abstract

The Insieme compiler and Insieme Runtime system support the development

and optimization of parallel programs. However, the usage of the Insieme

infrastructure, especially for larger code bases, is not trivial. Limited software

productivity does not only affect the end-user of the Insieme compiler, but

also Insieme compiler developers have to be careful when implementing new

features, in order to keep the code structure clean, error-free, and readable.

This work aims to develop a high productivity Insieme compiler for both

the end-users and the compiler developers. Beside the formal background, the

main content of this master thesis describes the implementation of the Insieme

frontend and the implementation of the insiemecc driver on the one hand, and

a plugin system for the Insieme frontend on the other hand.

The insiemecc driver, provides an easy-to-use interface for the end-users of

the Insieme compiler, that can be used as a replacement for GCC, LLVM,

or any other kind of C/C++ compiler. The Insieme frontend plugin system,

provides an interface for the compiler developers, to modify the standard

workflow of the Insieme compiler. This makes it very easy to introduce new

functionalities (e.g., implementation of a new language standard) without

modifying the core components of the Insieme frontend.
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Chapter 1

Introduction

In the last decade single-core processor systems have been substituted by multi-

core processor systems. Because of this fact, it was necessary to change the ways

of how computer systems are programmed. The main reasons why multi-core

processor systems have become the de facto standard and more important than

single-core processor systems are the high power consumption when using high

frequencies and the heat dissipation that is difficult to handle. To solve this

problems and providing processors with a higher performance, multiple cores

are used instead of a single core with a higher frequency.

Figure 1.1: Performance history of CPUs [1]

Single-core systems are easy to program and if the frequency of the com-

puting unit is increased the performance will also increase. In simple terms,
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this means that an execution that takes one time unit when executed on a

1GHz single-core system will be two times faster when executed on a 2GHz

single-core system. This is true for single-core but not for multi-core systems,

because the control- and data-management between the computing units have

to be considered. The problem when executing software on a multi-core system

is that the CPU or the operating system will not take care of the work-load

distribution of a single program. This means, if a software programmer is not

taking care of the existence of a multi-core system, only one computing unit will

be utilized by the software. This can lead to poor and unsatisfying performance

results. Figure 1.1 shows the history of CPU performance. The performance

increase of more than 50% per year is not valid anymore. Nowadays the

performance of a single core is only increasing at about 20% per year, because

the chip manufacturers produce multi-core processors instead of faster cores.

Therefore it is required to change the way of how software is programmed in

order to make use of the chip performance, be energy efficient, save runtime, etc.

There have been several approaches to make it easier for software devel-

opers to create software that can be used effectively on multi-core systems.

For instance, with OpenMP [2] a programmer can define parallel regions or

loops that will be equipped with the correct fork and join calls to execute

them in different threads. The problem when using such frameworks or par-

allel programming paradigms is that the developer has to have special skills,

programming knowledge, and when using systems with plenty of cores or het-

erogeneous environments it gets very difficult to organize the work-distribution

in a good way. But not only runtime performance can be important. There

can also be objectives like power consumption, efficiency, computing costs, etc.

The Insieme project tries to research ways of automatic optimization for such

parallel programs.

1.1 My contributions

This master thesis was developed in terms of the Insieme project. There are a

lot of people working on the project and as a result of this I will explain my

contributions to Insieme:

• Creation of a usable driver: In order to use Insieme effectively, there was

a need to create a compiler driver (known as insiemecc) that understands

the well known flags that are used in modern compilers (e.g., optimization-

, debug-, warning-, include-, linker-flags, etc.). The second feature that

was introduced is the creation of object files. A main problem of Insieme
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was that the information of all translation units had to be known in order

to generate the intermediate representation. This led to a huge memory

consumption when using multiple translation units. To get rid of this

problem the object file creation was introduced. This means that single

translation units can be handled independently and the binary dump of

the intermediate representation can be reloaded in a later step (e.g., linker

step).

• Plugin system: The plugin system can be seen as a framework that helps

to modify the behaviour of the compiler. The basic idea is to provide fixed

positions where the user can modify the standard way that is performed

by Insieme. This can for example be the injection of source code or the

modification of a statement conversion.

• Elements of the C++ frontend: To support the conversion of all elements

of C++ it was needed to introduce some new intermediate representation

nodes and add the corresponding visitor methods. Just to name some

language elements that where contributed by the author:

Statement expressions

Goto and Label statements

Auto type

Typeid expressions

Complex types

Enum types

1.2 Compiler

A compiler is a software tool that can create an executable computer program

out of an input file, that is written in a specific programming language. More

general a compiler can be described as a computer program that translates a

program that is written in programming language A into a semantically equiv-

alent that is written in programming language B. Normally the input source

is written in a high level language (e.g., C++) and the produced output is a

machine read- and executable language like Assembler or some specific bytecode.

The execution of the compiler and the translation process from one lan-

guage into another language respectively is called compilation. The reverse

process is called decompilation. The core components and the belonging input

and output data can be seen in Figure 1.2. The core components of the compiler
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Figure 1.2: Compiler workflow [3]

can be grouped into two different areas. The compiler frontend and the compiler

backend. Basically everything that happens before the intermediate code exists

belongs to the compiler frontend and all steps that follow the intermediate

representation creation belong to the compiler backend area. Section 1.2.1

describes the components of the compiler frontend and backend.

The basic standard steps a compiler is performing during the compilation

of a program are [4]:

• Syntax checking: The compiler has to check if the input program is written

correctly. This means that the source code has to apply to the language

syntax. If errors are found the compiler has to report them to the user.

• Analysis and optimization: The intermediate representation is analyzed

and optimized. The power of this feature set is different from compiler to

compiler and can also be controlled by the user.

• Code generation: Once the intermediate representation is translated, the

compiler tries to create a semantically equivalent program written in the

target language. Target language optimizations can be done in this phase.

1.2.1 Compiler infrastructure

Compiler frontend

The main functionality of the compiler frontend is to prepare the input code

for parsing, syntactic and semantic analysis and error recognition. These key
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Figure 1.3: Compiler frontend [3]

functionalities are grouped into several phases that can be seen in Figure 1.3.

Compiler frontend components:

• Lexical analyzer: The lexical analyzer component gets the input source

code and splits it up into the most basic language elements. The most basic

elements are called tokens and can for example be operators, keywords,

identifiers, and numbers. Once the lexical analyzer finds no more tokens

it returns the list of tokens. If there are tokens that cannot be mapped to

a token group the compiler throws a lexical error.

• Syntactical analyzer: The main task of the syntactical analyzer is to check

if the token list matches the grammer of the source language. This means

for example that after an if keyword there has to be an opening bracket.

The output of the syntactical analyzer is a syntax tree.

• Semantic analyzer: The semantic analyzer checks if the given syntax tree

applies to the semantic rules of the source language. For example a floating

point division can only be applied to floating point data types. The com-

piler annotates the syntax tree with additional information to recognize

mismatches, find all declared variables, etc.
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• Source code optimizer: The source code optimizer component is used

to perform optimizations on the intermediate representation. Before the

source code optimization step, the compiler is generating a more low level

language out of the abstract syntax tree. This low level language is called

intermediate representation (IR). Such optimizations can for example be

constant folding, dead code elimination, and loop fusion.

Compiler backend

All steps that are performed after intermediate representation generation are

grouped into the compiler backend. The main functionality of the backend is

to use the intermediate language to create correct and semantically equivalent

target code. Further features are intermediate and target code optimizations.

The basic steps that are performed in the compiler backend can be seen in

Figure 1.4.
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Figure 1.4: Compiler backend [3]

Compiler backend components:

• Code generator: The intermediate representation that was generated be-

fore is now converted into the target code. Especially for multi platform
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compilers it is important to have an intermediate representation, because

this representation can be exchanged between different platforms in or-

der to generate target code for a specific platform. The output that is

generated by the code generator can for example be assembler code or a

machine code.

• Target code optimizer: The last step is the target code optimization. This

optimization step tries to identify slow operations and interchange them

with faster operations if possible. This can for example be the replacement

of a multiplication by a shift operation.

1.2.2 Classification of compilers

Compilers can be classified based on the way how target code is generated.

• Single pass compiler: A single pass compiler is a compiler that is creating

the target code in one single run. This means that all information that is

needed can be collected immediately. This is not possible for all languages

or language constructs (e.g, C++ forward declarations)

• Multi pass compiler: The target code is not created in a single pass. This

means for instance that in a first pass the intermediate representation is

generated and in a second step the target code is produced. Multi pass

functionality is needed if the compiler has to resolve language constructs

(e.g., C++ forward declarations) that make it impossible to create the

target code in a single pass.

• Native compiler: A native compiler can only create target code for the

platform where the compiler is running.

• Cross compiler: In contrary to the native compiler a cross compiler can

also create target code for architectures that are not of the same type

where the compiler is executed. This can be helpful if the target platform

is unsuitable for larger compilations (e.g., embedded systems).

• Source-to-source compiler: A source to source compiler is not generating

executable code for the target platform. It tries to generate a translation

of the input code into another language.

• Just-in-time compiler: The just in time compiler is translating the source

code into target code only when it is needed. This means that unused

code elements are not translated. An advantage of this kind of compiler is

that the compiler has runtime informations and generally more knowledge
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than a standard compiler, because the executable is already in a running

state when the compilation step is performed.

1.3 Clang compiler frontend

The Clang compiler frontend is a part of the LLVM compiler and was developed

as an replacement for the GCC compiler frontend. So far the Clang compiler

frontend supports following languages:

• C

• C++ (up to C++11 standard)

• Objective-C

• Objective-C++

The compiler frontend is not limited to be used as a part of the LLVM compiler.

This makes it easy for other projects to use parts of the Clang frontend in their

own projects. [5]

1.3.1 Features

The following information about the Clang features can be read in a more de-

tailed and complete version in [6].

• Fast compile times and low memory usage: Compared to GCC the Clang

compiler frontend produces a more compact abstract syntax tree. This

results in a faster processing time and lower memory usage.

• Expressive diagnostics: One of the main advantages of the Clang compiler

frontend is the user friendly diagnostic system. Warnings and errors are

represented in a readable way. Highlighted related information, coloring

of the important terms, and exact position of the error makes it easy to

find and fix errors in the input code.

• GCC compatibility: GCC is the de facto standard open source compiler

that is widely used. There are a lot of GCC extensions that are not defined

in the C or C++ standard. In order to compile code that uses this GCC

extensions, the Clang compiler frontend has to support this extensions

too. Clang is fully GCC compatible which means that all GCC extensions

are implemented in Clang.
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• Modular library based architecture: Clang is divided into several libraries

and tools. This design makes it easy to use for other developers, because

the different elements of the frontend are clearly divided and can be ac-

cessed by a well defined interface. For instance, if a developer wants to

develop a preprocessor tool the Basic and Lexer libraries can be used.

Following libraries are available [6]:

– libsupport: Basic support library, from LLVM.

– libsystem: System abstraction library, from LLVM.

– libbasic: Diagnostics, SourceLocations, SourceBuffer abstraction, file

system caching for input source files.

– libast: Provides classes to represent the C AST, the C type system,

builtin functions, and various helpers for analyzing and manipulating

the AST (visitors, pretty printers, etc).

– liblex: Lexing and preprocessing, identifier hash table, pragma han-

dling, tokens, and macro expansion.

– libparse: Parsing. This library invokes coarse-grained ’Actions’ pro-

vided by the client (e.g. libsema builds ASTs) but knows nothing

about ASTs or other client-specific data structures.

– libsema: Semantic Analysis. This provides a set of parser actions to

build a standardized AST for programs.

– libcodegen: Lower the AST to LLVM IR for optimization and code

generation.

– librewrite: Editing of text buffers (important for code rewriting trans-

formation, like refactoring).

– libanalysis: Static analysis support.

– clang: A driver program, client of the libraries at various levels.

1.3.2 Performance

The following information and graphic elements stem from the Clang features

and goals website [6]. A main objective of Clang is performance and to provide a

lightweight infrastructure. Profiling of the compiler can be done in a simple way,

because of the library based architecture. In order to test the performance of

the Clang compiler frontend following test was performed. The input file called

Carbon.h is a huge piece of code with 12.3 million lines of code, 10000 function

declarations, 2000 structures, 8000 fields, 20000 enumerations and 558 include

directives, etc. Figure 1.5 shows the time performance of the Clang compiler
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frontend compared to GCC 4.0. The time that Clang needs for the frontend

activities is 2.5 times smaller than the time that is needed by GCC 4.0.

Figure 1.5: Clang time performance [6]

A second important factor is the memory that is needed to store the abstract

syntax tree. Again, Clang is much more efficient than GCC 4.0. Figure 1.6 shows

the memory usage of the abstract syntax tree for the test input file (Carbon.h).

The tree that is produced by GCC is 10 times larger than the preprocessed

input file. The tree that is produced by Clang is only 30 percent larger than the

preprocessed input source.

1.4 Related work

The first part of this thesis is concerned about the implementation of a widely-

usable driver for the Insieme compiler. Because such a driver component is part

of every modern compiler, there are many related work topics. For the creation

of the Insieme driver the GCC driver was used as a template. The reason

for this is that in a standard Linux environment GCC is used as compiler for

Insieme generated codes. The main difference between the Insieme driver and

the GCC driver is that the Insieme compiler only supports the most important

flags (e.g., include-, linker-, optimization-, debug-flags, etc.). Additionally

to this, the Insieme compiler driver supports flags to activate or deactivate

Insieme internal features like semantic checks, or the recognition of pragmas, etc.
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Figure 1.6: Clang space performance [6]

The second main part of the thesis describes the implementation of a plu-

gin system for the Insieme frontend. Other compilers, especially open-source

compiler projects, support plugin systems too. The plugin systems of LLVM,

GCC, and the Cetus compiler are best comparable to the Insieme frontend

plugin system. According to [7] the ROSE compiler infrastructure does not

have a documented support for the extension of compiler features with the help

of user developed plugins or compiler passes.

• LLVM compiler passes [8]: LLVM supports a wide variety of different com-

piler passes that can be used to modify the intermediate representation

that is generated by the LLVM compiler. It is very easy to modify code

constructs like functions, loops, basic blocks, etc. Another use case of the

compiler pass system is to provide code analysis features. However, there

is no way to modify the behaviour of how the intermediate representa-

tion is generated. The passes are not executed during the intermediate
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code generation and have to be applied with a tool, that takes the IR

code dump and the precompiled compiler pass as input and outputs the

modified LLVM IR code. This can be seen as the main difference to the

Insieme compiler. The Insieme frontend plugin system does not only pro-

vide features to modify the intermediate representation. It is also possible

to change the standard way of how Clang AST nodes are converted into

IR nodes.

• GCC Plugin API [9]: The GCC plugin API provides means for code anal-

ysis, transformations, and optimizations. The plugin callbacks can be

invoked at pre-determined events, like it is done in the Insieme frontend

plugin system. For instance, the plugin API of GCC supports plugin

events after parsing declarations or types, during the garbage collection,

before GCC exits, etc. The Insieme frontend plugin system focuses on

the compiler frontend and the interfaces to and from other Insieme com-

ponents and therefore does not support all of the GCC plugin features.

Important pre-determined events that are supported by the GCC Plugin

API are:

– after finishing parsing a type

– after finishing parsing a declaration

– before a translation unit is converted

– after finishing a translation unit

– before GCC exits

– before GCC Garbage Collection

• Cetus compiler passes [10]: User provided compiler passes can modify the

IR that is generated by the Cetus compiler. Like in the LLVM compiler

passes there is no way to modify the IR during its generation. According

to the documentation an important feature of the Cetus compiler pass

system is the iteration through the generated IR. According to [10] there

is also a set of different tools that provide a compiler pass template that

can for instance be used for:

– DataFlowTools: Utility methods for detecting used or modified mem-

ory accesses.

– IRTools: Utility methods for searching specific types of IR objects

that appear in the IR tree.

– PrintTools: Utility methods that enable pretty printing of collections

and user-directed printing of verbose information.
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– SymbolTools: Utility methods related to Cetus’ symbol interface.

– Tools: Utility methods for general purpose.

– Expression simplifier: The expression simplifier is used to normalize

and simplify IR expressions.
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Chapter 2

Insieme compiler project

2.1 Project description

The following description is the mission statement of the Insieme project and

can be found in [11]:

Parallel computing systems have become omnipresent in recent

years through the penetration of multi-core processors in all IT

markets, ranging from small scale embedded systems to large scale

supercomputers. These systems have a profound effect on software

development in science as most applications are not designed to

exploit multiple cores. The complexity in developing and optimizing

parallel programs will rise sharply in the future, as many-core

computing systems become highly heterogeneous in nature, inte-

grating general purpose cores with accelerator cores. Modern and

in particular future parallel computing systems will be so complex

that it appears to be impossible for any human programmer to

effectively parallelize and optimize programs across architectures.

The main goal of the Insieme project of the University of Inns-

bruck is to research ways of automatically optimizing parallel

programs for homogeneous and heterogeneous multi-core architec-

tures and to provide a source-to-source compiler that offers such

capabilities to the user.

Insieme features:

• Support for multiple programming languages and paradigms

such as C, Cilk, OpenMP, OpenCL and MPI (C++ support is

under development).
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• Multi-objective optimization techniques supporting objectives

such as execution time, energy consumption, resource usage

efficiency and computing costs.

• The Insieme Runtime that provides an abstract interface to

the hardware infrastructure, offering online code tuning and

steering, dynamic reconfiguration of hardware resources and

monitoring of the application’s performance.

• An input code independent Intermediate Representation (IN-

SPIRE) for developing new compiler techniques to optimize

parallel programs.

• A rich analysis and transformation toolbox which operates on

INSPIRE and aims to maximize developer productivity when

researching new optimizations

• Deep integration between the compiler and its associated

runtime system, allowing the convenient exchange of arbitrary

meta-information for novel combined optimization strategies

2.2 Architecture

The Insieme compiler project consists of two major components. The Insieme

compiler infrastructure and the Insieme Runtime System. The main feature

of the Insieme compiler is to translate input code, that is either written in C

or C++, and uses OpenMP, MPI, Cilk, or OpenCL, into the Insieme inter-

mediate representation (INSPIRE) [12] and back into C code. The resulting

C-representation can be combined with the Insieme Runtime System and can

be compiled into an executable application.

2.2.1 Insieme Runtime system

The aim of the Insieme Runtime System [13] is to execute parallel programs,

that are specified with the INSPIRE language and compiled with the Insieme

compiler. This means that a parallel input code (e.g., C++ application that

uses OpenMP directives) can be translated into an INSPIRE program that

expresses the input source code and additionally the parallel regions, synchro-

nization points, etc. of the code. The code that is generated by the Insieme

compiler is making use of the Insieme Runtime System in order to manage the

parallel execution. As described in [13], the Insieme Runtime System is able to

interact with, monitor, reconfigure the underlying hardware of the system and

apply online code-tuning and steering. Data parallelism is supported as well as
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task parallelism.

Figure 2.1 shows a basic overview of the elements that form the Insieme

Runtime System. It can be seen that the system is split up into three categories

[13]:

• Abstraction: The abstraction layer encapsulates system specific imple-

mentations of threading, synchronization, affinity settings, etc.

• Core: Components providing the core functionality of the runtime system.

• Utilities: Provides features that are used by the runtime system to ac-

complish its tasks. This can for example be system specific timers or

monitoring functionalities.

Figure 2.1: Insieme Runtime System [14]

Example: The code blocks that can be seen in Figure 2.2 show an example

translation of some input code into the corresponding INSPIRE code and back

into C code. The input code is using OpenMP to implement a parallel for

loop. The Insieme compiler will recognize this loop and will translate it into

a pfor (parallel for) INSPIRE element. The last box shows the ouput code

that is generated by the Insieme compiler. The needed Insieme Runtime client

elements are integrated and the parallel for loop can now be executed with

the Insieme Runtime. More details about the Insieme Runtime system model,

runtime elements, optimization strategies, etc. can be found in the thesis of

Peter Thoman [13].
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int main() {
int i;
#pragma omp parallel for
for(i=0; i<100; i++) {

//for body
}
return 0;

}

int<4> main(...) {
ref<int<4>> v1=0;
pfor(..., (){

//for body 
});
return 0;

}

void for_body(...) {
//for body 

}

void insieme_wi_impl(irt_work_item* wi) {
for_body(wi, ...); 

}

int main() {
insieme_runtime_standalone(...);
return 0;

}

C/C++ input code INSPIRE code C/C++ output code + Runtime

Figure 2.2: Insieme Runtime System example

2.2.2 Insieme Compiler

The second major component of the Insieme project, called the Insieme com-

piler, also consists of several parts. The compiler frontend that is based on

different elements of the Clang compiler frontend library, a high level optimizer

and a backend component that is producing target code out of INSPIRE code.

Figure 2.3 shows the different elements of the Insieme compiler. Further features

of the Insieme compiler are different algorithms and techniques for manipulating

and optimizing the intermediate representation. The reason why optimization

is done in the context of the intermediate representation is because Insieme

supports different input languages and parallelization concepts (e.g., OpenMP,

OpenCL, and MPI). The generated INSPIRE program represents the parallel

concepts in a uniform way, such that one optimizer can be used for different

input languages and parallel concepts.

Figure 2.3: Insieme Compiler Infrastructure [14]
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Like illustrated in Figure 2.3 the Insieme compiler consists of the following

components, among others:

• Driver: The driver component is the entry point of the compiler. The

driver can be seen as the interface between end-user and the compiler

components. The driver component is setting up the environment, config-

uring the frontend, core and backend and starts the compilation process.

As visible in Figure 2.3 the driver component controls the execution of the

frontend, optimizer, and backend.

• Frontend: The main task of the frontend is the translation of the abstract

syntax tree (AST), that is provided by the Clang frontend library, into

the INSPIRE language. The information provided by parallel program-

ming paradigms (OpenMP, OpenCL, MPI, etc.) is directly included in

the intermediate representation.

• Core: The core contains the main functionalities that are needed to create

and modify IR language elements. High level intermediate representation

analysis, transformations and optimizations are also done in the core.

• Backend: The backend component is used to translate the intermediate

representation back into target code. This means that the INSPIRE code

is translated into C/C++ code. The runtime library can be used when

generating target code in order to create parallel programs that fully utilize

the available resources. The target code can be compiled with any C

compiler (e.g., GCC or LLVM).

The driver setup, AST creation, and the generation of the intermediate repre-

sentation is described in detail in the sections of Chapter 3.
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Chapter 3

Insieme Frontend

This chapter will explain the steps that are performed to convert input source

code to the Insieme intermediate representation. Additionally the entry point

of Insieme, that invokes the compiler workflow, and the frontend configuration

phase is explained in Section 3.1.

3.1 Driver setup and configuration

The entry point of Insieme is contained in the driver component of the compiler.

A driver component can be seen as an interface to the compiler. This means, if

the compiler application is started by a user, the code in the main function of

the driver will be executed and the actual compiler workflow is started. Insieme

has different drivers for the different use cases like analysis, demonstration uses,

GCC replacement, etc.

Figure 3.1: Simplified Insieme flowchart
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The most useful driver is the insiemecc driver that can be seen as a replace-

ment for GCC (e.g., in Makefiles). insiemecc supports most of the important

GCC flags and is generating an executable out of the IR code. Basically the

driver can be seen as the top level element that is creating the needed objects

and invoking the methods that are used to run the core functionalities of the

compiler. Figure 3.1 shows the steps of the driver setup and configuration. In

the first step the driver is parsing the command line arguments. To accomplish

this, the driver is passing the parameter string to the Option constructor. The

Option constructor is generating an empty ConversionJob object that will be

used to generate the intermediate representation afterwards. After the empty

ConversionJob is created, the command line arguments are parsed by the Option

object and the ConversionJob is configured. In simple terms the ConversionJob

object can be seen as a structured pack of information that is extracted from

the argument list that is passed to insiemecc.

Example call: insiemecc testfile.cpp −−std=c++11 −O3 −o test.out

The initial ConversionJob has no input files. During the parsing phase

the input source file (testfile.cpp), optimization flag (O3 ), output file (test.out),

and C++ standard information (c++11 ) is recognized and the ConversionJob

is adjusted. List of available parameters (insiemecc, May 2014):

−i [ −−input−file ] arg input files - required!

−l [ −−library−file ] arg linker flags - optional

−L [ −−library−path ] arg library paths - optional

−I [ −−include−path ] arg include files - optional

−D [ −−definitions ] arg preprocessor definitions - optional

−f [ −−fopt ] arg optimization flags - optional

−−std arg (=auto) determines the language standard

−−no−omp disables OpenMP support

−−no−cilk disables cilk support

−o [ −−output−file ] arg the output file

−−intercept arg regular expressions to be intercepted - optional

−−intercept−include arg intercepted include file - optional

−w [ −−no−warning ] Inhibit all warning messages

−c [ −−compile ] compilation only

−S [ −−strict−semantic ] semantic checks

−O [ −−full−optimization ] full optimization

−−tu−code arg dump translation unit code

−−ir−code arg dump IR code

−−trg−code arg dump target code
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The argument list provides an overview of the diverse configuration options of

the ConversionJob.

Once the configuration is finished the driver has to decide what input files

need to be converted (step 5 in Figure 3.1). Not all input files need to be

source files (e.g., one source file and one object file as input). There is the

option to pass library files or object files that were converted into intermediate

representation and dumped into a binary file in a previous step. Therefore

it is necessary to filter out the real source files. All files that are in form of

intermediate representation (Insieme objects) or in form of a library should be

stored for the backend steps, where the intermediate representation is translated

into C or C++ code again. If the input file is neither an Insieme object nor

a library it is passed to the target code compiler (e.g., GCC). This filtering

procedure can be seen in Figure 3.2.

Figure 3.2: Insieme driver input file filter process

In the end insiemecc holds three containers:

• Real source files: C or C++ files that need to be converted into interme-

diate representation.

• Insieme object files: Files that don’t need to be converted again but can

be used when creating target code.
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• External libraries: Stores the paths to external library files (e.g., li-

bopenmp, libgmp, libboost, . . . ). External libraries are only used when

the target code is compiled to an executable. Therefore the external

library information is only needed in the last step.

Once the configuration and file filtering process is done, the real source files can

be converted from C or C++ into the Clang AST representation and afterwards

into the Insieme intermediate representation.

3.2 Retrieving the Clang AST

Before the actual conversion into the Insieme intermediate representation can

start, the input source code needs to be converted into an abstract syntax tree

(AST) representation.

Input 
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Flags

C/C++ Clang AST

ConversionJob

Input files

Libraries

C++

Optimization 
options

Target code 
compiler flags

Translation Unit
Semantic analysis

Compiler Instance

Preprocessor

Pragma Handler

Stmt

Type

Expr

Clang AST

FunctionD
ecl

V
ariableD

ecl

TypeD
ecl

Declaration

TranslationUnit

convert

. . . 

Figure 3.3: Insieme AST creation
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1 /** code/frontend/src/frontend.cpp **/

2

3 toIRTranslationUnit (NodeManager)

4 // initialize plugins

5 initalizeFrontendPlugins ()

6 ...

7 // iterate over source files and call convert method

8 while hasFile () != NULL

9 result = convert(NodeManager , getNextFile (), setup)

10 ...

11 //post processing

12 mergeTranslationUnits(result)

13 ...

Listing 3.1: ConversionJob execution

Insieme uses the Clang compiler frontend library to create the AST. Figure

3.3 shows the steps that follow the flowchart from Figure 3.1, the corresponding

frontend elements, and the most important member fields.

After the initial frontend configuration and setup phase is finished, the

ConversionJob can be executed. This will initalize the frontend plugins (see

Chapter 4) in a first step and call a method that is iterating over the input

files. The static convert method, that is creating a TranslationUnit, is called

for every source file. The convert method can be seen as a method that takes

a ConversionJob object and returns an IRTranslationUnit object. The steps to

generate the Clang AST and create the IR are done in this method. Listing 3.1

shows the pseudocode for the ConversionJob execution. Like visible in Figure

3.3, the TranslationUnit instance contains a ClangCompiler instance and a

InsiemeSema object. The ClangCompiler element can be seen as an interface

to the Clang library that is used for the preprocessing, AST generation, and

semantic analysis steps. The Clang doxygen describes the ClangCompiler as

following [15]:

1. It manages the various objects which are necessary to run the compiler, for

example the preprocessor, the target information, and the AST context.

2. It provides utility routines for constructing and manipulating the common

Clang objects.

The parameters that were collected in the previous steps can now be used to

configure the ClangCompiler. This can for example be the include directories,

preprocessor options that were passed as a command line argument, diagnosis
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1 /** test.h **/

2

3 int getY() {

4 return 200;

5 }

Listing 3.2: test.h input file

1 /** test.c **/

2

3 #include "test.h"

4

5 #define VALUE 100

6

7 int getX() {

8 return VALUE;

9 }

10

11 int main() {

12 int x = getX();

13 int y = getY();

14

15 #ifdef DEBUG

16 int z = x * y;

17 #endif

18

19 return 0;

20 }

Listing 3.3: test.c input file

1 /** preprocessed code **/

2

3 int getY() {

4 return 200;

5 }

6

7 int getX() {

8 return 100;

9 }

10

11 int main() {

12 int x = getX();

13 int y = getY();

14 return 0;

15 }

Listing 3.4: preprocessed input files

options, etc. After the ClangCompiler configuration is completed the pragma

handlers are registered. More about pragma handling can be found in Chapter 4.

Before the AST can be generated, the input source needs to be prepro-

cessed. Preprocessing is necessary to provide features like the inclusion of

header files, conditional compilation, and macro expansions [16]. The example

in Listing 3.2 and 3.3 shows the two input files (test.c and test.h) before the

preprocessing step. Listing 3.4 shows the result of the preprocessed files. It can

be seen that all macros are replaced and the include directives are replaced by

the contents of the included files.

The next step converts the preprocessed input source code into the Clang AST

representation. This step can be seen as a black box, where the input is the

preprocessed source code and the result is the abstract syntax tree. The AST
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1 /**** AST ****/

2

3 TranslationUnitDecl

4 |-TypedefDecl __int128_t ’__int128 ’

5 |-TypedefDecl __uint128_t ’unsigned __int128 ’

6 |-TypedefDecl __builtin_va_list ’__va_list_tag [1]’

7 |-FunctionDecl <test.h:1:1, line :3:1> getY ’int ()’

8 | ‘-CompoundStmt <line :1:12 , line :3:1>

9 | ‘-ReturnStmt <line :2:2, col:9>

10 | ‘-IntegerLiteral <col:9> ’int’ 200

11 |-FunctionDecl <test.c:5:1, line :7:1> getX ’int ()’

12 | ‘-CompoundStmt <line :5:12 , line :7:1>

13 | ‘-ReturnStmt <line :6:2, line :3:15 >

14 | ‘-IntegerLiteral <col:15> ’int’ 100

15 ‘-FunctionDecl <line :9:1, line :18:1> main ’int ()’

16 ‘-CompoundStmt <line :9:12, line :18:1>

17 |-DeclStmt <line :10:2 , col:16>

18 | ‘-VarDecl <col:2, col:15> x ’int’

19 | ‘-CallExpr <col:10, col:15> ’int’

20 | ‘-ImplicitCastExpr <col:10> ’int (*)()’

21 <FunctionToPointerDecay >

22 | ‘-DeclRefExpr <col:10> ’int ()’

23 Function ’getX’ ’int ()’

24 |-DeclStmt <line :11:2 , col:16>

25 | ‘-VarDecl <col:2, col:15> y ’int’

26 | ‘-CallExpr <col:10, col:15> ’int’

27 | ‘-ImplicitCastExpr <col:10> ’int (*)()’

28 <FunctionToPointerDecay >

29 | ‘-DeclRefExpr <col:10> ’int ()’

30 Function ’getY’ ’int ()’

31 ‘-ReturnStmt <line :17:2, col:9>

32 ‘-IntegerLiteral <col:9> ’int’ 0

Listing 3.5: abstract syntax tree

generation is performed in the Clang library. Listing 3.5 shows the AST that

is generated out of the preprocessed code from Listing 3.4. It can be seen that

the AST contains all the information that is represented in the preprocessed

code. For example the three functions getX(), getY() and main() can be seen

in line 7, 11 and 15. Before the Clang AST can be used for futher conversion

the semantic analysis is performed. If any errors occur, the conversion will

be interrupted and the error messages are printed. The pseudocode of the

ClangCompiler intialization, the pragma handler registration, and the AST

creation can be seen in Listing 3.6.
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1 /** code/frontend/src/translation_unit.cpp **/

2

3 TranslationUnit (NodeManager , Setup , File)

4 // initialize compiler instance

5 mClang = ClangCompiler(Setup , File)

6 ...

7 // register pragma handlers

8 registerPragmaHandler(mClang.getPreprocessor ())

9 ...

10 // generate the AST

11 parseClangAST(mClang , mSema , ...)

12 ...

13 // errors occured

14 if errors = true

15 printErrors(mSema)

16 exit;

17 ...

Listing 3.6: TranslationUnit listing

3.3 Converting the AST to INSPIRE

The Clang AST can now be converted into the intermediate representation

of Insieme (named INSPIRE). This process can be seen as the main and the

most complicated part of the Insieme frontend. Figure 3.4 shows the extension

of Figure 3.3 and the steps that follow the AST creation, the corresponding

frontend elements, and the resulting IRTranslationUnit. It can be seen that

after the AST creation (first part of the static convert method, see Figure 3.3)

the second part of the convert method is creating an Insieme Converter object.

The Converter is checking if the input file is a C++ or a C file to decide

what kind of converter for the type, expression, and statement nodes should be

initialized.

Listing 3.7 shows the INSPIRE code that is produced out of the AST from

Listing 3.5. As mentioned before, the input code is in the abstract syntax tree

representation and the result is in the Insieme intermediate representation.

Basically the Converter is iterating over all nodes of the input tree and creates

an equivalent intermediate representation language element out of it. For

example the function declaration getY from Listing 3.5 (line 7) is translated

into a function called fun000 that has return type int, is taking no arguments,

and consists of a compound statement that contains a return statement.

The last line of the intermediate representation contains the entry point
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Figure 3.4: Insieme IR creation

information. This information is used to decide what function should be the

main function of the backend code. The components that are required to

convert AST nodes into intermediate language and the corresponding workflows

are explained in Section 3.4 and more detailed in Bernhard Höckners thesis

[17]. The result of the conversion into INSPIRE is an IRTranslationUnit object

that contains the generated IR types, IR functions, information about classes,

entry points, etc. (see Figure 3.4).

3.4 Frontend components

The core components of the Insieme frontend can be seen as the most important

part. Basically there are four parts that are created and held by the Converter

object (see Figure 3.5). The top layer element is formed by the declaration

visitors that are required to collect information about type declarations, func-

tion declarations, and global variable information. The declaration visitors are

using the remaining three parts, that form the second layer of the frontend
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1 // ***********************************************//

2 // Pretty Print INSPIRE //

3 // ***********************************************//

4 let fun000 = fun() -> int <4> {

5 return 100;

6 };

7

8 let fun001 = fun() -> int <4> {

9 return 200;

10 };

11

12 let fun002 = fun() -> int <4> {

13 decl ref <int <4>> v1 = var(fun000 ());

14 decl ref <int <4>> v15 = var(fun001 ());

15 return 0;

16 };

17

18 // Inspire Program

19 // Entry Point:

20 fun002

Listing 3.7: Insieme IR code

core components. The second layer consists of a type-, expression-, and a

statement-converter that is either for C++ or C (see Figure 3.4). Those three

elements consist of a collection of methods that are used to convert the different

AST nodes into Insieme IR. The generation of IR elements is performed in the

Insieme core library. The behaviour of the Clang AST node conversion and the

layer structure of the main frontend parts can also be seen in Figure 3.5. For

example the getY function from Listing 3.4, that can be seen in the AST form

in Listing 3.5 (line 7-10), will be recognised first by the function declaration

visitor. The function declaration visitor is forwarding the compound statement

to the compound statement visitor method of the statement converter. This

method is scanning the compound statement and will find the return statement

that will be passed to the return statement visitor method. A return state-

ment has a type and an expression and therefore the type converter and the

expression converter is invoked. Finally, when all sub-elements are visited and

converted, the return and compound statement is converted into IR and the

function declaration is translated into the corresponding IR function element.

Declaration visitor elements: The declaration visitor component contains

several parts that are used to handle the different types of declarations. This

can for example be function declarations, type declarations, etc.
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Figure 3.5: Insieme frontend core components

• Type declaration visitor: The type declaration component is used to han-

dle record declarations and typedef declarations. This is done as a first

step, to collect the whole information of the types that are used in a single

translation unit.

• Global declaration visitor: In order to find all global variables Insieme is

making use of a variable declaration visitor that is checking if a variable

declaration has a global flag. The global information has to be known

for several transformations that are done when performing optimizations,

pragma implied modifications, etc.

35



• Function declaration visitor: Insieme is iterating over all function decla-

rations to convert them into IR functions.

The core components of the Insieme frontend and the detailed description of the

declaration visitors, conversion process, and the way it is implemented can be

found in Bernhard Höckners master thesis [17].
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Chapter 4

The plugin system

In order to provide a high productivity Insieme frontend, it was necessary to

implement a plugin system for the Insieme frontend. A plugin infrastructure

was already integrated in the core system and the backend of the compiler. The

main reasons, to create a plugin system for the Insieme frontend are to:

• provide support for user implemented functionalities

• change the behaviour of the compiler frontend in an easy way

• keep a clean frontend core that supports the standard features and handle

everything else with plugins

• help the compiler developers to implement features without touching the

frontend core files or adding exceptions to the standard workflow

Example: The C++11 support of the Insieme compiler is done with a frontend

plugin. If the standard flag (see Section 3.1) in the compiler call is set to

C++11, the plugin is activated and is taking over the conversion of C++11

related Clang AST nodes (e.g., AutoType Clang AST nodes).

Basically the Insieme frontend stores a list of registered plugins. On some

well-defined events during the execution of the frontend (e.g., after the conver-

sion of a Clang AST node into IR), the plugins can interact with the compiler.

Each of those well-defined events, that will be explained in the sections of this

chapter, can be assigned to one of the following plugin phases:

• Clang frontend phase: The actual functionality of the plugin should hap-

pen before the AST is generated. This means that the plugin features are

executed before the Clang compiler frontend is invoked.

• Conversion phase: The plugin is acting during the conversion of the AST

nodes into intermediate representation. The plugin methods are called

before the IR is generated.
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• Post conversion phase: The Post conversion phase is taking place after

the IR generation of an element is completed. For example the plugins are

called after an AST node is converted into IR.

• IR phase: The IR phase plugin functionalities are executed after all AST

nodes are converted and the IR generation is done.

• Pragma handling: This feature is used to handle pragma directives. It

cannot be assigned to a particular compiler phase, because it is acting be-

fore the Clang preprocessor is invoked, but can also act after the IR nodes

are generated. The first occurrence of the pragma handling functionality

is before the preprocessing is done.

ConversionJob

convert

TranslationUnit Converter IRTranslationUnit

C/C++ Clang AST Insieme IR

. . .

Clang frontend 
phase

Pragma
handling

Conversion 
phase

Post 
conversion 

phase
IR phase

Figure 4.1: Frontend plugin system

In Figure 4.1 the different positions where the plugins can interact with the

compiler can be seen. It is also obvious that the plugin calls are done in

different compiler phases. For example the Clang frontend phase functionalities

of a plugin have to be executed before the AST is generated. As discussed

in Chapter 3 and also visible in Figure 4.1, the input parameters are used to

create a ConversionJob object, a TranslationUnit object is invoking the Clang

compiler frontend that is generating the AST, and finally the Converter is

converting the AST nodes into IR and is returning an IRTranslationUnit object.
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A plugin can act in multiple phases. For example, if a developer wants to

create a plugin that is handling user defined pragmas and converting every for

loop into a corresponding while-loop, the plugin is acting in several phases.

The following list of frontend plugin examples shows the variability and

the diverse application possibilities of the frontend plugin infrastructure:

• OpenMP plugin: Adds support for most of the OpenMP directives. This

does not only include the correct recognition of the pragmas. After the

recognition, some of the IR statements or declarations (e.g., for statement)

have to be modified. In the case of Insieme, the IR nodes are equipped

with the uniform parallel constructs that are described in [12].

• OpenCL plugin: Needed to support OpenCL kernels and OpenCL host

code.

• Assembler plugin: GCC has some special support for assembler directives

that are directly written in the C or C++ source file. The assembler plugin

makes it possible to support this GCC proprietary feature in Insieme.

• Semantic check plugin: When compiling bigger projects it gets very diffi-

cult to find the origins of mistranslations. The semantic check plugin tries

to check every converted node or at least some selected types of nodes

for semantic errors. This is a very time consuming plugin but it makes it

easier to debug misbehaviour of Insieme.

• Built-in function plugin: GCC provides a large number of built-in func-

tions (e.g., atomic functions). The built-in function plugin adds support

for some of those functions.

• Variadic arguments plugin: Frontend plugin that provides support for

functions with variadic arguments. This means that the function can have

a variable number of arguments.

4.1 The frontend plugin infrastructure

Figure 4.2 shows a simplified overview of how the plugin system is realized.

Basically the parent class called FrontendPlugin, that is located in the frontend

sub-package called extensions, can be seen as an interface that contains a set

of different methods for the different plugin phases. An arbitrary number of

those methods can be overridden by the user created plugins. For example the
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TestPlugin2 class, that is illustrated in Figure 4.2 overrides methods for the

Clang frontend phase and the IR phase. The reason why there is a need for

such an infrastructure, how the system is implemented, and a more detailed

description can be found in this section.

Figure 4.2: Simplified frontend plugin class diagram

One of the main objectives of the frontend plugin system is to provide an

infrastructure, that is simple to use on the one hand and usable in many

different cases on the other hand. This should be possible without applying

any modifications to the core files of the Insieme frontend when implementing

a frontend plugin. The main idea is to use fixed positions during the execution,

where the frontend is interacting with the plugins. The connection between

the plugin system and the Insieme frontend is implemented with the help of

an observer pattern [18]. To make the plugin system accessible by different

frontend elements (e.g., Converter, TranslationUnit, etc.) it is required to store

the plugin container in an object that is accessible from all needed positions

(e.g., after an AST node was converted into IR). The ConversionJob element

is the best choice, because it is passed to every important frontend element.

Figure 4.3 illustrates the connection between the plugin system and the frontend

elements.

Example: The TranslationUnit object has to access the plugins to execute

the methods for the Clang frontend phase. In order to access the registered

plugins, the getPlugins() method of the ConversionJob is called. This method
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will return the list of plugins (stored as a member field of ConversionJob), that

is used to access and call the methods of ConcretePlugin1 and ConcretePlugin2.

Figure 4.3: Interaction between plugin system and frontend elements

The ConversionJob provides a method to register the frontend plugins. At

the moment the list of plugins that is used, is hardcoded in the compiler

and the registration of the plugins is done in an initialization method of the

ConversionJob. For future work, we will explore how to make the plugin

registration more flexible by using a flag in the insiemecc call (see Chapter 5).

The plugin container is storing the plugin instances in form of shared pointers

to avoid memory leaks.

The plugin interaction positions of the different phases, how they are im-

plemented, and the functionalities of the different plugin phases are described

in the Sections 4.2 to 4.6.
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4.2 Clang frontend phase

As described in Section 3.1 the Insieme compiler is generating a ConversionJob

out of the input parameters. The plugins are initialized and registered, and as

described in Section 3.2, the TranslationUnit instance is created. This instance

will create a CompilerInstance object that is used to communicate with the

Clang library. Before the source code of the actual translation unit can be

converted into an AST representation, some options have to be set (see Section

3.2). This is the place where the plugins can interact with Insieme to modify

the standard behaviour of the compiler, before the Clang library is used and

before the AST is generated.

Figure 4.4: Partial class diagram of the FrontendPlugin class (Clang frontend

phase)

The partial class diagram of the FrontendPlugin class that can be seen in

Figure 4.4 shows all methods and data structures that are used in the Clang

frontend plugin phase. A full class diagram of the FrontendPlugin class is illus-

trated in Figure 4.12. The Clang frontend phase plugins are supporting the

following features. In order to make the description easier to understand this

master thesis uses a sample plugin that is shown in Listing 4.1 and a test input

source code that is shown in Listing 4.2.

• Inject header files dynamically: This feature can inject header files into

different translation units. For example if the user wants to inject function

calls that are declared in a non included header file, the plugin can inject

the missing header files. The implementation of this feature is quite simple.
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1 #include <string >

2

3 #include "insieme/frontend/extensions/frontend_plugin.h"

4

5 using namespace insieme :: frontend;

6 using namespace string;

7

8 class SamplePlugin : extensions :: FrontendPlugin {

9

10 public:

11 SamplePlugin () {

12 // plugin provided macro definition

13 macros.push_back(

14 std::make_pair <string , string >("VALUE", "3+5")

15 );

16

17 // header injection

18 injectedHeaders.push_back("/tmp/header_dir/injected.h");

19

20 // header kidnapping

21 kidnappedHeaders.push_back("/tmp/header_dir");

22 }

23

24 };

Listing 4.1: Clang frontend phase plugin sample

1 #include <signal.h>

2

3 int main() {

4 //get the plugin macro def.

5 int x = VALUE;

6

7 //if it is 8 raise signal 9

8 if(x == 8)

9 raise (9);

10

11 return 0;

12 }

Listing 4.2: Clang frontend phase input code sample
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The plugin contains a vector (see injectedHeaders in Figure 4.4) that stores

the paths to the headers that should be injected. During the instantiation

of the CompilerInstance (as described in Section 3.2) the path vector of

each plugin is iterated and added to the list of include files. The output

source code of the test input code contains the injected header include

directive (visible in line 7 in Listing 4.3).

• Kidnap header files: Sometimes it is required (especially in the Insieme en-

vironment) that header files get replaced by other implementations. This

can for example be some special implementation of OpenMP calls. The

implementation of this feature is similar to the inject header files function-

ality. The only difference is that the plugins are containing a vector that

stores paths to folders. This folders contain the header files that should be

exchanged. During the instantiation of the CompilerInstance the header

search path is configured and all plugin provided paths are added before

the system provided ones. When the Clang compiler frontend is looking

for a header file it will find the plugin provided path before the system

provided path and will use the plugin provided header file instead of the

system provided. The test input code from Listing 4.2 is including a file

called signal.h. If the sample plugin is activated and the developer pro-

vides a replacement for the signal.h file (by creating a file called signal.h

in /tmp/header_dir and implementing the called functions) a different im-

plementation of the raise method can be used for example.

• Add special macro definitions: Frontend plugins can contain a list of pairs.

The pairs consist of a macro name and a definition. Again the CompilerIn-

stance is taking all plugin provided macros and is adding the information

to the Clang compiler frontend macro list. If the sample application is

compiled without registering the sample plugin before, the compilation

will fail, because the macro VALUE is unknown. If the code is compiled

with the activated sample plugin the generated code contains the substi-

tuted macro that can be seen in line 12 in Listing 4.3:

4.3 Conversion phase

The Insieme frontend is interacting with the plugin system after the AST gen-

eration. Because the AST generation is performed in the Clang library, it is not

possible to modify the AST during its creation. The Conversion phase methods

offer the functionality to take over the conversion process of AST nodes. This

means, that instead of using the Insieme frontend standard conversion process
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1 /**

2 * ------------- Auto -generated Code -------------

3 * This code was generated by the Insieme Compiler

4 * -----------------------------------------------

5 */

6 #include <signal.h>

7 #include <injected.h>

8 #include <stdint.h>

9

10 /* ------- Function Definitions --------- */

11 int32_t main() {

12 int x = 3+5;

13 if(x == 8)

14 raise (9);

15 return 0;

16 }

Listing 4.3: Clang frontend phase output code

to create IR nodes out of AST nodes, it is possible to use a plugin. Figure 4.5

shows the workflow of an example conversion of an AST node into IR. It can

be seen that the AST node (that can be a declaration, a statement, a type or

an expression) can be converted either by the Insieme frontend or by one of the

registered plugins. This can for example be useful if a compiler developer wants

to implement the conversion of non standard AST nodes. One example for this

would be the conversion of assembler statement nodes, because they can have

different shapes, according to which operating system is used. For instance, GC-

CAsmStmt for code that should be compiled with GCC or MSAsmStmt nodes

for code that should be compiled with a Microsoft compiler. Figure 4.6 shows all

methods that can be used to implement the Conversion phase plugin features. A

full class diagram can be seen in Figure 4.12. The Conversion phase plugins are

supporting the following features. To make the descriptions of the Conversion

phase features easier to understand, this master thesis uses a sample Conversion

phase plugin (see Listing 4.4) and a sample input code (see Listing 4.5).

• Plugin based type conversion: Figure 4.5 shows that either one of the

plugins can convert an AST type node or the standard path is taken.

The standard path uses the Insieme frontend type declaration visitor and

type converter. Sometimes it is necessary to avoid the standard path,

because it might be the case that the standard type converter has no

implementation to convert the given AST type node. This is for example

the case when using the C++11 auto type. The only way to produce

IR code out of an auto type AST node is to use the C++11 plugin that
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Figure 4.5: AST node conversion example

supports the conversion of auto types. The sample plugin from Listing 4.4

is for example looking for floating point types (see line 15-22). If a floating

point type is found, it will be exchanged by a long double type. If we use

the input code from Listing 4.5 and compile it with the registered sample

plugin the float from line 5 will be exchanged by a long double (see Listing

4.6 line 10).

• Plugin based expression- and statement conversion: The expression- and

statement-conversion can also be handled by a plugin. As mentioned be-

fore, this can be helpful when trying to implement non standard AST

nodes that should be supported by Insieme. An example for such a node

type would be the AtomicExpr nodes. Due to the fact that atomic expres-

sions are compiler built-ins, it was required to implement this behaviour in

Insieme. Another example would be the MSDependentStmt. This state-

ment takes a literal as argument and checks if this literal is known at

the statement position. The input test code from Listing 4.5 is checking

if literal z is known at line 8. This will evaluate to false and the sub

statement will not be executed. The sample plugin (see Listing 4.4 line

35-51) implements a method that is looking for those MSDependentStmt

46



Figure 4.6: Partial class diagram of the FrontendPlugin class (Conversion phase)

nodes. Once such a node is found, the plugin checks if it is an if exists or

if not exists statement. The second check examines whether the literal

exists. An XOR operation of the two booleans decides if the statement

will be converted or simply dropped. In the case of the input test code the

plugin will recognize that the literal does not exist and skip the conversion

of this node, because it will never be executed. The output code doesn’t

contain the statement and the corresponding sub-statement anymore. If

the plugin returns nullptr to the Insieme frontend the standard way will

be taken. This can be seen as a marker that tells the Insieme frontend

that the plugin does not want to do anything with the current node.

• Plugin based declaration conversion: It is also possible to handle the con-

version of a whole declaration. The kind of the declaration can be a

TypeDecl (covers type information, template information, record declara-

tions, typedefs, etc.), FuncDecl (covers functions, constructors, destruc-

tors, etc.), or a ValueDecl (covers variable declarations, enum constant

information, etc.). The prototypes of the virtual methods can be seen in

the partial class diagram in Figure 4.6.

Plugins can interfere with the Insieme compiler (during the Conversion phase)

before a declaration is visited. As described in Section 3.4 the declaration visi-

tors are using type-, expression-, and statement-converters to convert the Clang

AST nodes into IR elements. Those converters are implemented in form of a

visitor pattern [19], and therefore there is a method that is delegating the cur-

rent AST node to the correct converter method. This top level method will
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1 #include <string >

2

3 #include "insieme/frontend/extensions/frontend_plugin.h"

4

5 using namespace insieme :: frontend;

6 using namespace insieme ::core;

7 using namespace std;

8

9 class SamplePlugin : public extensions :: FrontendPlugin {

10

11 public:

12 SamplePlugin () { }

13

14 // sample plugin type visitor

15 virtual TypePtr Visit(const clang:: QualType& qt ,

16 conversion :: Converter conv) {

17 if(qt.getTypePtr ()->isFloatingType ()) {

18 IRBuilder ir = conv.getIRBuilder ();

19 return ir.getLangBasic ().getLongDouble ();

20 }

21 return nullptr;

22 }

23

24 // sample plugin expression visitor

25 virtual ExpressionPtr Visit(const clang::Expr* ex ,

26 conversion :: Converter conv) {

27 if(const clang:: AtomicExpr* atom =

28 llvm::dyn_cast <const clang:: AtomicExpr >(ex)) {

29 // atomic expression IR generation

30 }

31 return nullptr;

32 }

33

34 // sample plugin statement visitor

35 virtual StatementPtr Visit(const clang::Stmt* st ,

36 conversion :: Converter conv) {

37 if(const clang:: MSDependentExistsStmt* ms =

38 llvm::dyn_cast <const clang:: MSDependentExistsStmt >(st)) {

39 //check if it is an __if_exists statement

40 bool isIfExists = ms ->isIfExists ();

41 //test if literal exists

42 bool exists = false;

43 ...

44 if(!( isIfExists ^ exists)) {

45 // convert sub statement and return it

46 conv.convertStmt(ms ->getSubStmt ());

47 }

48 return nullptr;

49 }

50 return nullptr;

51 }

52 };

Listing 4.4: Conversion phase plugin sample48



1 #include <iostream >

2

3 int main() {

4 //type visitor test

5 float x = 0;

6

7 //stmt visitor test

8 __if_exists(z) {

9 std::cout << "Literal x exists ..." <<std::endl;

10 }

11

12 //expr visitor test

13 int z = __atomic_load_n (&x, __ATOMIC_RELAXED);

14 return 0;

15 }

Listing 4.5: Conversion phase input code sample

check if a plugin converts the current AST node before the standard conversion

method is invoked. In summary it can be said that a plugin can act in the

Conversion phase before a declaration is visited and before a type-, expression-,

or statement-conversion.

4.4 Post conversion phase

Sometimes the compiler should only modify some small IR code regions (e.g.,

add a const flag to a C++ reference). Therefore it is convenient to have an in-

terception position after an AST node was converted into IR. The plugin system

provides such a feature. Basically everything that can be done in the Conversion

phase can also be done in the Post conversion phase. The only difference is that

the Insieme standard path was already taken when the plugin system gets the

chance to modify the IR. The Conversion phase features should be used when

an AST node conversion should be done by a plugin. The Post conversion phase

features should be used when the result of the standard conversion should be

modified. Figure 4.7 shows a partial class diagram of the FrontendPlugin class

that illustrates the methods that can be used for IR modifications. The full

class diagram can be seen in Figure 4.12.

The Post conversion phase plugins are supporting the following features:

• Modification of generated IR nodes: The plugin is able to change the

result of an conversion from AST to IR. This means that the plugin can

change the result of the conversion without modifying the input AST or

changing the standard way of the Insieme frontend. The AST information
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1 /**

2 * ------------- Auto -generated Code -------------

3 * This code was generated by the Insieme Compiler

4 * -----------------------------------------------

5 */

6 #include <stdint.h>

7

8 /* ------- Function Definitions --------- */

9 int32_t main() {

10 long double x = (long double)0.0;

11

12 // atomic expression

13 ...

14 return 0;

15 }

Listing 4.6: Conversion phase output code

is still available and can be read by the plugin. This can for example be

useful when a plugin wants to check if the conversion was performed in

the correct way. The Clang AST node is used to check if the generated IR

code contains the same information. Currently the Post conversion phase

provides visitors for the following node types:

Expressions

Types

Statements

Function declarations

Value declarations

Type declarations

Because the Post conversion phase plugin functionalities are very similar to

the Conversion phase features, this document does not provide examples for

all of the Post conversion phase features. To give a basic overview of how to

use the Post conversion phase methods, this master thesis uses a sample plugin

that is shown in Listing 4.7. The plugin is using the PostVisit method for IR

expressions. This means that the plugin is called after each conversion that

produces an IR expression node. The plugin gets the original AST node, the

converted IR node, and the Converter. In the sample plugin the original source

location is extracted from the Clang AST node. The Clang SourceManager

that can be gathered from the Converter object (see line 19) is used to get the

source location. The next step is to extract the filename, the line number, and
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Figure 4.7: Partial class diagram of the FrontendPlugin class (Post conversion
phase)

the column number (see line 22-25). Once this is done, the information can be

attached to the IR expression node. The original source location can be very

useful for debugging issues. Especially if an error occurs after the frontend phase

of the compiler.

4.5 IR phase

In order to understand the capabilities of the IR phase plugins it is important

to know what happens with the IRTranslationUnit object, that is generated

for every single input file. Figure 4.8 shows an Insieme workflow example for

two input files and the IR phase intervention positions. For each of the two

input files a TranslationUnit, Converter, and finally IRTranslationUnit object

is created. This is suitable for the creation of IR code, but if Insieme should

produce target source code out of the IR code, a single object is required that

contains the whole information of all input files (called IRProgram). To create an

IRProgram all previously created IRTranslationUnit objects are merged into a

single IRTranslationUnit, entry points are resolved, type information is merged,

etc. The first possibility where the plugin system can change the IR code, or

basically the IRTranslationUnit, is after all AST nodes of a translation unit were

converted (conversion into IR is completed for one translation unit). The second

intervention position is after all IRTranslationUnit objects were merged into a

single unit and an IRProgram was created. Information about the merging

procedure of IRTranslationUnit objects and why this step is necessary can be

found in the thesis of Bernhard Höckner [17].
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1 #include <string >

2

3 #include "insieme/frontend/extensions/frontend_plugin.h"

4

5 using namespace insieme :: frontend;

6 using namespace insieme ::core;

7 using namespace std;

8

9 class SamplePlugin : public extensions :: FrontendPlugin {

10

11 public:

12 SamplePlugin () { }

13

14 // sample post plugin type visitor

15 virtual ExpressionPtr PostVisit(const clang::Expr& ex ,

16 ExpressionPtr& irExpr ,

17 conversion :: Converter& conv) {

18 //get the clang source manager

19 clang:: SourceManager& sm = conv.getSourceManager ();

20

21 // extract original source location

22 clang:: SourceLocation exLoc = expr.getExprLoc ();

23 std:: string file = sm.getFileName(exLoc);

24 unsigned line = sm.getSpellingLineNumber(exLoc);

25 unsigned column = sm.getSpellingColumnNumber(exLoc);

26

27 // attach location to IR expr node

28 annotations :: attachLocation(irExpr , file , line , column);

29 return irExpr;

30 }

31

32 };

Listing 4.7: Post conversion phase plugin sample
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Figure 4.8: Simplified frontend workflow for two input files

The partial class diagram of the FrontendPlugin class can be seen in Figure

4.9. As mentioned before, there are two different methods that can be over-

loaded. One will be called after each IRTranslationUnit is completed and one

will be called after the IRProgram is generated. See Figure 4.12 for a complete

class diagram.

Figure 4.9: Partial class diagram of the FrontendPlugin class (IR phase)
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1 #include <omp.h>

2

3 int main() {

4 #pragma omp parallel for

5 for(int i=0; i <100; i++) {

6 ...

7 }

8 return 0;

9 }

Listing 4.8: Pragma handling input code sample

The IR phase supports the following functionalities:

• Modification of IRTranslationUnit objects: This functionality provides a

method that can modify the contents of an IRTranslationUnit. This can

for example be used to apply various cleanup operations (e.g., fix wrong

return types that are induced when using C++ references). The call to

the plugins occurs directly after the static convert method returns the

IRTranslationUnit to the ConversionJob, but before the next translation

unit is converted. The ConversionJob, that calls the convert method, calls

the getPlugins() method to get the list of plugins and iterates through that

list to call the IRVisit method of each plugin.

• Modification of the IRProgram: This feature has the same behaviour as

the IRTranslationUnit feature. The only difference is that all IRTrans-

lationUnit objects have been merged to one single unit before. The call

to the plugins is done in the ConversionJob object, after all translation

units have been converted and merged together. This feature can for ex-

ample be used to apply optimization operations like unnecessary cast, and

superfluous code removal.

4.6 Pragma handling

The pragma handling functionality is a very special feature that cannot be

assigned to a particular plugin phase. This section will show that the pragma

handling appears in several frontend phases. In order to explain the standard

way of how pragmas are handled in Insieme, this master thesis uses a sample

input code that can be seen in Listing 4.8.

As illustrated in Figure 4.10 the pragma is attached to a for statement. Due

to the reason that a pragma is a preprocessor directive it will first be recognized

by the preprocessor of Clang. Insieme holds a map that contains statements

54



and declarations and the corresponding list of pragmas that is attached to the

Clang AST element (either a declaration or a statement). When using the

example code the map will contain one clang::ForStmt that has one pragma

(#pragma omp parallel for) attached. The pragma can be seen in line 4 in

the input code. The next step is to create IR code out of the Clang AST

elements. During the conversion Insieme will recognize that there is a pragma

attached to a Clang node and will therefore create a special IR node (marked

node) that contains additional information about the attached pragmas. In the

example workflow in Figure 4.10 the code in the orange box illustrates an IR

for statement node that is marked with an OMPAnnotation. The final IR code

can now be passed to a semantic engine that is iterating through all IR nodes

and checking if they are marked with an annotation. If a marked node is found,

the special handling that implements the needed functionality of the pragma

will be applied to the marked node. In the code example the OMPSema will

recognize the marked node and will add the needed fork and join calls to make

the for loop parallel.

#pragma omp parallel for
for(int i=0; i<100; i++) {

...
}

-ForStmt 0x24a8d90 
 |-DeclStmt 0x24a8c78 
 | `-VarDecl 0x24a8c00 i 'int'
 |   `-IntegerLiteral 0x24a8c58 'int' 0
 |-<<<NULL>>>
 |-BinaryOperator 0x24a8cf0 '_Bool' '<'
 | |-ImplicitCastExpr 0x24a8cd8 'int' <LValueToRValue>
 | | `-DeclRefExpr 0x24a8c90 'int' lvalue Var 0x24a8c00 'i' 'int'
 | `-IntegerLiteral 0x24a8cb8 'int' 100
 |-UnaryOperator 0x24a8d40 'int' postfix '++'
 | `-DeclRefExpr 0x24a8d18 'int' lvalue Var 0x24a8c00 'i' 'int'
 `-CompoundStmt 0x24a8d70 
   `....

$[
OMPAnnotation parallel for(...): 
<m id=32>
for(decl int<4> v11 = 0:int<4> .. 100:int<4> : 1:int<4>) {

...
}
</m>
]$

parallel 
C/C++ code

OMP Sema

clang AST node pragma list

ForStmt @ 0x24a8d90 {omp parallel for}

clang AST

Insieme IR

Figure 4.10: Insieme pragma handling example

The pragma handling functionality appears in the preprocessor phase, IR

generation and after the IR was generated. More information about how
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pragmas are attached to Clang nodes, defining pragma tokens, and how the

pragma handling works can be found in the work of Simone Pellegrini [20].

One goal of the plugin system framework is to make the pragma handling more

dynamic. This means that it should be possible to implement support for user

defined pragmas without changing the Insieme frontend source code. Section

4.6.1 explains the changes that were needed in order to support the recognition

of user defined pragma directives. The IR handling for user defined pragmas is

described in Section 4.6.2.

4.6.1 User-defined pragma recognition

The class diagram in Figure 4.11 shows all elements that are used to support

the plugin based handling of user defined pragmas. It can be seen that the

FrontendPlugin class holds a container of PragmaHandler elements that can

be accessed with a method called getPragmaHandlers(). The PragmaHandler

object can be seen as an element that contains the information about a pragma

that should be matched (e.g. #pragma omp parallel for) and a function that

takes an IR statement that can be modified and returned.

Figure 4.11: Insieme pragma handling class diagram
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To support the recognition of user defined pragmas, the Insieme compiler has

to register the pragmas that should be matched, before the preprocessing phase

and before the Clang AST is generated. Line 8 in Listing 3.6 shows such a

registration call. The code that was added to the TranslationUnit constructor

iterates through the registered frontend plugins and checks if one of the plugins

contains a pragma handler. If a PragmaHandler is found it will be registered

at the Clang preprocessor.

Once the plugin defined PragmaHandlers are registered, they will be recog-

nized by the Clang preprocessor and the table that maps pragmas to Clang

AST declarations or statements can be built (see table in Figure 4.10). All fron-

tend changes that were needed to recognize user defined pragmas can be seen

in Listing 4.9.

4.6.2 User-defined pragma handling

After the Clang AST is generated all nodes will be converted into Insieme IR

nodes (see Section 3.3). Due to the reason that a pragma directive can be

attached to either a declaration or a statement, Insieme will check after each

conversion of a Clang statement or declaration node if this node is contained

in the table that maps pragmas to AST nodes. If the node is not found, the

converted statement or declaration does not need to be modified. If the AST

node is found in the table Insieme will use the list of attached pragmas and

call the functions of the PragmaHandlers that are responsible for the attached

pragmas. The function that is stored in a PragmaHandler takes an Insieme IR

statement and returns a modified version of the statement.

It may happen that a pragma construct contains several variables or ex-

pressions (e.g., #pragma omp parallel for private(a)). The IR nodes of the

used elements need to be accessible by the PragmaHandler function. Therefore

it was necessary to implement a MatchObject. The MatchObject contains all

elements that are used inside of a pragma. For example the MatchObject that is

passed to the function that handles the pragma directive #pragma omp parallel

for private(a) will contain an Insieme IR element for the variable a that is used

in the private clause.

4.6.3 Simple user-defined pragma example

To explain the workflow of a plugin based user defined pragma handler this

master thesis uses the test code shown in Listing 4.10 and a sample frontend

plugin that can be seen in Listing 4.12. The first pragma (#pragma test

remove) should simply remove the statement that is attached to the pragma.
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1 /** code/frontend/src/translation_unit.cpp **/

2

3 TranslationUnit (NodeManager , Setup , File)

4 ...

5 // check for frontend plugins pragma handlers

6 // and add user provided pragmas to be handled

7 // by insieme

8 std::map <std::string ,clang:: PragmaNamespace *> pragmaNames;

9 auto PP = mClang.getPreprocessor ();

10 for(auto plugin : Setup.getPlugins ()) {

11 for(auto ph : plugin ->getPragmaHandlers ()) {

12 std:: string name = ph ->getName ();

13

14 // if the pragma namespace is not registered

15 // already create and register it and store

16 // it in the map of pragma namespaces

17 if(pragmaNames.find(name) == pragmaNames.end()) {

18 pragmaNames[name] = new clang :: PragmaNamespace(name);

19 PP.AddPragmaHandler(pragmaNames[name]);

20 }

21

22 // add the user provided pragma handler

23 pragmaNamespaces[name]->AddPragma(

24 pragma :: PragmaHandlerFactory ::

25 CreatePragmaHandler <pragma ::Pragma >(

26 PP.getIdentifierInfo(ph ->getKeyword ()),

27 *ph->getToken (), ph->getName (),

28 ph->getFunction ())

29 );

30 }

31 }

32

33 ...

34 // generate the AST

35 parseClangAST(mClang , mSema , ...)

36 ...

Listing 4.9: PragmaHandler registration
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1 #include <omp.h>

2

3 int main() {

4 #pragma test remove

5 if (0==0) {

6 ...

7 }

8

9 #pragma test change return (-1)

10 return 0;

11 }

Listing 4.10: Pragma handling input code sample

The second pragma (#pragma test change return(-1)) should change the return

value of the following return statement. The pragmas can be seen in line

4 and 9 of Listing 4.10. The sample plugin is defining two PragmaHandler

objects and is storing them in the pragmaHandlers vector (see line 14-42 in

Listing 4.12). As explained in Section 4.6.1, Insieme is registering all pragmas

that should be recognized by the preprocessor. In this example Insieme will

get two PragmaHandler objects that are registered. After the AST is gener-

ated the table that maps pragmas to AST nodes contains the contents that

can be seen in Table 4.1. After the conversion of the clang::IfStmt into the

AST node pragma

clang::IfStmt @ <MemoryAddress> #pragma test remove

clang::ReturnStmt @ <MemoryAddress> #pragma test change return(-1)

Table 4.1: Pragma map contents

corresponding IR statement, the function that is attached to the #pragma

test remove PragmaHandler is called. The implementation of this function

can be seen in line 19-22 in Listing 4.12. This function takes a MatchObject

and an Insieme IR StatementWrapper (a list of IR statements) that contains

the IR if statement. The function returns an empty list of statements. This

means that the statements that are affected by the remove pragma are removed.

After the conversion of the clang::ReturnStmt into the corresponding IR

statement, the function that is attached to the #pragma test change Pragma-

Handler is called. The implementation of this function can be seen in line

27-33 in Listing 4.12. This function takes a MatchObject that has to contain

an IR expression for the variable that is used in the statement. The expression
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is used to form a new IR return statement. This statement is packed into a

StmtWrapper and returned. The return 0; is replaced by return -1;. After all

pragmas are handled and the whole AST is converted into IR the target source

code can be generated by the Insieme backend. The output source code for

the example input code from Listing 4.10 can be seen in Listing 4.11. The if

statement disappeared and the return statement returns -1 instead of 0.

1 /**

2 * ------------- Auto -generated Code -------------

3 * This code was generated by the Insieme Compiler

4 * -----------------------------------------------

5 */

6 #include <stdint.h>

7

8 /* ------- Function Definitions --------- */

9 int32_t main() {

10 return -1;

11 }

Listing 4.11: Pragma handling output code

4.6.4 Auto parallelization pragma example

This section provides an example of how user defined pragmas can be used

to modify the IR in a useful way (e.g., provide automatic parallelization). The

sample plugin from Listing 4.15 provides handling for two user defined pragmas:

• #pragma autopar barrier: A simple barrier that can be used to wait for

all threads.

• #pragma autopar try pfor: This pragma tries to execute a for loop in

parallel. This means if the for loop is in a non-complex form (no free

variables are used or modified inside the loop) the IR for statement will

be converted into a parallel for statement. If the for loop uses or modifies

free variables it won’t be exchanged.

The input code that is shown in Listing 4.13 contains a for loop (line 17-19)

that executes a function called someExpensiveWork, but without using free

variables. Additionally, there is a second for loop (line 23-25) that uses free

variables, and a barrier pragma (line 27). The first for loop will be identified

as a non-complex for loop and will be converted into a parallel IR for loop by

the frontend plugin. The second for loop will be identified as a complex for
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1 #include "insieme/frontend/extensions/frontend_plugin.h"

2

3 using namespace insieme :: frontend;

4 using namespace insieme ::core;

5

6

7 insieme ::core:: NodeManager mgr;

8

9 class SamplePlugin : public extensions :: FrontendPlugin {

10

11 public:

12 SamplePlugin () {

13

14 node&& remove_t = tok::eod;

15 node&& ret_t = tok::expr["return"] >> tok::eod;

16

17 // pragma: #pragma test remove

18 auto rem_pragma = PragmaHandler("test", "remove", remove_t ,

19 []( MatchObject object , stmtutils :: StmtWrapper node) {

20 // return empty statement

21 return stmtutils :: StmtWrapper ();

22 }

23 );

24

25 // pragma: #pragma test change return (-1)

26 auto change_pragma = PragmaHandler("test", "change", ret_t ,

27 []( MatchObject object , stmtutils :: StmtWrapper node) {

28 //get the new return expression

29 ExpressionPtr retex = object.getExprs("return")[0];

30 // build a new return statement

31 ReturnStmtPtr stmt = ReturnStmt ::get(mgr , retex);

32 return stmtutils :: StmtWrapper(stmt);

33 }

34 );

35

36 //store the handlers in the PragmaHandler container

37 pragmaHandlers.push_back(

38 std:: make_shared <PragmaHandler >( rem_pragma)

39 );

40 pragmaHandlers.push_back(

41 std:: make_shared <PragmaHandler >( change_pragma)

42 );

43 }

44

45 };

Listing 4.12: sample pragma frontend plugin code
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loop and won’t be modified. The barrier pragma will be recognized and an IR

barrier statement will be inserted before the call that prints the information

that the execution has finished.

Analogous to the description of the user-provided pragma handling exam-

ple (see Section 4.6.1) the locations of the pragmas are collected by the Clang

preprocessor. The Clang preprocessor will recognize the three pragmas from

the input code and will generate a map that is shown in Table 4.2. Again, this

table contains the AST nodes and the list of pragmas that is connected to the

Clang AST node. After the Clang AST to IR conversion of an affected node

AST node pragma

clang::ForStmt@<MemoryAddress> #pragma autopar try pfor

clang::ForStmt@<MemoryAddress> #pragma autopar try pfor

clang::CXXOperatorCallExpr@<MemoryAddress> #pragma autopar barrier

Table 4.2: Pragma map contents

(for statement or operator call expression) occurred, the lambda functions of

the PragmaHandlers that are matching the mapped pragmas will be executed.

The lambda functions are written in the plugin (see Listing 4.15). The function

that will be called when converting an Clang AST node that is mapped to a

#pragma autopar barrier element is written in line 14-23. The lambda function

for #pragma autopar try pfor is shown in line 26-42.

The generated IR code is shown in Listing 4.14. This code can be used

to generate C/C++ code, that uses the Insieme Runtime system for a parallel

execution. The generated IR shows that the first for loop was moved into a

function that takes three arguments that define the range of the for statement

and the step size. The original location of the for statement now contains a

pfor IR element that will distribute the for loop iterations to the hardware.
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1 #include <iostream >

2 #include <functional >

3 #include <string >

4

5 #define ITER 100000

6 #define N 1000

7

8 void someExpensiveWork () {

9 std:: string str = "Test string";

10 std::hash <std::string > hash_fn;

11 for(int i=0; i<ITER; i++)

12 hash_fn(str);

13 }

14

15 int main() {

16 #pragma autopar try_pfor

17 for(int i=0; i<N; i++) {

18 someExpensiveWork ();

19 }

20

21 int k=0;

22 #pragma autopar try_pfor

23 for(int i=0; i <100; i++) {

24 k += i;

25 }

26

27 #pragma autopar barrier

28 std::cout << "Execution finished ...\n";

29 return 0;

30 }

Listing 4.13: Autopar pragma input code sample

4.7 Real-world plugin example

In this section a real-world plugin is presented. The plugin implements the

features that are used to handle the conversion of in-line assembler statements

into IR. This statements can be used as an extension of GCC and are used in

the following way (like described in [21]):

• asm [volatile] (AsmTemplate : [OutpOpers] [: [InpOpers] [: [Clobbers]]])

• asm [volatile] goto ( AsmTemplate : : [InpOpers] : [Clobbers] : Labels)
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1 let fun000 = fun(int <4> v1 , int <4> v2 , int <4> v3) -> unit {

2 for(decl int <4> v0 = v1 .. v2 : v3) {

3 someExpensiveWork ();

4 };

5 };

6

7

8 let fun001 = fun() -> int <4> {

9 pfor(getThreadGroup (0), 0, 100, 1,

10 bind(v157 , v158 , v159){ fun000(v157 , v158 , v159) }

11 );

12

13 decl ref <int <4>> v165 = var (0);

14 for(decl int <4> v167 = 0 .. 100 : 1) {

15 v165 := *v165+v167;

16 };

17

18 barrier ();

19

20 std::operator <<( RefIRToCpp(std::cout),

21 ref.vector.to.src.array("Execution finished ...\n"));

22 return 0;

23 };

24

25

26 // Inspire Program

27 // Entry Point:

28 fun001

Listing 4.14: Autopar pragma IR output code
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1 #include "insieme/frontend/extensions/frontend_plugin.h"

2 #include "insieme/core/analysis/ir_utils.h"

3

4 using namespace insieme :: frontend;

5 using namespace insieme ::core;

6 NodeManager mgr;

7

8 class SamplePlugin : public extensions :: FrontendPlugin {

9 public:

10 SamplePlugin () {

11 node&& eod_t = tok::eod;

12

13 // pragma: #pragma autopar barrier

14 auto barrier = PragmaHandler("autopar", "barrier", eod_t ,

15 []( MatchObject object , stmtutils :: StmtWrapper node) {

16 //get IRBuilder

17 IRBuilder builder (mgr);

18 //add an IR barrier before the statement -list

19 node.insert (node.begin(), builder.barrier ());

20 // return the modified node

21 return node;

22 }

23 );

24

25 // pragma: #pragma autopar try_pfor

26 auto trypfor = PragmaHandler("autopar", "try_pfor", eod_t ,

27 []( MatchObject object , stmtutils :: StmtWrapper node) {

28 // assert it is a for stmt

29 assert(node [0].isa <ForStmtPtr >());

30 // check if we have no free variables

31 bool free_v = analysis :: hasFreeVariables(node [0]);

32 //if there are free variables , no

33 // simple auto parallelization is possible

34 if(free_v)

35 return node;

36 //get IRBuilder

37 IRBuilder builder (mgr);

38 // build a parallel for statement

39 node [0] = builder.pfor(node [0]);

40 return node;

41 }

42 );

43

44 //store the handlers in the PragmaHandler container

45 pragmaHandlers.push_back(

46 std:: make_shared <PragmaHandler >( barrier) );

47 pragmaHandlers.push_back(

48 std:: make_shared <PragmaHandler >( trypfor) );

49 }

50 };

Listing 4.15: Autopar pragma frontend plugin code
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1 int src = 1;

2 int dst;

3

4 asm ("mov %1, %0\n\t"

5 "add $1 , %0": "=r" (dst): "r" (src)

6 );

7

8 printf("%d\n", dst);

Listing 4.16: GCC assembler statement example code

– AsmTemplate: The string that contains the assembler code

– OutpOpers: A comma-separated list of the C variables modified by

the assembler instructions

– InpOpers: A comma-separated list of C expressions read by the in-

struction

– Clobbers: A comma-separated list of registers or other values changed

by the assembler instruction

– Labels: When using the goto form of asm, this section contains the

list of all C labels to which the assembler instruction may jumps

Listing 4.16 shows two integer declarations and an assembler statement followed

by a printf call. This example code from [21] copies src to dst and adds 1 to dst.

The Insieme compiler supports the GCC assembler statements. The conversion

into IR is implemented with the help of a frontend plugin (see Listing 4.17). The

assembler frontend plugin is called before a Clang statement is converted, and

if the Clang statement node is of type clang::AsmStmt the plugin is extracting

the needed information (input operators, output operators, clobber, etc.) and

is wrapping this information into an IR assembler statement. As a last step the

converted element is returned.
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1 #include "insieme/frontend/extensions/frontend_plugin.h"

2

3 using namespace insieme :: frontend;

4 using namespace insieme ::core;

5

6 class ASMPlugin : public extensions :: FrontendPlugin {

7 public:

8

9 stmtutils :: StmtWrapper Visit(const clang ::Stmt* stmt ,

conversion :: Converter& conv) {

10 if(const clang:: AsmStmt* st =

11 llvm::dyn_cast <clang::AsmStmt >()) {

12 //get IR Builder

13 IRBuilder builder = conv.getIRBuilder ();

14 // create a string out of the assembler statement

15 std:: string asmStr = st ->generateAsmString(conv.

getCompiler ().getASTContext ());

16

17 // create an IR assembler statement

18 lang:: AsmStmtWrapper wrap (asmStr , st ->isVolatile ());

19

20 //get output elements and add the

21 // converted expressions to the IR statement

22 for (unsigned i=0 ; i<st ->getNumOutputs (); ++i) {

23 wrap.addOutput (

24 st->getOutputConstraint(i).str(),

25 builder.deref(conv.convertExpr(st ->begin_outputs ()[i]))

26 );

27 }

28

29 //get input elements and add the

30 // converted expressions to the IR statement

31 for (unsigned i=0 ; i<st ->getNumInputs (); ++i) {

32 wrap.addInput (

33 asmStmt ->getInputConstraint(i).str(),

34 conv.convertExpr(st ->begin_inputs ()[i])

35 );

36 }

37

38 //add the clobber information

39 for (unsigned i=0 ; i< st ->getNumClobbers (); ++i) {

40 wrap.addClobber(st ->getClobber(i).str());

41 }

42

43 // return the converted assembler statement

44 return lang::toIR(conv.getNodeManager (), wrap)

45 }

46 return nullptr;

47 }

48 };

Listing 4.17: GCC assembler statement plugin code
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Figure 4.12: Full class diagram of the Insieme FrontendPlugin class
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Chapter 5

Conclusion and Future work

The development of a compiler can be seen as a challenging work that requires

excellent programming skills, knowledge of programming languages and the

theory behind it. Especially for high level languages, like C++, the development

phase will never be completely finished, due to the reason that a new language

standard is released every three to five years.

The first part of this thesis discussed the frontend implementation of the

Insieme compiler, and the new interface to the compiler (named insiemecc)

that helps the end-user (that wants to compile source code) to use the Insieme

compiler in an efficient and easy way. It is possible now to use the Insieme

compiler infrastructure to compile code bases of arbitrary sizes. The insiemecc

driver application can also be used to replace GCC, LLVM, or any other

C/C++ compiler (e.g., compiler used in a Makefile).

The second part explained the features of the newly developed frontend

plugin system. The main objective of the frontend plugin system is to create

an interface that can be used by the compiler developers that are working on

the Insieme project. The plugin system helps compiler developers to implement

new features in a fast, secure, efficient, and simple way. It is not needed to

change the frontend core source files anymore, and therefore the error-proneness

of the frontend is decreased.

The Insieme compiler project is an ongoing effort and therefore there are

many topics for future work. This work aimed to create a more sophisticated

way to use the Insieme compiler for both the compiler developers and the users

that want to compile source code with the Insieme compiler. The results of this

work open the following future work topics:

• Dynamic linking of plugins: At the moment it is necessary to register the

frontend plugins by hardcoding the registration call in the Insieme fron-

tend. This is not very user-friendly and should be done with dynamic
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linking or by providing a special flag when calling insiemecc. The LLVM

pass infrastructure provides a convenient interface for user provided func-

tionalities [8].

• Interfering plugins: It may happen that plugins are interfering. This can

for example be the case when two different plugins are acting in the same

frontend phase (e.g., two plugins are modifing the IRProgram). To avoid

mistranlations and bugs that are introduced by plugins it would be con-

venient to have some kind of priority list or plugin dependency graph to

define the plugin execution order.

• Insiemecc support for more flags: Currently insiemecc doesn’t provide

full support for all flags that can be used when using GCC or LLVM. To

avoid compilation errors because of unsupported flags insiemecc is ignoring

unknown flags at the moment. Nevertheless, support for the missing flags

should be implemented or at least passed to the backend compiler in order

to avoid malformed results.

• Missing C++ features and new language standards: The Insieme compiler

doesn’t support all C++ features. Especially the C++11 support is only

partially implemented and there is no support for C++14 features yet.
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