
Survey and Performance Evaluation of

Parallel Codes

master thesis in computer science

by

Sandro Kofler

submitted to the Faculty of Mathematics, Computer

Science and Physics of the University of Innsbruck

in partial fulfillment of the requirements

for the degree of Master of Science

supervisor: Dr. Radu Prodan, Institute of Computer Science

Innsbruck, 17 August 2015

Certificate of authorship/originality

I certify that the work in this thesis has not previously been submitted for a

degree nor has it been submitted as part of requirements for a degree except as

fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have

received in my research work and the preparation of the thesis itself has been

acknowledged. In addition, I certify that all information sources and literature

used are indicated in the thesis.

Sandro Kofler, Innsbruck on the 17 August 2015

1

2

Abstract

Fully utilizing the potential of parallel architectures is known to be a challenging

task. In the past the software developer had to deal with this challenge using

a variety of specialized programming models. The Insieme compiler, currently

under development by the Distributed and Parallels Systems group at the Uni-

versity of Innsbruck, tries to support developers in this challenging task. The

compiler automatically optimizes parallel applications for the execution on het-

erogenous and homogenous systems. In this master thesis the development of a

testing framework used in the Insieme compiler project is shown. Input codes for

integration testing and permanent monitoring of the compiler performance were

collected. An integration test framework to automatize the execution of test

codes was built. Each test code was classified by several metrics (e.g. scalabil-

ity, memory consumption), those metrics are useful to optimize the compilation

process for a high number of miscellaneous test codes.

The second part of the thesis shows a performance analysis of a product applica-

tion. The analysis focuses on the scalability on parallel shared memory systems.

Proposals to speed up the application are made.

4

Contents

1. Introduction 9

1.1. Motivation . 9

1.2. Related Work . 10

1.3. Insieme . 10

1.4. Integration Test Framework . 11

1.5. Input Codes . 12

1.6. Performance Analysis . 12

2. The Insieme Compiler 13

2.1. INSPIRE . 14

2.1.1. Architecture . 14

2.1.2. Parallel Model . 14

2.2. Insieme Runtime System . 16

2.2.1. Topology-aware Multi-Process Scheduling 16

2.2.2. Automatic Loop Scheduling 17

2.2.3. Optimizing Granularity in Task-based Parallelism 17

3. Overview of all Gathered Codes 19

3.1. Code Finding Procedure . 19

3.2. Input Codes . 20

4. Test Environment 33

4.1. Hardware and Software Environment 33

4.2. Metrics . 33

4.2.1. Runtime and Memory . 34

4.2.2. Lines of Code . 34

4.2.3. Linux Perf Tool . 34

4.2.4. Floating Point Operations 35

4.2.5. Memory Transfer . 36

4.2.6. Boundness . 36

4.2.7. Callgrind . 39

5. Test Results 41

5

5.1. Shared Memory Parallelization Performance 41

5.2. Main Memory Footprint . 45

5.3. Boundness . 49

6. Detailed Analysis of Selected Codes 51

6.1. Amdahl’s law . 51

6.2. BOTS Health . 52

6.3. OmpSCR Graphsearch . 54

6.4. PARSEC Blackscholes . 56

6.5. Dijkstra . 57

6.6. NPB cg . 58

6.7. Rodinia nn . 60

6.8. Rodinia bfs . 62

7. Integration Test Framework 63

7.1. Test Database . 63

7.1.1. Configuration File Options 64

7.2. Test Steps . 65

7.3. Metrics . 68

7.4. Output Formats . 68

7.4.1. SQL Database . 69

7.5. Command Line Arguments . 70

7.6. Implementation Details . 71

8. Detailed Performance Analysis at the Example of GALPROP 79

8.1. Testing Environment . 79

8.2. Current Behavior . 80

8.2.1. Code Regions . 82

8.3. Improvements . 85

8.3.1. Improvements Regarding Shared Memory Systems 85

8.3.2. Serial Improvements . 89

8.4. Results . 91

8.5. Overhead Analysis . 92

8.6. Further Improvements . 95

9. Summary 97

A. Input Parameters for GALPROP 99

A.1. NoGamma Low Resolution input file 99

A.2. WithGamma Low Resolution input file 107

6

B. Runtime Measurements of the Optimized Version of GALPROP 109

List of Figures 111

List of Tables 113

Bibliography 115

7

8

Chapter 1.

Introduction

This master thesis consists of two main parts.

The first part is about the search of input codes for the Insieme Compiler project.

The Insieme Compiler is currently under development by the Distributed and

Parallels Systems group at the University of Innsbruck. Methods used to create

an integration test database for the compiler and to classify integration tests

are shown. An application to execute and verify the compilation phase of all

codes in the database was created. The, so called, Integration Test Framework

is also capable of measuring code attributes like main memory consumption or

execution time. The test framework provides an automatized way to collect per-

formance metrics and compare results of different Insieme versions or reference

compilers.

The second part shows a performance analysis of a product application from

the field of astrophysics (GALPROP). The code was developed by the Univer-

sity of Stanford and does not scale well on shared memory parallel systems.

The reasons why the application underperforms are shown and some small code

improvements are presented.

1.1. Motivation

During a compiler development project it is important to maintain a large

amount of input codes which act as integration tests. The purpose of such

an input code database is to ensure that the compiler supports a high variety

of language aspects and creates correct results. Since Insieme is an optimizing

compiler it is important to constantly measure and compare the performance

of test codes. An increase in performance indicates a progress in the Insieme

development process.

9

1.2. Related Work

There exist numerous frameworks for integration testing. However most of them

are designed to only execute tests without the ability of collecting performance

data. On the other hand performance data frameworks are only designed to

analyze a single application in detail. They are not intended to maintain a code

database containing hundreds of codes and execute them in an automatized way.

A mentionable framework is PerfDMF presented in [1]. PerfDMF is a parallel

performance data management framework. It deals with the problem of main-

taining a database of performance evaluations of parallel systems. It uses third

party profiling tools to measure performance data and handles the results. Pri-

mary objectives of PerfDMF are import/export from/to leading profiling tools

and handling a large-scale profile data and a large number of experiments. The

similarities to this work are automatized profiling and the possibility to maintain

a database for the performance results. Both solutions do not implement the

profiling itself, both use external tools to gain the results. However PerfDMF

is not intended to be used with a big code database. It focuses on a detailed

analysis of one application and comparing different versions of it. Whereby our

solution only deals with a limited amount of metrics especially concerning par-

allel execution.

Most of the typical integration test frameworks only execute tests and check the

results. Our framework additionally maintains a code database containing test

applications. The database contains information how to compile and execute

the codes. Therefore it does not make sense to compare our framework with

another typical solution. We did not find any related work dealing with this

type of integration testing.

1.3. Insieme

The main goal of the Insieme project of the University of Innsbruck is to re-

search ways of automatically optimizing parallel programs for homogeneous and

heterogeneous multi-core architectures and to provide a source-to-source com-

piler that offers such capabilities to the user. The core features of the Insieme

Project are [2]:

• Support for multiple programming languages and paradigms such as C,

Cilk, OpenMP and OpenCL (C++ and MPI support is under develop-

ment),

10

• multi-objective optimization techniques supporting objectives such as exe-

cution time, energy consumption, resource usage efficiency and computing

costs,

• the Insieme Runtime System which provides an abstract interface to the

hardware infrastructure, offering online code tuning and steering, dynamic

reconfiguration of hardware resources and monitoring of the application’s

performance,

• an input code independent Intermediate Representation (INSPIRE) for

developing new compiler techniques to optimize parallel programs,

• a rich analysis and transformation toolbox which operates on INSPIRE

and aims to maximize developer productivity when researching new opti-

mizations and

• deep integration between the compiler and its associated runtime system,

allowing the convenient exchange of arbitrary meta-information for novel

combined optimization strategies.

1.4. Integration Test Framework

The Integration Test Framework was built to automatically test the Insieme

Compiler. By using the framework it is easy to maintain a high amount of

miscellaneous test codes. The code database provides all information to

• compile test codes using

– a reference compiler and

– the Insieme Compiler,

• execute the tests,

• and to compare results.

The codes act as integration tests and are executed regularly during the devel-

opment process of Insieme.

To automatically maintain a database of code characteristics the integration

test tool was enhanced to raise code metrics. Such metrics are for example the

performance of codes using parallel shared memory systems or the lines of codes.

Details about the Integration Test Framework are described in Section 7.

11

1.5. Input Codes

A big part of this thesis consists of the search of input codes for the Insieme

Compiler project. Codes are listed and some characteristics of them are shown.

The selection process was focused on codes using OpenMP or MPI parallel

constructs. But also simple benchmark codes (e.g. the stream benchmark) or

codes used in production (e.g. GALPROP, sect. 8) are included. The most

important code statistics gathered are:

• run time (wall and CPU time),

• main memory footprint,

• parallel speedup/efficiency and

• no. of parallel constructs.

All these metrics are collected using a reference compiler and the Insieme Com-

piler. Additionally, the number of threads as well as the OpenMP scheduling

variants are varied. To collect results efficiently a test tool was created to auto-

matically execute all tests and get the results. The tool is able to parse the code

suite and execute each test using a reference compiler and the Insieme Compiler.

The results are either available as an SQL script to generate a database, or as

a simple CSV file. By using the tool it is easy to add/remove codes, steer the

execution of codes and compare different versions of Insieme.

1.6. Performance Analysis

The last section of this thesis shows the results of performance analysis of an

application in public use. The application is the GALPROP code developed by

the University of Stanford. GALPROP is a numerical code for calculating the

propagation of relativistic charged particles and the diffuse emissions produced

during their propagation. A deep analysis of the code was done and improve-

ments regarding parallel shared memory systems are proposed. The results of

a detailed overhead analysis are shown at the end of the performance analysis

chapter (Section 8).

12

Chapter 2.

The Insieme Compiler

Fully utilizing the potential of parallel architectures, especially hybrid systems

using multi-core CPUs, GPUs and distributed memory systems is known to be

a challenging task. In the past the software developer had to deal with this chal-

lenge using a variety of specialized programming models. For this purpose a set

of standardized APIs and language extensions was developed. Some important

APIs in this context are OpenMP, Cilk, MPI and OpenCL. In recent systems

combinations of these technologies became necessary and hybrid programming

models such as MPI/OpenMP and OpenMP/OpenCL were established. This

led to a growing effort for the developer to fully exploit all levels of parallelism

provided by the underlying system.

The Insieme Compiler supports the developer in this challenging task, it tries

to optimize a parallel code for a given system. Unlike conventional instruction

level manipulation this kind of analyses and transformations are performed at

a higher level of abstraction. Therefore the Insieme Compiler was designed as

a source-to-source compiler based on a high-level intermediate representation

(INSPIRE, see 2.1). The benefit of this intermediate representation is that it is

able to model the parallel control flow. This is needed to optimize the source

for parallel execution [3].

The Insieme Compiler supports multiple input languages and standards such as

C, C++, OpenMP, Cilk, OpenCL and MPI. All input codes are transformed to

INSPIRE. The output programs use the Insieme Runtime System (Insieme-RS,

see 2.2) to enable and manage parallel execution and perform online code tuning

and steering [4].

Figure 2.1 shows an example setup of the Insieme infrastructure for process-

ing parallel codes. Input programs written using C/C++ based OpenMP, Cilk,

OpenCL or MPI constructs are parsed using a Clang [5] based frontend and

converted into INSPIRE. Using this representation analysis and optimizing is

done using a growing set of re-usable tools. In the final compilation phase

the optimized intermediate representation is converted again into source code.

Different backend implementations, for parallel as well as sequential execution,

13

Figure 2.1.: Example setup of the Insieme infrastructure[3]

are provided for this last step. A frequent use case is based on the genera-

tion of multi-versioned code, based on the concrete scenario the optimal version

is selected dynamically during run time. Beside this selection mechanism the

runtime system also deals with work-load scheduling, data distribution and re-

source allocation issues [3]. For parallel backends the runtime system uses its

own application model to handle parallel execution and synchronization.

2.1. INSPIRE

2.1.1. Architecture

This section shortly introduces into INSPIRE, the Insieme Parallel Intermediate

Representation [3]. INSPIRE is a formal intermediate language which is capable

of modeling heterogeneous parallel applications using a single, unified and small

set of constructs. Parallel aspects of input codes are modeled at the language

level, so it becomes possible for optimization utilities built on top of INSPIRE

to handle parallelism natively.

2.1.2. Parallel Model

Below a short introduction into the parallel control flow representation of IN-

SPIRE is given, for a deeper insight on INSPIRE see [3]. The parallel model

used within INSPIRE covers the full flexibility of common parallel languages.

It is based on nested thread groups. In fig 2.2 the execution of a parallel ap-

plication is shown. On the top level a thread group consisting of two threads

is shown. The first of these threads spawns an inner thread group consisting of

three threads. The second thread creates an inner thread group which spawns

14

two additional groups, each consisting of a single thread. In this context the

term thread is used as an arbitrary entity capable of processing a sequential con-

trol flow. The INSPIRE parallel model does not distinguish between OS-level

threads, OpenMP threads, Cilk tasks, OpenCL work items, MPI processes or

any other processing entities.

Figure 2.2.: Example execution of a parallel control flow in INSPIRE [3]

The main concepts of the parallel model of INSPIRE are:

Jobs

Each thread group cooperatively processes a job. Each job object contains

• a set of job-local variables,

• a function to be applied to this variables

• and upper and lower boundaries for the number of threads required.

Thread Identification

All threads within a group evaluate the call of a function, they are processing the

same sequential code. Therefore all threads need to be indexed to diverge execu-

tion traces. Functions to determine the thread Identification are getThreadID

and getNumThreads.

Spawning and Merging

It is possible to create sub-thread groups (and merge them again), appropriate

functions are spawn, merge and mergeAll.

15

Inter-Thread Communication

For inter-thread communication three primitives are offered:

1. pfor

This primitive is named after its most prominent use case - the parallel for.

It takes an iterator representing a set of input values as well as a function

capable of processing those values. All threads within a group have to call

this primitive, the work is distributed among the specified range.

2. redistribute

This primitive corresponds to the scatter/gather primitives in MPI. Sim-

ilar to pfor this is a collective operation and needs to be invoked by all

threads.

3. Point-to-point communication

For the direct communication between threads the concept of channels is

used. Several operations like channel.create, channel.send, channel.recv

are provided.

2.2. Insieme Runtime System

The following section provides a short introduction to the Insieme Runtime

System (InsiemeRS) and its major optimizing techniques. The aim of In-

siemeRS is to provide an environment for the execution of a parallel program

specified via INSPIRE and compiled by the Insieme Compiler. To execute a

program within InsiemeRS it has to be converted to INSPIRE and customized

by the Insieme Compiler. One of the essential features of InsiemeRS is the close

integration with the Insieme Compiler. This integration allows to forward meta

information such as static analysis results from the compiler to the runtime

system. Using this meta-information, dynamic knowledge only available during

program execution, such as the values of program variables and input data

sizes, can be combined with the results of static compiler analysis to yield

better scheduling decisions. Below the major optimization techniques used in

InsiemeRS are mentioned, for details see [4].

2.2.1. Topology-aware Multi-Process Scheduling

The number of cores in shared memory systems is currently rising sharply. New

system topologies are often complex, using a hierarchy of multiple cache levels.

It becomes harder and harder for developers to optimize parallel programs for

16

such complex systems. To overcome this problem a centralized process-level

scheduling of multiple OpenMP workloads (jobs) was developed. The technique

takes available topology information into account and is applicable without any

changes required from the user [4].

2.2.2. Automatic Loop Scheduling

Loop parallelism is an important part of many OpenMP programs, therefore

an optimal mapping of parallel loop iterations to threads and cores is essential.

This is done by choosing the right loop scheduling model, based on several

environment parameters as well as OpenMP loop characteristics.

2.2.3. Optimizing Granularity in Task-based Parallelism

Task-based parallelism is one of the most fundamental parallel abstractions in

common use today [4]. Like loop parallelism task parallelism is relatively easy

to implement using OpenMP. But it is challenging to achieve good efficiency

and scalability. The central point in this parallelization strategy is the task

granularity. The granularity of tasks is defined by the length of execution time of

a single task between interactions with the runtime system. Short-running tasks

lead to a loss in efficiency due to runtime overhead associated with generating

and launching a task. On the other hand long-running tasks minimize overhead

but are hard to schedule efficiently and may therefore fail to scale on large

systems. InsiemeRS implements a way to find the optimal task granularity to

achieve a better performance.

17

18

Chapter 3.

Overview of all Gathered Codes

In this section a basic overview over all gathered codes is shown. First, the

methodology used to find new input codes is described and afterwards all codes

are listed and the basic code behavior is shown.

3.1. Code Finding Procedure

To find appropriate input codes simple methods like web search, supercomputing

research group homepages or benchmark suites were used. The main focus for

new input codes for the Insieme project is set on parallel codes using either

OpenMP, MPI or OpenCL constructs. Additionally, big codes containing a

huge amount of lines and codes using the new C++ standard are relevant. To

get a good overview of the capabilities of Insieme also parallel codes which do

not perform well are required. Another aspect for the codes is their use as

integration tests, they are used to continually test the Insieme Compiler during

its development. The results of an Insieme run are compared to the results of

a reference compiler to proof that the compiler preserves semantic correctness.

The last reason to maintain a large code base is to keep track of features that

are not yet implemented in the Insieme Compiler. To get a good coverage of

all possible code constructs it is necessary to test a large amount of well-known

input codes and benchmarks. Therefore about 30 % of the gathered codes are

not yet supported by Insieme, however during the development process more

and more codes should work and get a better performance.

19

3.2. Input Codes

For brevity, we only focus on the more interesting and complex codes, which we

selected according to the following filter criteria:

• At least 50 lines of code,

• at least 1 parallel construct and

• are contained in a given benchmark suite.

A detailed analysis would exceed the scope of this thesis, other codes are only

used as integration tests for the compiler.

The tables below show a basic listing of all codes organized in corresponding

code suites. In this section only a short insight is given, details of selected codes

(based on their runtime, number of OpenMP pragmas and efficiency) can be

found in Section 6. The shown metrics as well as the used testing environment

are described in Section 4.

Barcelona OpenMP Task Benchmark Suite (BOTS)

Traditionally, parallel applications were based on parallel loops, only a few ap-

plications used other parallelization techniques. With the release of the new

OpenMP specification (3.0), task parallelism is supported. Parallel tasks allow

the exploitation of irregular parallelism. As a result of the lack of benchmarks

using tasks the Barcelona OpenMP Task Benchmark Suite was created. The

suite contains a set of applications exploiting regular and irregular parallelism,

based on tasks. All applications are available using different implementations

regarding their OpenMP task models (task tiedness, cut-offs, single/multiple

generators)[6].

The results in this thesis are generated by using version 1.1.2 of the task suite,

Table 3.1 contains all used codes. Some codes are present in different variations:

• The default version only uses the basic version of the task parallelism.

• The if clause version uses cutoff by if clause.

• The manual version uses manual cutoff.

For detailed descriptions about these OpenMP pragmas see [6].

20

Name Description LOC #OMP EffGCC EffIns

alignment (for) Protein alignment
creates tasks inside of an omp for pragma

900 1 0,247 0,026

fft Fast Fourier Transform 5467 61 #NA #NA

fib (if clause)
Fibonacci 834 14

#NA 0,024
fib (manual) #NA 0,024

floorplan (if clause) Computes the optimal placement
1165 21

0,610 0,621
floorplan (manual) of cells in a floorplan 0,592 0,760

health (if clause)
Simulates a country health system 1221 9

0,155 #NA
health (manual) 0,162 #NA

nqueens (if clause)
Solves the N queens problem 1043 12

#NA 0,141
nqueens (manual) #NA #NA

sort Uses a mixture of sorting algorithms to
sort a vector

1020 14 0,301 0,326

sparselu (for) Computes LU factorization of a sparse
matrix
creates tasks inside of an omp for pragma

970 8 #NA #NA

sparselu (single) Computes LU factorization of a sparse
matrix
creates tasks inside of an omp single

967 8 #NA #NA

strassen (if clause) Computes a matrix multiply
1510 27

0,224 0,220
strassen (manual) using Strassens method 0,223 0,225

uts Computes the number of nodes in an un-
balanced tree

1094 5 0,161 0,203

Table 3.1.: Codes of the Barcelona OpenMP Task Benchmark Suite

OpenMP Source Code Repository (OmpSCR)

The OpenMP Source Code Repository (OmpSCR) is a code suite written by the

University of La Laguna. The main idea of OmpSCR is to provide the OpenMP

users with an infrastructure that allows both to evaluate the performance of

OpenMP codes and to compare it across different platforms and compilers. For

this many small programs using a low number of OpenMP pragmas were created.

All codes are available in Fortran and C, however we only used the C version

since Fortran is not supported by Insieme. The repository is designed to be

collaborative and incremental, it is open and the number of applications is not

limited [7].

In this thesis the version 2 of the OmpSCR is used, Table 3.2 contains all used

C codes.

21

Name Description LOC #OMP EffGCC EffIns

fft Fast Fourier Transform
using a divide and conquer algorithm.

431 2 0,218 #NA

fft6 Fast Fourier Transform
based on Bailey’s 6 step FFT algorithm

634 4 #NA #NA

graphsearch Path search in a graph 2039 3 0,116 #NA

jacobi01 Solve Helmholtz equation 422 2 0,197 #NA
jacobi02 using Jacobi iterative method 378 3 0,195 #NA

loopsWithDepsA1

Simple loops containing dependencies

796 2 #NA #NA
loopsWithDepsB 792 3 #NA #NA
loopsWithDepsC 787 2 #NA #NA
loopsWithDepsD 796 3 #NA #NA

LUReduction LU reduction of a 2D dense matrix 350 1 0,173 0,241

Mandelbrot Estimation of the Mandelbrot Set
using MonteCarlo sampling

351 1 0,615 #NA

MolecularDynamic Simple molecular dynamics simulation 446 2 0,736 0,726

Pi PI generator 267 2 0,817 0765

QuickSort Sorting algorithm 382 2 0,161 #NA

Table 3.2.: Codes of the OpenMP Source Code Repository (OmpSCR)

OpenMP Validation Suite

The OpenMP Validation Suite is a collection of C and Fortran programs with

OpenMP directives that were designed to validate the correctness of OpenMP

implementations. The suite was developed by the High Performance Computing

Center Stuttgart, the University of Houston and the TU Dresden. The contained

benchmarks are designed to cover all features of version 2.5 of the OpenMP

standard. Additionally, most of the 3.0 constructs are covered. Currently it is

extended to the new 4.0 standard. By now the suite consists of 106 different

tests, each testing different combinations of constructs [8].

Since these tests are only small code snippets including only minor amounts of

computation, details are not covered in this thesis.

HPC Graph Analysis SSCA2

The HPC Graph Analysis Benchmark is based on the HPCS Scalable Synthetic

Compact Applications graph analysis (SSCA#2) benchmark. The benchmark

was created by the graphanalysis.org compendium. It contains multiple kernels

accessing a single data structure representing a weighted, directed multigraph.

In addition to a kernel to construct the graph there are three additional compu-

tational kernels to operate on the graph. Each of the kernels requires irregular

22

access to the graph’s data structure [9].

In this thesis the version 2.2 created in 2007 is used, it is the most resent version

containing OpenMP parallelism. Characteristics of the benchmark:

• LOC: 7400

• #OMP: 70

• EffGCC: 0,167

• EffIns: #NA

ASC Sequoia Benchmark Codes

The Sequoia Benchmark Code Repository is a list of 17 codes developed and

maintained by the Lawrence Livermore National Laboratory. The codes are

designed to run on the Sequoia system which is a 20 PFLOP/s supercomputer

(currently on 3rd place of the Top500 list, June 2014). The benchmarks are

available in different versions regarding parallelization (MPI, OpenMP) and the

used language (Fortran, Python, C, C++). In this thesis only OpenMP and

MPI versions using C and/or C++ are considered, all used benchmarks are

listed in Table 3.3.

Name Description LOC #OMP EffGCC EffIns

stride Designed to stress the memory subsystem
on a node.

600 0 0,164 #NA

stride (cachec) A variant of the stride benchmark. 150 8 0,164 #NA

stride (vecopc) Another variant of the stride benchmark. 288 12 0,164 #NA

IRSmk Intended to be an optimization and SIMD
compiler challenge1

370 1 0,164 #NA

CLOMP TM Benchmark to measure OpenMP execu-
tion and overhead

4800 20 0,164 #NA

Table 3.3.: Selected codes of the Sequoia Benchmark Suite

SMG 2000

The SMG2000 benchmark was created by the Lawrence Livermore National

Laboratory. It is a semicoarsing multigrid solver for linear systems. It is a

SIMD code written in C that uses MPI and OpenMP as parallelization model.

Three versions exist: MPI-only, OpenMP-only and MPI with OpenMP.

1This is a customized version, OpenMP parallelism was introduced

23

In this thesis the OpenMP-only version was used. Characteristics of the bench-

mark are:

• LOC: 20000

• #OMP: 18

Application Performance Characterization Benchmarking Map
(APEX-Map)

The APEX Map was designed by the Lawrence Berkeley National Laboratory.

The main idea for the project was the assumption that each application or algo-

rithm can be characterized by several major performance factors. These factors

are specific to the application and independent of the computer architecture.

A synthetic benchmark combines these factors to simulate the application’s

behavior on different test systems. Such a benchmark can be used as a realistic

indicator of achievable application performance and enables the users to directly

evaluate a new platform based on their own interests [10].

In this thesis the APEX-Map benchmark v1 was used. There are two versions,

a sequential one and a MPI-parallelized code. The characteristics are:

MPI version

• LOC: 720

• EffGCC: 0,166

Sequential version

• LOC: 340

• Runtime GCC: 1,740

• Runtime Insieme: 1,730

• EffIns: 0,159

• EffGCC: 0,163

ExMatEx Codes

ExMatEx means Exascale Co-Design Center for Materials in Extreme Environ-

ments, it is located at the Los Alamos National Laboratory. They created a set

of so-called proxy apps. The claimed benefits of their proxy apps compared to

normal benchmarks only measuring system performance are [11]:

• Well-designed proxy apps present a realistic representation of a specific

requirement of a scientific workflow. E.g. a numerically intensive kernel

or a kernel using a high amount of I/O operations. Real applications can

spawn multiple proxy apps.

24

• Proxy apps consist of documentation and specification of the problem to

solve, plus a reference implementation.

• Proxy apps are designed to be flexible to allow exploration of new pro-

gramming models and new algorithms in order to learn how these emerging

technologies will impact real applications.

In this thesis three proxy applications are reused as input codes for Insieme,

their characteristics can be found in Table 3.4.

Name Description LOC #OMP EffGCC EffIns

COMD (OpenMP) Molecular dynamics 3025 15 0,547 0,503
COMD (MPI) computer simulation 2969 MPI 0,164 #NA

LULESH Livermore Unstructured Lagrangian
Explicit Shock Hydrodynamics

5992 34 0,532 #NA

Table 3.4.: Proxy apps used from the ExMatEx Suite

GALPROP

GALPROP is a project of the University of Stanford. It is a numerical code

for calculating the propagation of relativistic charged particles and the diffuse

emissions produced during their propagation. To use GALPROP for the Insieme

Compiler the most compute-intensive part of it was extracted and converted into

a test case.

The characteristics of the resulting test kernel are:

• LOC: 337

• #OMP: 4

• EffGCC: 0,981

• EffIns: 0,685

A detailed analysis of parallelization aspects, scalability and improvement po-

tential of GALPROP is shown in Section 8.

CORAL Benchmarks

The CORAL Benchmark suite was built by the Lawrence Livermore National

Laboratory (LLNL), the Argonne National Laboratory and the OakRidge Na-

tional Laboratory. The purpose of several mini applications and a few larger

applications is to measure the performance of their DOE production systems,

25

namely Sequoia, Mira and Titan. These systems are supercomputers main-

tained by these laboratories. For Sequoia see also Section 3.2. Mira is currently

on the fifth place of the Top500 list, it reaches a theoretical peak performance

of 10 PFlop/s. Titan offers even more computational power, it is a 27 PFlop/s

machine and contains about 560.000 cores. It reaches rank 2 of the Top500

list [12].

Based on their parallelization aspects (only OpenMP) and their used source

code language (only C and C++) some of the CORAL benchmarks are picked

out and analysed, the results are shown in Table 3.5.

Name Description LOC #OMP EffGCC EffIns

AMG2013 Algebraic Multi-Grid linear system solver
for unstructured mesh physics packages

75.000 MPI 0,062 #NA

Graph500 Scalable breadth-first search of a large
undirected graph

2109 1 0,363 #NA

CLOMP Measure OpenMP overheads and other
performance impacts due to threading

1169 52 0,251 #NA

XSBench Mini-app representing a key computa-
tional kernel of the Monte Carlo neutron-
ics application OpenMC

1.000 5 0,593 #NA

HACCmk Single core optimization and SIMD com-
piler challenge, compute intensity

250 MPI 0,764 0,720

AMGmk Three compute intensive kernels from
AMG

1.800 6 0,764 0,720

miniFE Implements a couple of kernels representa-
tive of implicit finite-element applications

50.000 MPI 1,244 #NA

Table 3.5.: Selected benchmarks of the CORAL benchmark suite [13]

KineControl

The KineControl project is a cooperation between two institutes of the Univer-

sity of Innsbruck (Department of Geometry and CAD, Institute of Computer

Science) and the Institute for Automation and Control Engineering of the Pri-

vate University for Health and Life Sciences (UMIT) in Hall. It is a project

with the goal to develop a new algorithm to calculate the inverse kinematics of

a robot. The developed algorithm was implemented in three versions: a C#

version, a C++ version and a C version. In contrary to other C++ codes pre-

sented in this thesis KineControl contains many C++11 constructs. To test

the integration of C++11 in Insieme this version of KineControl was chosen.

26

The original implementations were already optimized regarding parallelization

in [14] and [15]. Characteristics of KineControl:

• LOC: 337

• #OMP: 4

• EffGCC: 0,828

PARSEC Benchmark Suite

PARSEC stands for Princeton Application Repository for Shared-Memory

Computers. The name is already self-explanatory, it is a benchmark suite

designed by the Princeton University composed of multithreaded programs. In

this thesis only two of the PARSEC benchmarks were used: blackscholes and

freqmine. Blackscholes calculates the prices for a portfolio of European options

analytically with the Black-Scholes partial differential equation. Freqmine

employs an array-based version of the FP-growth (Frequent Pattern-growth)

method for Frequent Itemset Mining (FIMI).

blackscholes

• LOC: 513

• #OMP: 1

• EffGCC: 0,507

freqmine

• LOC: 2300

• #OMP: 4

• EffGCC: 0,308

Velvet

Velvet is a genome sequence assembler, it uses a modification of the so-called

Bruijn graph method. This is one of the benchmarks which represents a

black box real world application. The test case uses two parts of the vel-

vet project. Velveth which constructs a test data set, this can be seen as

input data for the next step. Velvetg uses this data set and constructs the

Bruijn graph and runs simplification and error correction over the graph. The

last step is to extract the results. In 2011 velvet was parallelized using OpenMP.

27

velvetg

• LOC: 26575

• #OMP: 44

• EffGCC: 0,504

• EffIns: #NA

velveth

• LOC: 10242

• #OMP: 19

• EffGCC: 0,253

• EffIns: #NA

Common OpenMP Example Codes

To not only use benchmarking codes also some common codes parallelized using

OpenMP are considered. Mostly these codes are small, simple codes, not opti-

mized to achieve a high speedup for parallel execution. A list of the examples

and its characteristics can be found in Table 3.6. The developers of the codes

are shown in Table 3.7.

Name Description LOC #OMP EffGCC EffIns

dijkstra Creates a random graph and runs dijkstra
algorithm

546 4 0,232 0,174

heated plate Solves the steady (time independent) heat
equation in a 2D rectangular region

293 10 #NA 0,049

prime Counts prime numbers 211 1 0,507 0,443

integral estimation Estimates the value of an integral 210 1 0,901 0,829

satisfy Demonstrates an exhaustive search for so-
lutions of the circuit satisfy problem

320 1 0,794 #NA

sgefa Reimplements the SGEFA/SGESL linear
algebra routines from LINPACK for use
with OpenMP

1500 1 0,204 0,146

ziggurat Uses ziggurat library in conjunction with
OpenMP to compute random numbers ef-
ficiently and correctly

1.300 8 0,204 0,201

oddEvenSort OddEven sorting algorithm 70 2 0,058 0,031

mergeSort Merge sort algorithm 200 2 0,283 0,161

nBody Naive implementation of the nBody prob-
lem

330 5 0,236 0,275

Table 3.6.: List of rudimentary parallelized example codes

28

Code Author Company

dijkstra Norm Matloff, John Burkhardt CS Dept., UC Davis

heated plate Michael Quinn, John Burkhardt

molecular dynamics Bill Margo, John Burkhardt

prime John Burkhardt

integralEstimation John Burkhardt

satisfy Michael Quinn, John Burkhardt

sgefa John Burkhardt

ziggurat John Burkhardt

oddEvenSort unknown

bitonicSort unknown

mergeSort unknown

nBody Sean Ho Department of North Carolina

Table 3.7.: List of example codes and their authors

Stream Memory Benchmark

STREAM (Sustainable Memory Bandwidth in High Performance Computers)

is the de facto industry standard benchmark for measuring sustained memory

bandwidth. It was developed by the University of Virginia. There is a sequential

version as well as a parallelized version using OpenMP.

sequential

• LOC: 400

• EffGCC: 0,165

• EffIns: 0,265

parallel

• LOC: 230

• #OMP: 11

• EffGCC: 0,550

• EffIns: 0,241

NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) are a small set of programs designed

to evaluate the performance of parallel supercomputers. They are maintained

by the NASA Advanced Supercomputing Division. The original suite (NPB-1)

released in 1992 contained five kernels and three pseudo-applications. The paper

and pencil specification came with Fortran-77 sample codes and two problem

sizes (A,B) were defined. The second version (NPB-2) released in 1996 extended

NPB-1 by more concrete source code implementations and new problem sizes C

and D. Some of the benchmarks were parallelized using MPI. The third version

29

added three more benchmarks, modern programming flavors like OpenMP, Java

and High Performance Fortran were introduced [16].

In this thesis the OpenMP version of NPB-3 is used, results can be found in

Table 3.8.

Name Description LOC #OMP EffGCC EffIns

BT Block Tri-diagonal solver 2638 58 0,234 0,173

CG Conjuate Gradient, irregular memory ac-
cess and communication

668 40 0,168 0,236

EP Embarrassingly Parallel 314 5 0,779 0,756

FT Discrete 3D Fourier Transform 881 25 0,430 0,417

IS Integer Sort 502 10 0,162 0,210

LU Lower-Upper Gauss-Seidel solver 2694 46 0,405 0,361

MG Multi-Grid on a sequence of meshes 944 30 0,351 0,230

SP Scalar Penta-diagonal solver 2210 77 0,168 #NA

Table 3.8.: Codes of the NPB Suite

SNU-NPB Suite

The SNU-NPB Suite is an alternative open source implementation of the NAS

Parallel Benchmarks implemented in C, OpenMP and OpenCL. The suite is

developed by the Center for Manycore Programming of the Seoul National Uni-

versity. Currently four versions of the suite are available [17]:

• NPB-SER-C: Serial C version, derived from the serial Fortran code devel-

oped by NAS.

• NPB-OMP-C: OpenMP version, derived from the OpenMP Fortran code

developed by NAS.

• NPB-OCL: OpenCL version, derived from the OpenMP code developed

by NAS. Runs with a single OpenCL compute device.

• NPB-OCL-MD: OpenCL version, derived from the MPI Fortran code de-

veloped by NAS. Runs with multiple OpenCL compute devices.

In this thesis only the NPB-OMP-C version was used, it contains the codes

shown in Table 3.8. For detailed explanation of the benchmarks see the section

about NAS Parallel Benchmarks (3.2).

30

Name Description LOC #OMP EffGCC EffIns

BT Block Tri-diagonal solver 3940 36 0,353 #NA

CG Conjuate Gradient, irregular memory ac-
cess and communication

1000 19 0,101 0,121

DC Data Cube 2750 1 0,160 #NA

EP Embarrassingly Parallel 300 3 0,729 #NA

FT Discrete 3D Fourier Transform 900 6 0,552 #NA

IS Integer Sort 1000 9 0,240 #NA

LU Lower-Upper Gauss-Seidel solver 4000 48 0,236 #NA

MG Multi-Grid on a sequence of meshes 1300 15 0,161 #NA

SP Scalar Penta-diagonal solver 3350 37 0,214 #NA

UA Unstructured Adaptive mesh 8900 91 0,277 #NA

Table 3.9.: Codes of the SNU-NPB Suite

Hybrid OpenMP MPI Benchmark (HOMB-MPI)

HOMB is the Hybrid OpenMP MPI Benchmark for testing hybrid codes on

multicore and SMP systems. The code is an optimized Laplace Solver on a 2-D

grid (Point Jacobi) with optional convergence test. It contains MPI as well as

OpenMP constructs. Its characteristics are:

• LOC: 834

• #OMP: 8

• EffGCC: 0,073

Rodinia Benchmarks

Rodinia is a benchmarking suite composed by the University of Virginia. It fo-

cuses on heterogeneous computing infrastructures with OpenMP, OpenCL and

CUDA. The Rodinia suite covers a wide range of parallel communication pat-

terns, synchronization techniques and power consumption. It also shows the

growing importance of memory bandwidth limitations and the consequent im-

portance of used data layouts [18]. In this thesis we used the OpenMP imple-

mentations of the Rodinia kernels, a list can be seen in Table 3.10.

31

Name Description LOC #OMP EffGCC EffIns

kmeans A clustering algorithm used extensively in
data-mining and elsewhere, important pri-
marily for its simplicity

1800 1 0,164 #NA

backprop A machine-learning algorithm that trains
the weights of connecting nodes on a lay-
ered neural network

600 2 #NA #NA

bfs Breath First Search graph traversal algo-
rithm

170 1 0,166 0,163

euler3d An unstructured grid finite volume solver 470 5 0,711 0,623
euler3d double for the three-dimensional Euler equations 470 5 0,680 #NA
pre euler3d for compressible flow (different versions) 550 6 0,647 #NA

heartwall Tracks the movement of a mouse heart
over a sequence of 104 609x590 ultrasound
images to record response to the stimulus

3500 1 0,164 0,633

hotspot A widely used tool to estimate proces-
sor temperature based on an architectural
floorplan and simulated power measure-
ments

250 2 0,164 0,169

lavaMD Calculates particle potential and reloca-
tion due to mutual forces between parti-
cles within a large 3D space

550 1 0,165 #NA

leukocyte Detects and tracks rolling leukocytes
(white blood cells) in in vivo video mi-
croscopy of blood vessels

3500 3 0,164 #NA

lud LU Decomposition 400 2 0,393 0,356

myocyte Models cardiac myocyte (heart muscle
cell) and simulates its behavior

2900 2 0,164 #NA

nn Finds the k-nearest neighbors from an un-
structured data set

200 2 0,144 #NA

needle (nw) A nonlinear global optimization method
for DNA sequence alignments

250 2 0,165 0,152

particlefilter Statistical estimator of the location of a
target object given noisy measurements of
that target’s location and an idea of the
object’s path in a Bayesian framework

600 10 0,164 0,162

pathfinder Uses dynamic programming to find a path
on a 2-D grid from the bottom row to
the top row with the smallest accumulated
weights

160 1 0,166 0,161

srad A diffusion method for ultrasonic and 640 2 0,178 0,161
radar imaging applications based on par-
tial differential equations

Table 3.10.: Used Rodinia benchmark kernels

32

Chapter 4.

Test Environment

The following section describes the test environment used to execute the bench-

mark codes, mentioned in Section 3, and a short overview of the used profiling

tools. The last part of the section shows how the classification of codes regarding

their CPU and memory boundness was done.

4.1. Hardware and Software Environment

The used machine contains four Intel Xeon E5-4650 CPUs. Each CPU contains

8 physical cores and uses hyperthreading technology. Therefore it is possible to

execute at most 32 threads without hyperthreading and 64 threads when using

hyperthreading. Each core runs on a maximum clock frequency of 2.7 GHz,

when using Intel Turbo Boost technology a peak of 3.3 GHz is possible. The L3

cache size of each CPU is 20 MB. Intel claims a maximum memory bandwidth

of 51.2 GB per second.

The operating system is CentOS Release 6.5 which is using a Linux Kernel

version 2.6.32. As reference compiler GCC version 4.6.3 was used. Threads

were bound to their CPU cores using the GOMP CPU AFFINITY environment

variable. The Insieme project does not maintain a versioning system. To give

a clue which version of Insieme was used the output of “git describe”, which

represents some kind of versioning based on the last git commit, is mentioned

here. The used Insieme version is v0.5.0-5571-g646d8c9-dirty.

4.2. Metrics

This sections shows which metrics were collected, how they are defined and

which tools were used to measure them. The metrics are measured for each run

of each input code.

33

4.2.1. Runtime and Memory

To measure the runtime and memory consumption of a test run the GNU time

tool version 1.7 was used (/usr/bin/time). The time tool provides per-process

statistics including

• user CPU time,

• system CPU time,

• walltime,

• memory consumption and

• pagefaults.

Walltime, CPU time and main memory consumption were measured. For the

calculation of speedup and efficiency walltime was used.

The exact command used is

/usr/bin/time -f WALLTIME%e\nCPUTIME%U\nMEM%M test_run_starter

The results are obtained by analyzing the command output using regular

expressions.

4.2.2. Lines of Code

To count the number of lines the CLOC (Count Lines of Code) perl script

was used. It is written by Al Daniel and is published under the GNU General

Public License [19]. The tool is able to filter out commented and blank lines and

therefore only counts lines containing source code. CLOC automatically detects

the used programming language based on file endings and/or code structure.

The results are stored into a file in XML format, this file was parsed and results

were retrieved.

4.2.3. Linux Perf Tool

Perf is a performance analyzing tool included in the Linux kernel since version

2.6.31. It supports hardware and software performance counters, tracepoints

and dynamic probes. Performance counters are a set of special registers built

into modern microprocessors which store the counts of hardware related ac-

tivities, e.g. the number of floating point operations. They can be used for

34

low-level performance analysis. The dynamic tracepoint feature allows to instru-

ment functions and even arbitrary lines of source code recompiling the program.

Assuming a copy of the source code is available, tracepoints can be placed any-

where at runtime and the value of variables can be dumped each time execution

passes the tracepoint. Dynamic probes is a linux debugger that can be used

to insert software probes into executing code modules. When a probe is fired,

a probe-handler written in an assembly-like language is executed. Perf is used

with several subcommands [20]:

• stat: measure total event count for a single program or for the whole

system for some time.

• top: dynamic view of the most resource consuming functions

• record: measure and save sampling data of a single program

• report: analyze files generated by record

• annotate: annotate source files

• sched: tracing/measuring of scheduler actions and latencies

• list: list available events

Perf was used to determine floating point operations and memory bandwidth.

4.2.4. Floating Point Operations

To count floating point operations (FLOPS) of a test run the linux perf tool was

used. It is not trivial to determine the right performance counters to measure

floating point operations for a particular machine. For this thesis PAPI1 event

counters were decoded to determine the right hardware counters for the perf

tool.

PAPI uses two counters to sum up the number of FLOPS on our Xeon E5-4650

system:

• FP_COMP_OPS_EXE:SSE_FP_SCALAR_SINGLE: Number of SSE single precision

FP scalar uops executed and

• FP_COMP_OPS_EXE:SSE_SCALAR_DOUBLE: Number of SSE double precision FP

scalar uops executed

1PAPI: a portable interface to hardware performance counters on modern microprocessors.
It is widely used to collect low level performance metrics.

35

These counters measure vectore instructions as well as regular floating point

instructions. We used these two counters after a short plausibility test using a

dummy application. The application computed 2.000.000 floating point addi-

tions, the measured perf results varied by 10 FLOPS (±0.05h).

4.2.5. Memory Transfer

To measure the memory bandwidth the amount of memory transferred between

the last level cache and the main memory has to be measured. This was done

by counting the last level cache misses and multiplying the result by the last

level cache line size.

On the used machine the last level cache misses are found in the perf metrics

• LLC-load-misses and

• LLC-store-misses.

To prove the metrics a dummy application was used. The application stored

90.000.000 integer values in main memory. Test average error of the memory

transfer computed based on the measured perf values was ±1.16%.

4.2.6. Boundness

The term boundness is used in this thesis as the classification for determining

whether a code is memory-bound or compute-bound. Memory-bound means

that the program performance is limited by the memory bandwidth of a ma-

chine. Hence the performance may be enhanced by increasing the memory

bandwidth between the last level cache and the main memory. On the other

hand an application is compute-bound if its performance is restricted by the

computational power of the used machine. Therefore the performance of the

application increases if the computational power of the machine is increased.

One approach to classify codes regarding their boundness is the roofline model

presented in [21]. This model relates processor performance to memory traf-

fic of an application. The authors use the term “operational intensity” which

represents operations per byte of DRAM traffic. This metric is shown in a 2D

graph. Roofline models for AMD Opteron systems can be found in Figure 4.1.

Figure 4.1a outlines the model for a 2.2 GHz AMD Opteron X2 model 2214

in a dual-socket system. The graph uses a log-log scale. The y-axis repre-

sents attainable floating-point performance. The x-axis denotes to operational

intensity, varying from 0.25 FLOPS/DRAM byte-accessed to 16 FLOPS/-

DRAM byte-accessed. The system has a peak floating-point performance of

17.6 GFLOPS/s and a peak memory bandwidth of 15 GB/s. The horizontal

36

Figure 4.1.: Roofline models for AMD Opteron systems [21]

line shows the peak floating-point performance of the computer. The actual

performance of an application can not be higher than this line, since this

is the hardware limit. Peak memory performance (represented by GB/s) is

represented by a rising line in the graph. The two lines intersect at the point

of peak computational performance and peak memory bandwidth. These two

lines give this model its name, roofline model. The roofline represents an upper

bound of application performance on this computer.

In Figure 4.1b two rooflines are shown, one for Opteron X2 and one for Opteron

X4. They share the same socket. Hence, they have the same peak memory

bandwidth. Since the Opteron X4 provides more computational power the

intersection point on the roofline is shifted to the right.

37

For each kernel there exists a point on the x-axis representing its opera-

tional intensity. If a vertical line is drawn through that point (the vertical

dashed line in Figure 4.1a) the performance of the kernel on that machine

must lie somewhere along that line. If the line hits the horizontal part of the

roofline the kernel is compute bound, if it hits the diagonal part it is memory

bound. In Figure 4.1a, a kernel with operational intensity 2 FLOPS/Byte is

compute-bound and a kernel with operational intensity 0.5 FLOPS/Byte is

memory-bound.

To generate a roofline for the target machine LINPACK was used for peak

computational performance and the STREAM memory benchmark for memory

bandwidth.

LINPACK

To determine the peak computational performance for the roofline model the

HPC LINPACK benchmark (HPL) was used. HPL is a portable implementa-

tion of HPLinpack which is used to provide data for the Top500 list [12]. The

implementation of HPL can be found in [22]. In this thesis HPL was used in con-

junction with the BLAS implementation in ATLAS2. HPL was executed using

64 threads to fully utilize the machine.

STREAM Memory benchmark

To get the peak memory bandwidth (between last level cache and main memory)

the STREAM memory benchmark, implemented by John McCalpin, University

of Virginia, was used [23]. Stream was executed using 64 threads with an array

size of 10e7 wich denotes to a total array size of 762.9 megabytes. The maximum

achieved memory bandwidth of the four STREAM kernels (Copy, Scale, Add

and Triad) were averaged.

Results for the target machine

The following section shows the results of STREAM and LINPACK for the

used target machine. Peak memory bandwith, measured using the STREAM

memory benchmark: 39.174,75 MB/s.

2ATLAS: Automatically Tuned Linear Algebra Software, http://math-atlas.
sourceforge.net/

38

http://math-atlas.sourceforge.net/
http://math-atlas.sourceforge.net/

Peak floating point performace, measured by using LINPACK: 47.17 GFLOPS/s.

Based on this measurements the roofline intersection point is

47, 17 GFLOPS/s

39, 174 GB/s
= 1.203 FLOPS/Byte (4.1)

Figure 4.2 shows the roofline of the target machine.

Figure 4.2.: Roofline model for the used target machine

4.2.7. Callgrind

For the detailed analysis of selected codes the callgrind tool included in the val-

grind tool suite was used. Valgrind is a toolset for software debugging, profiling

and dynamic error analysis. There are several tools integrated, in this thesis

only callgrind which is based on cachegrind was used.

Cachegrind is a cache profiler. It performs detailed simulation of the I1, D1

and L2 caches and so can accurately pinpoint the sources of cache misses in the

code. It identifies the number of cache misses, memory references and instruc-

tions executed for each line of source code, with per-function, per-module and

whole-program summaries [24].

Based on the results of cachegrind callgrind creates a callgraph. The data can

be visualized using the tool KCachegrind, which gives a much better overview

39

of the data that callgrind collects.

In this thesis version 3.8.1 of valgrind was used, callgrind was executed using

the default options.

40

Chapter 5.

Test Results

The following sections show the results of the test runs for all codes mentioned

in Chapter 3. The first section shows the behaviour of input codes regarding

their parallel performance using shared memory systems. The main memory

consumption is shown in the second section. The last part shows how the codes

are handled by the Insieme Compiler and the boundness of the codes (for details

about boundness see 4.2.6).

Test runs are executed using the environment presented in Chapter 4. Each test

run is executed five times. To reduce the influence of outliers the median of the

results is calculated.

Each metric is measured using GCC (version 4.6.3) and the Insieme Compiler

(INS). If the Insieme Compiler is not able to compile the code #NA is inserted

instead of the metric results.

5.1. Shared Memory Parallelization Performance

In Table 5.1 runtime results of codes running with a different number of threads

is shown. Sequential runtime refers to the execution of a version compiled

with OpenMP enabled, using one thread. Parallel runtime refers to the same

version using 64 threads. Runtime values are measured in seconds. Efficiency

is calculated as follows:

Ex =
Rx

R1 ∗ x

Efficiency =
E2 + E4 + E8 + E16 + E32 + E64

6

Rx . . .Runtime using x threads

Ex . . .Efficiency using x threads

(5.1)

For each run, using x threads, the best possible value for the efficiency Ex is 1.0,

the worst is 0. To reach a good overall efficiency an application has to scale good

for all used variants of thread counts. This ensures that only applications scaling

41

well till the use of 64 threads get a good value for overall efficiency. Insieme

Factor divides the efficiency of the Insieme version by the efficiency of the GCC

version. If the factor is higher than 1 codes compiled with Insieme perform

better, if the factor is lower than 1 GCC compiled codes performs better.

Suite Name Sequential Runtime Parallel Runtime Efficiency Insieme

GCC INS GCC INS GCC INS Factor

BOTS alignment 1,090 1,110 0,582 1,062 0,247 0,026 0,105

fft 0,002 0,002 0,020 0,266 #NA #NA #NA

fib if 0,000 0,002 0,020 0,244 #NA 0,024 #NA

fib manual 0,000 0,002 0,020 0,264 #NA 0,024 #NA

floorplan if 18,766 25,066 0,708 4,374 0,610 0,621 1,017

floorplan

manual
11,260 10,552 0,438 0,678 0,592 0,760 1,284

health if 0,520 #NA 2,526 #NA 0,155 #NA #NA

health

manual
0,490 #NA 2,506 #NA 0,162 #NA #NA

nqueens if 0,000 0,008 0,030 0,334 #NA 0,141 #NA

nqueens

manual
0,000 0,004 0,024 0,216 #NA #NA 1,000

sort 4,822 5,654 4,378 4,120 0,301 0,326 1,084

sparselu for 0,000 0,000 0,020 #NA #NA #NA #NA

sparselu

single
0,000 0,004 0,010 0,234 #NA #NA #NA

strassen if 0,690 0,870 0,440 1,258 0,224 0,220 0,983

strassen

manual
0,690 0,836 0,440 1,058 0,223 0,225 1,009

uts 1,392 1,822 20,740 3,424 0,161 0,203 1,260

OmpSCR fft 0,040 0,000 0,040 #NA 0,218 #NA #NA

fft6 0,000 #NA 0,010 #NA #NA #NA #NA

graphsearch 0,020 #NA 0,082 #NA 0,116 #NA #NA

jacobi01 1,122 #NA 0,896 #NA 0,197 #NA #NA

jacobi02 1,128 #NA 0,892 #NA 0,195 #NA #NA

loopsA 0,000 #NA 0,926 #NA #NA #NA #NA

loopsB 0,000 #NA 0,470 #NA #NA #NA #NA

loopsC 0,000 #NA 0,696 #NA #NA #NA #NA

loopsD 0,000 #NA 0,760 #NA #NA #NA #NA

lu reduction 0,410 0,590 1,444 5,255 0,173 0,241 1,397

mandelbrot 0,160 #NA 0,010 #NA 0,615 #NA #NA

42

Suite Name Sequential Runtime Parallel Runtime Efficiency Insieme

GCC INS GCC INS GCC INS Factor

molecular 17,654 49,152 4,738 11,334 0,736 0,726 0,986

pi 0,820 1,670 0,040 0,276 0,817 0,765 0,936

qsort 0,010 #NA 0,050 #NA 0,161 #NA #NA

simple 0,000 0,000 0,010 0,138 #NA #NA #NA

simple pfor 0,000 0,000 0,010 0,198 #NA #NA #NA

single 0,000 0,002 0,010 0,216 #NA #NA #NA

SSCA2 0,220 #NA 8,356 #NA 0,167 #NA #NA

sequoia stride 82,366 #NA 82,556 #NA 0,164 #NA #NA

cachec 95,496 #NA 96,118 #NA 0,164 #NA #NA

vecopc 23,152 #NA 23,106 #NA 0,164 #NA #NA

irs mk 50,452 #NA 2,380 #NA #NA 0,164 #NA

clomp 20,736 #NA 20,676 #NA 0,164 #NA #NA

smg2000 0,080 #NA 7,970 #NA #NA #NA #NA

apex sequential 1,728 1,734 1,732 3,116 0,163 0,159 0,975

mpi version 1.201,516 #NA 1.201,544 #NA 0,166 #NA #NA

exmatex comd 11,892 12,732 3,680 6,536 0,547 0,503 0,921

comd mpi 37,740 #NA 37,700 #NA 0,164 #NA #NA

lulesh 172,918 #NA 19,238 #NA 0,532 #NA #NA

coral amg2013 0,150 #NA 4,270 #NA 0,062 #NA #NA

graph500 1,078 #NA 3,410 #NA 0,363 #NA #NA

clomp 39,770 #NA 24,646 #NA 0,251 #NA #NA

xsBench 62,248 #NA 4,764 #NA 0,593 #NA #NA

HACCmk 57,342 56,762 3,460 7,900 0,764 0,720 0,942

AMGmk 0,172 0,300 0,170 0,920 0,315 0,332 1,054

miniFE 1,700 #NA 1,400 #NA 1,244 #NA #NA

Galprop 164,368 156,216 13,900 19,984 0,981 0,685 0,699

Common heatedPlate 0,000 0,010 4,064 5,218 #NA 0,049 #NA

OpenMP dijkstra 0,864 0,980 9,400 21,828 0,232 0,174 0,752

prime 5,442 5,444 0,374 1,320 0,507 0,443 0,873

integral-

estimation
13,996 14,192 0,386 0,822 0,901 0,829 0,920

satisfy 0,360 0,000 0,020 0,158 0,794 #NA #NA

sgefa 1,010 1,376 5,198 7,458 0,204 0,201 0,984

ziggurat 2,130 4,368 1,204 3,716 0,243 0,231 0,950

oddEvenSort 0,100 0,170 16,920 20,570 0,058 0,031 0,527

mergeSort 5,232 5,402 3,118 9,846 0,283 0,161 0,567

43

Suite Name Sequential Runtime Parallel Runtime Efficiency Insieme

GCC INS GCC INS GCC INS Factor

nBody 0,030 0,060 0,636 0,738 0,236 0,275 1,164

KineControl 48,874 #NA 1,368 #NA 0,828 #NA #NA

Parsec blackscholes 0,492 #NA 0,536 #NA 0,507 #NA #NA

freqmine 0,412 #NA 0,284 #NA 0,308 #NA #NA

Velvet velvetg 3,382 #NA 1,116 0,000 0,504 #NA #NA

velveth 10,700 #NA 4,032 0,000 0,253 #NA #NA

Stream stream c 0,784 #NA 0,458 #NA 0,385 #NA #NA

stream d 0,434 0,444 0,436 0,362 0,165 0,265 1,602

stream omp 0,154 0,174 0,220 1,096 0,550 0,241 0,439

NPB bt 0,426 0,516 7,506 12,634 0,234 0,173 0,739

cg 0,180 0,310 7,780 7,015 0,168 0,236 1,402

ep 3,142 3,938 0,202 0,428 0,779 0,756 0,971

ft 0,590 0,682 0,240 0,692 0,430 0,417 0,969

is 0,020 0,030 0,086 0,330 0,162 0,210 1,298

lu 0,260 0,426 1,210 3,288 0,405 0,361 0,890

mg 0,040 0,052 0,910 1,122 0,351 0,230 0,656

sp 0,380 #NA 14,850 #NA 0,168 #NA #NA

SNU-NPB bt 0,090 #NA 1,994 #NA 0,353 #NA #NA

cg 0,060 0,070 4,382 4,712 0,101 0,121 1,201

dc 0,070 #NA 0,114 #NA 0,160 #NA #NA

ep 2,260 #NA 0,156 #NA 0,729 #NA #NA

ft 0,170 #NA 0,206 #NA 0,552 #NA #NA

is 0,020 #NA 0,140 #NA 0,240 #NA #NA

lu 0,040 #NA 1,094 #NA 0,236 #NA #NA

mg 0,010 #NA 1,190 #NA 0,161 #NA #NA

sp 0,040 #NA 5,172 #NA 0,214 #NA #NA

ua 0,810 #NA 2,090 #NA 0,277 #NA #NA

homb-mpi 5,900 #NA 10,610 #NA 0,073 #NA #NA

rodinia kmeans 6,500 #NA 6,482 #NA 0,164 #NA #NA

backprop 0,000 #NA 0,000 #NA #NA #NA #NA

bfs 1,602 1,722 1,586 3,472 0,166 0,164 0,987

euler3d 170,436 218,774 9,486 20,206 0,711 0,623 0,877

euler3d

double
230,064 #NA 14,864 #NA 0,680 #NA #NA

pre euler3d 177,260 #NA 13,798 #NA 0,647 #NA #NA

heartwall 1,230 5,090 1,230 0,776 0,164 0,633 3,861

44

Suite Name Sequential Runtime Parallel Runtime Efficiency Insieme

GCC INS GCC INS GCC INS Factor

hotspot 0,200 0,230 0,200 0,894 0,164 0,169 1,032

lavaMD 9,138 #NA 9,092 #NA 0,165 #NA #NA

leukocyte 3,678 #NA 3,688 #NA 0,164 #NA #NA

lud 7,764 10,400 6,818 16,152 0,393 0,356 0,906

myocyte 9,416 #NA 9,422 #NA 0,164 #NA #NA

nn 0,066 #NA 19,430 #NA 0,144 #NA #NA

needle 5,854 6,380 5,810 9,012 0,165 0,152 0,920

particle filter 6,402 6,552 6,410 10,328 0,164 0,162 0,989

pahtfinder 1,110 1,316 1,546 4,670 0,166 0,161 0,970

srad 2,142 2,130 1,970 3,478 0,178 0,161 0,904

Table 5.1.: Shared memory performance of all input codes

5.2. Main Memory Footprint

Table 5.2 shows the main memory consumption of all measured codes. In column

Sequential Memory memory consumption of a version compiled with OpenMP

enabled, using one thread is shown. The Parallel Memory column refers to the

same version executed using 64 threads. Memory consumption was measured

in KBytes. Insieme Factor divides the memory consumption of the Insieme

version by the memory consumption of the GCC version. If the factor is lower

than 1 codes compiled with Insieme use less memory, if the factor is higher than

1 codes compiled with GCC use less memory.

Suite Name Sequential Memory (KB) Parallel Memory (KB) Insieme

GCC INS GCC INS Factor

BOTS alignment 19.449 #NA 19.449 #NA #NA

fft 5.043 13.062 5.849 590.252 103

fib if 5.043 11.993 6.758 1.573.084 235

fib manual 5.040 13.587 11.673 1.638.614 143

floorplan if 5.043 18.057 97.078 21.890.880 229

floorplan

manual
5.043 14.672 48.636 1.646.080 36

health if 41.270 #NA 44.659 #NA #NA

health

manual
41.270 #NA 47.900 #NA #NA

nqueens if 5.043 15.369 6.640 4.324.448 654

45

Suite Name Sequential Memory (KB) Parallel Memory (KB) Insieme

GCC INS GCC INS Factor

nqueens

manual
5.046 13.590 9.862 1.486.188 153

sort 2.100.614 2.110.508 2.105.091 31.713.484 16

sparselu for 5.056 #NA 5.676 #NA #NA

sparselu

single
5.040 11.369 8.985 560.339 64

strassen if 237.859 522.508 676.774 1.101.462 3

strassen

manual
237.881 373.552 664.009 764.220 2

uts 8.508 21.180 46.697 57.361.768 1.230

OmpSCR fft 10.269 #NA 12.547 #NA #NA

fft6 5.040 #NA 13.702 #NA #NA

graphsearch 10.899 #NA 13.517 #NA #NA

jacobi01 2.347.011 #NA 2.349.242 #NA #NA

jacobi02 2.347.018 #NA 2.349.178 #NA #NA

loopsA 5.046 #NA 10.723 #NA #NA

loopsB 5.043 #NA 7.014 #NA #NA

loopsC 5.037 #NA 7.072 #NA #NA

loopsD 5.043 #NA 7.021 #NA #NA

lu reduction 65.190 71.344 70.669 9.421.888 134

mandelbrot 5.046 #NA 5.338 #NA #NA

molecular 6.349 #NA 11.840 #NA #NA

pi 5.040 6.531 5.040 610.275 122

qsort 5.050 #NA 5.424 #NA #NA

simple 5.040 7.987 5.043 608.506 122

simple pfor 5.037 12.794 8.269 610.240 76

single 5.050 8.179 5.030 613.552 124

SSCA2 0,220 #NA 8,356 #NA #NA

sequoia stride 19.456 #NA 19.446 #NA #NA

cachec 19.450 #NA 19.450 #NA #NA

irs mk 140.768 142.048 146.208 743.120 6

vecopc 19.382 #NA 19.386 #NA #NA

clomp 65.427 #NA 59.139 #NA #NA

smg2000 16.419 #NA 18.608 #NA #NA

apex sequential 2.100.487 2.101.946 2.100.474 2.189.978 2

mpi version 293.731 #NA 293.731 #NA #NA

46

Suite Name Sequential Memory (KB) Parallel Memory (KB) Insieme

GCC INS GCC INS Factor

exmatex comd 68.579 89.069 74.122 14.860.467 202

comd mpi 120.723 #NA 121.440 #NA #NA

lulesh 87.354 #NA 114.509 #NA #NA

coral amg2013 67.888 #NA 87.344 #NA #NA

graph500 39.210 #NA 49.821 #NA #NA

clomp 5.046 #NA 8.474 #NA #NA

xsBench 23.256.764 #NA 23.256.768 #NA #NA

HACCmk 7.562 27.392 10.634 18.028.838 1.699

AMGmk 60.726 75.059 66.221 1.388.848 22

miniFE 37.776 #NA 40.000 #NA #NA

Galprop 335.466 354.342 337.715 42.882.608 128

Common heatedPlate 0,000 0,010 4,064 5,218 #NA

OpenMP dijkstra 1.565.373 1.632.768 1.567.568 2.201.187 2

prime 6.349 9.536 11.840 1.396.451 119

integral-

estimation
13,996 14,192 0,386 0,822 0,167

satisfy 6.349 6.518 11.840 606.915 52

sgefa 6.349 32.403 11.840 11.054.349 939

ziggurat 6.349 10.118 11.840 787.834 68

oddEvenSort 5.040 14.048 5.008 27.021.184 5.398

mergeSort 1.877.565 1.885.635 1.883.050 1.965.517 2

nBody 5.056 30.650 11.542 630.666 61

KineControl 12.294 #NA 59.952 #NA #NA

Parsec blackscholes 5.053 #NA 5.059 #NA #NA

freqmine 83.235 #NA 732.531 #NA #NA

Velvet velvetg 453.114 #NA 446.944 #NA #NA

velveth 1.301.210 #NA 1.319.754 #NA #NA

Stream stream c 940.493 #NA 942.720 #NA #NA

stream d 0,434 0,444 0,436 0,362 0,997

stream omp 0,154 0,174 0,220 1,096 0,444

NPB bt 12.544 85.232 18.035 705.517 46

cg 13.600 85.536 15.824 865.744 61

ep 7.322 12.227 442.534 865.574 4

ft 57.568 63.725 68.854 885.283 14

is 5.059 10.381 22.221 853.421 40

lu 5.405 78.192 10.880 695.379 78

47

Suite Name Sequential Memory (KB) Parallel Memory (KB) Insieme

GCC INS GCC INS Factor

mg 7.696 31.136 25.459 1.438.790 61

sp 6.173 #NA 8.400 #NA #NA

SNU-NPB bt 5.059 #NA 20.771 #NA #NA

cg 11.965 21.491 14.186 2.310.618 165

dc 138.365 #NA 138.365 #NA #NA

ep 7.418 #NA 420.102 #NA #NA

ft 45.082 #NA 78.845 #NA #NA

is 5.053 #NA 8.733 #NA #NA

lu 5.472 #NA 7.680 #NA #NA

mg 7.274 #NA 9.818 #NA #NA

sp 5.066 #NA 23.667 #NA #NA

ua 19.997 #NA 24.224 #NA #NA

homb-mpi 2.135.408 #NA 2.137.616 #NA #NA

rodinia kmeans 911.798 #NA 911.795 #NA #NA

backprop 5.027 #NA 5.037 #NA #NA

bfs 157.366 160.349 160.634 817.926 6

euler3d 55.811 85.286 61.264 2.457.258 42

euler3d

double
100.074 #NA 102.250 #NA #NA

pre euler3d 177 #NA 76.566 #NA #NA

heartwall 138.186 139.645 138.186 702.394 6

hotspot 27.699 34.323 27.709 597.590 23

lavaMD 34.013 #NA 34.016 #NA #NA

leukocyte 157.386 #NA 157.389 #NA #NA

lud 72.714 76.013 72.712 24.977.364 345

myocyte 2.289.389 #NA 2.289.392 #NA #NA

nn 5.242 #NA 7.488 #NA #NA

needle 5,854 6,380 5,810 9,012 0,998

particle filter 6,402 6,552 6,410 10,328 1,000

pahtfinder 164.051 167.318 172.797 3.279.495 20

srad 2,142 2,130 1,970 3,478 0,920

Table 5.2.: Main memory footprint of all input codes

48

5.3. Boundness

Table 5.3 shows if test codes are memory or compute bound. The table only

lists codes Insieme is capable to successfully compile and run. Boundness Factor

denotes the operational intensity of an application compiled with GCC running

on 64 threads. Operational intensity was calculated using the values presented

in Section 4.2.6. The last column Boundness shows if the code is memory or

compute bound.

Suite Name Boundness Factor Boundness

(Flops/Byte)

BOTS fft 0,0367 Memory

fib if 0,0306 Memory

fib manual 0,0205 Memory

floorplan if 0,0122 Memory

floorplan manual 0,0114 Memory

nqueens if 0,0213 Memory

nqueens manual 0,0174 Memory

sort 1118 Memory

sparselu single 0,0488 Memory

strassen if 46,7518 Compute

strassen manual 47,4742 Compute

uts 0,013 Memory

OmpSCR lu reduction 9,4698 Compute

pi 1633,0098 Compute

simple 0,0208 Memory

simple pfor 0,0203 Memory

single 0,0213 Memory

molecular 136,6499 Compute

sequoia irs mk 24,152 Compute

smg2000 0,0292 Memory

apex sequential 11,3281 Compute

exmatex comd 157,9175 Compute

coral amg2013 0,0777 Memory

HACC OC 2686,4509 Compute

AMGmk 4,8274 Compute

miniFE 2,4114 Compute

Galprop 4,3301 Compute

49

Suite Name Boundness Factor Boundness

(Flops/Byte)

Common heatedPlate 0,0993 Memory

OpenMP dijkstra 0,0103 Memory

prime 2623,4363 Compute

integral-

estimation
6221,6965 Compute

satisfy 0,0255 Memory

sgefa 0,3036 Memory

ziggurat 91,7248 Compute

oddEvenSort 0,0547 Memory

mergeSort 1,9486 Compute

nBody 4,1396 Compute

Stream stream d 0,0203 Memory

stream omp 2,0727 Compute

NPB bt 5,8642 Compute

cg 1,3199 Compute

ep 95,0317 Compute

ft 9,45 Compute

is 6,4843 Compute

lu 12,7946 Compute

mg 2,106 Compute

SNU-NPB cg 2,4175 Compute

homb-mpi 8,996 Compute

rodinia bfs 0,0012 Memory

euler3d 61,0544 Compute

heartwall 1697,5879 Compute

hotspot 9,9488 Compute

leukocyte 543,8547 Compute

lud 0,6074 Memory

needle 0 Memory

particle filter 3877,8655 Compute

pahtfinder 0,017 Memory

srad 821,2534 Compute

Table 5.3.: Boundness of selected input codes

50

Chapter 6.

Detailed Analysis of Selected Codes

Some codes were selected based on

• their sequential runtime (below 60s),

• parallelization model (OpenMP) and

• their efficiency (smaller than 0,2 or higher than 0,8).

These criteria where chosen to ensure that the codes are interesting for the

Insieme compiler to optimize. The goal was to analyze various small codes. For

big codes the compilation process gets more and more complex, therefore they

are not that useful for the Insieme development process. Another criteria was to

find applications which scale bad to retain the potential for Insieme to optimize

the code.

All analysis was done on the architecture presented in Section 4. To show how

important it is to parallelize even small parts of an application Amdahl’s law

is useful. Therefore a short introduction in Amdahl’s law is shown in the first

section.

6.1. Amdahl’s law

S(N) =
1

(1 − P) + P
N

S(N) . . .maximal achievable speedup by using N processors

Sx . . . proportion of a program that runs fully parallel

1 − P . . . serial part

(6.1)

If N approaches infinity the maximum value for the speedup only depends on

the serial part. As an example, if P is 90%, that means 10% of the program is

executed in serial, the highest achievable speedup is 10, no matter how many

cores are used [25].

This calculation shows that optimization of this part is needed, even if it pro-

duces only about 15% of the runtime.

51

6.2. BOTS Health

The health benchmark (see also Section 3.2) included in the Barcelona OpenMP

Task Suite (BOTS) simulates a country health system. The code scales bad for

an increasing number of used threads. The sequential runtime on the used test

system is 0.52 seconds, when increasing the number of threads until 64 the

runtime increases up to 2.56 seconds. Details of the measured runtimes can be

found in Figure 6.1.

Figure 6.1.: Runtime in seconds of the health benchmark

It can be seen that the runtime decreases if the number of threads is increased

to 2. If the thread count is further increased the performance gets worse. It

is necessary to analyze the code and check why the code does not scale for a

higher number of threads. At first glance the following parallelization issues are

possible:

• A high amount of overhead for thread creation/suspension and synchro-

nization,

• a high amount of non parallelized code or

• the problem size is too small to split it up for a higher number of threads.

52

Parallelization Details

The function doing the main calculation in this application is sim village par.

This method is basically running in parallel. The method recursively calls itself,

for each recursive call an OpenMP task is created. At the end an OpenMP

taskwait pragma waits for the end of all tasks.

Figure 6.2 shows how runtime is shared among all functions used in the applica-

tion. The analysis is done using callgrind from the valgrind tool suite (see 4.2.7).

On the left side the analysis without parallelization, on the right side a run using

32 threads is shown.

Figure 6.2.: Callgrind analysis of the health benchmark

It is visible that the method gomp team barrier wait end ist the most time con-

suming method in the parallel version. That indicates a high amount of waiting

time at the barrier at the end of the application. This waiting time (approxi-

mately 47% of the total runtime) is lost, no calculation is done here. This is the

main reason why the application does not scale for a higher number of threads.

When no threads are used the methods my rand and check patients population

are the most time consuming methods. These methods take about 70% of the

total runtime, in the parallel execution only 35% of the total runtime are used

for the calculation. The rest of the runtime is used for thread management

overhead.

It would have been possible that the proportion of thread management overhead

decreases if a larger problem size is used. Another run of the benchmark using a

higher problem size showed that this is not the case. Runtime using one thread

is 11 seconds, for 16 threads 116 seconds and for 32 threads 140 seconds.

Additionally an analysis using Intel vTune showed that most of the calculation

is running in parallel, the amount of non parallelized code is below 10%. Al-

tough this parallelization was not done in a good way.

All in all the overhead for thread creation and synchronization is too high to

53

reach a good speedup. This overhead increases for a higher number of threads

to manage.

6.3. OmpSCR Graphsearch

Graphsearch included in the OpenMP Source Code Repository (OmpSCR, see

also 3.2) searches a path between two nodes in a given graph. A short analysis of

the code shows that the benchmark does not scale well. The runtime increases if

the number of threads is increased, shown in Figure 6.3. If the same application

is executed using 32 threads instead of 1 thread the runtime is multiplied by a

factor of 4. This leads to a bad efficiency value of 0.116. An interesting value is

the runtime using 16 threads, details why the runtime is decreasing between 8

and 16 threads can be found in the section below. The short runtime indicates

that the problem size is rather small, this would imply that a good scaling is

not possible.

Figure 6.3.: Runtime in seconds of the graphsearch benchmark

Parallelization Details

A short analysis using callgrind shows why the code does not scale well. An

excerpt of the results of callgrind are shown in Figure 6.4. It compares the

54

results using 1 thread on the left with the results using 32 threads on the right.

The two most time consuming methods of the code:

• tg read, which reads out a file and creates a data structure representing a

graph. This method does not contain any parallel computation.

• testPath, which does the main computation. Here a parallel for loop is

implemented.

It can be seen that the most time is used to read out the file and to create

the data structure, 95% if running sequentially. The main computation only

consumes 4.5% of the runtime if 1 thread is used.

Figure 6.4.: Callgrind analysis of the graphsearch benchmark, 1 thread vs 32
threads

If we look at the results of a run using 32 threads it can be seen that the

computation method only takes 0.22% of the runtime, the file operations take

79%. The remaining 20% (not visible in the callgrind analysis above) are used

for creation and suspending of the OpenMP threads.

Based on these results the absolute runtime values are shown in Table 6.1. It

can be seen that the parallel part of the application reaches a speedup of 6 by

using 32 threads. The decrease of runtime between 8 and 16 threads is also

visible in the table. While the amount of OpenMP overhead stays the same the

calculation time is decreasing. Therefore the total execution time decreases.

The main problem here is the high amount of sequential code, as a result of that

it is not possible for the whole application to scale well. Since these sequential

file operations cannot be reduced it is difficult to optimize the application.

1 thread 8 threads 16 threads 32 threads Speedup

Calculation 0.0008 s 0.0135 s 0.00836 s 0.000132 s 6.06

File Operations 0.019 s 0.0505 s 0.034 s 0.047 s 0.40

OpenMP Overhead 0 0.0030 s 0.0032 s 0.009 s #NA

Table 6.1.: Absolute runtime values of the graphsearch benchmark

55

6.4. PARSEC Blackscholes

The blackscholes benchmark contained in the PARSEC benchmark suite (see

3.2) solves the black-scholes differential equation. The equation represents a

mathematical model of a financial market containing certain derivative invest-

ment instruments. Details of the black-scholes model can be found in [26].

If we look at the runtime measurements shown in Figure 6.5 we can see that

the runtime is decreasing as expected if the number of threads is increased. A

bad outlier is the runtime value reached by using 64 threads, the runtime in-

creases sharply from a value of 0.06 seconds by using 32 threads to a value of

0.536 seconds. The reason for this is that the test machine only runs on 32

physical cores. Therefore the processor is only able to execute 32 floating point

operations in parallel. An analysis of the boundness of the application (see also

Section 4.2.6) showed that the code is compute bound. That means that the

application is constrained by the computational power of the machine. This

fact and the additional overhead to create and maintain threads lead to this

bad result.

Beside this behavior the scaling works, the runtime decreases nearly by a factor

of two if the number of threads is doubled. Therefore a more detailed analysis

of the parallelisation was not done.

Figure 6.5.: Runtime in seconds of the blackscholes benchmark

56

6.5. Dijkstra

The implementation of Dijkstra’s algorithm1 presented in 3.2 solves the problem

to find the shortest path between two nodes in a graph. The implementation

was parallelized using a basic OpenMP parallel region. The array containing the

distances between nodes is shared among all threads. Each thread calculates the

distances of its assigned part of the array. In Figure 6.6 runtime in a parallel

execution of the algorithm is shown. On the first sight it can be seen that

the application scales well till 4 threads. If more threads are used the runtime

increases. To find out why the application shows bad scaling a further analysis

of the parallelization was done.

Figure 6.6.: Runtime in seconds of the dijkstra algorithm implementation

Parallelization Details

The implementation uses a big integer matrix representing the distances between

all nodes, a(i, j) contains the distance of nodes i and j. If two nodes are not

directly connected the matrix cell contains a negative value. Each thread works

on a part of the matrix and calculates the node distances in its tile. At the

end of the algorithm the results of all threads are gathered and the best path

1Dijkstra’s algorithm: https://en.wikipedia.org/wiki/Dijkstra’s_algorithm

57

https://en.wikipedia.org/wiki/Dijkstra's_algorithm

is selected. The main problem in this algorithm is that the calculation time of

each thread differs. Therefore the higher the number of threads, the higher the

waiting time at the end to gather all results, this is the typical problem of a bad

load balancing. An analysis of the waiting time (per thread) raised using Intel

vTune is presented in Figure 6.7. The results show that the waiting time per

thread increases heavily if more threads are used. This could be avoided if the

work distribution is improved and each thread takes approximately the same

amount of time for calculation.

Figure 6.7.: Waiting time of the dijkstra code (per thread)

6.6. NPB cg

The runtime of the parallel cg implementation of the benchmark suite NAS

Parallel Benchmarks (see 3.2) stays nearly the same regardless how many threads

are used. This indicates that either there is no parallelization at all or the gain

of parallel execution is equal to the overhead created by thread management

and synchronization. The upper bound of this behavior is 32 threads. Like

for the Blackscholes benchmark (Section 6.4) the runtime measured using 64

threads increases because of hyperthreading. Runtime measurements are found

in figure 6.8.

58

Figure 6.8.: Runtime in seconds of the NPB/cg implementation

Parallelization Details

The main calculation method of the application is conj grad, it contains 13 for

loops. Each loop was parallelized on its own using an omp parallel for pragma.

That means after each loop an implicit barrier is introduced and all threads have

to wait. This leads to a high amount of waiting time. For the used problem

size S the waiting time and the speed improvement gained by parallel execution

balance each other, see Figure 6.9. It can be seen that the waiting time increases

by increasing the number of threads but the computation time decreases. The

runtime stays nearly the same. To solve this problem it is necessary to reduce

the number of OpenMP for loops in order to reduce the number of implicit

barriers.

If the problem size is increased the amount of waiting time stays nearly the same

but the amount of computation time increases. As a result a better speedup is

achievable. Efficiency measurements of problem sizes A,B,C,W and S are shown

in Figure 6.10.

59

Figure 6.9.: Waiting/computation time of the CG benchmark

Figure 6.10.: Efficiency of different problem sizes of the CG benchmark

6.7. Rodinia nn

Figure 6.11 shows runtime measurements of the NN benchmark included in

the Rodinia suite. The benchmark finds the k-nearest neighbors from an un-

60

structured data set, see also 3.2. The results show that runtime increases if

number of threads is increased.

Figure 6.11.: Runtime in seconds of the NN implementation in Rodinia

Parallelization Details

The code contains of two main loops:

1. An outer loop which is executed 7491 times for the default input problem

2. and an inner loop executed 10 times for each outer loop execution.

The problem here is that only the inner loop is parallelized using a pragma omp

parallel for. This structure inherits some problems:

• For each outer loop iteration an implicit barrier is inserted after the inner

loop.

• The maximum number of concurrently running threads is 10, since the

parallel inner loop only contains 10 iterations. If more threads are used

some of them have no work to do. This value depends on how many input

databases are used, therefore the scalability of the application is bound to

the input problem size.

• All the calculation of the outer loop is done sequentially.

61

• At the begin of a parallel region overhead is generated by copying shared

variables, spawning threads or assigning loop iterations to thread workers.

This overhead is executed for each outer loop iteration, therefore 7491

times.

The results of an analysis using callgrind and Intel vTune confirm these prob-

lems. A high amount of time is spent in OpenMP routines GOMP parallel start

and GOMP parallel end, those are called by a #pragma omp parallel for in the

main method.

6.8. Rodinia bfs

The bfs bechmark contained in the rodinia benchmark suite (see 3.2) imple-

ments a Breath First Search graph traversal algorithm2. The benchmark uses

a high amount of runtime for reading and writing of files. These input output

operations take longer than the actual computational part. Therefore a good

scaling for parallel execution of the whole application is not easy achievable.

The amount of time used for input file reading and computing are shown in

fig 6.12. It can be seen that the computing time decreases, but the high effort

used for input/output overwhelms the gained performance improvement.

Figure 6.12.: Runtime in seconds of the BFS implementation in Rodinia

2Breadth First Search algorithm: https://en.wikipedia.org/wiki/Breadth-first_
search

62

https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Breadth-first_search

Chapter 7.

Integration Test Framework

The Integration Test Framework was developed to automatically test the In-

sieme Compiler regarding correctness and performance. By using the frame-

work it is easy to maintain a high amount of miscellaneous test codes. The test

database is organized as a simple directory hierarchy extended with configura-

tion files. For example, the source files of a C++ test compiled with OpenMP

support has to be present in the directory cpp/openmp. Each execution of a

test code is split into several test steps. Each test step represents either com-

pilation, execution or the checking of the output of an execution step. To gain

more details of the test codes the test framework was extended to collect several

characteristics (from now on called metrics) of the test execution. Examples of

such metrics would be the lines of code or the speedup using 2 threads. To easily

parse the large amount of information gained by these metrics it is possible to

save the results in a SQL file or in a comma separated values (CSV) file.

7.1. Test Database

The test database is organized in a directory hierarchy, it is possible to create as

many subfolders as necessary. The leaves of the hierarchy represent test cases.

Each folder may contain two configuration files,

• the test configuration file which steers how a test case is executed and

which test steps are used and

• the test.cfg file which contains all subfolders which have to be parsed to

get further test cases.

The directory tree is parsed in a top-down manner. Each configuration file of

a directory inherits the configurations of the parent directory. For the top of

the tree there exists a main configuration file which defines options for all test

cases, such a globally valid option would be the path of the Insieme compiler.

63

7.1.1. Configuration File Options

In Table 7.1 all possible options to steer the execution of a test case are listed.

Each option applies to either one test step or, if no step is specified, to all steps.

The syntax of an option has to adhere to the following rules:

• configuration_option[test_step]=value, an option for a specific test step

• configuration_option=value, an option applied to all test steps

• value is one of

– an absolute value, e.g. the path to a compiler binary

– a boolean value, e.g. enable openmp support

– a list of strings, e.g. the list of input files

Name Description Default value

compiler Path to the used compiler binary

use_libmath Specify if -lm is used for compilation 1

use_libpthread Specify if -lpthread is used for compilation 1

includes List of includes needed for compilation

files List of compilation input files Name of test case

definitions List of definitions needed for compilation

compFlags Additional compiler flags

libPaths List of external library directories

libNames List of external libaries needed for linking

executionFlags Runtime arguments

excludeSteps List of test steps excluded for execution

use_omp Use OpenMP for compilation 0

use_o3 Use -O3 optimization flag 1

use_c Use the C compiler 1 for C test steps

0 for C++ steps

use_gnu90 Use C standard gnu90 for compilation 0

use_gnu99 Use C standard gnu99 for compilation 0

use_cpp Use the C++ compiler 0 for C test steps

1 for C++ steps

use_cpp11 Use C++ standard 11 (-std=c++11) 0

outputAwk Awk regular expression to compare

output of test execution

boost_include Path to the boost headers Path used in Insieme

64

Name Description Default value

boost_lib Path to the boost library Path used in Insieme

mpfr_home Path to the mpfr library Path used in Insieme

gmp_home Path to the gmp library Path used in Insieme

third_part_libs_home Default path for the third party libraries Path used in Insieme

sortdiff Path to the sortdiff binary test/sortdiff

time_executable Path to the time command /usr/bin/time

Table 7.1.: Test framework configuration file options

7.2. Test Steps

Table 7.2 contains a list of all implemented test steps. Per default all steps

are executed in this order. Some steps depend on the successful execution of

previous steps. Each step is available in a C and a C++ version, although the

table below only contains the C++ steps.

Name Description depends on

insiemecc_c++_compile Invokes the Insieme compiler first. Afterwards

a third-party compiler is used to generate a binary

out of the source code produced by Insieme.

insiemecc_c++_execute Execute binary generated by insiemecc_c++_compile insiemecc_c++_compile

ref_c++_compile Compile input code using a reference compiler

ref_c++_execute Execute binary generated by ref_c++_compile ref_c++_compile

insiemecc_c++_check Compare output of insiemecc_c++_execute ref_c++_execute

and ref_c++_execute insiemecc_c++_execute

main_c++_sema Dump the generated intermediate language

and run semantic checks

main_run_c++_convert Run the Insieme compiler using runtime backend

and dump produced source code

main_run_c++_compile Compiles the produced source code of main_run_c++_convert

main_run_c++_convert using a third-party compiler

main_run_c++_execute Execute the binary generated in main_run_c++_compile main_run_c++_compile

main_run_c++_check Compare output of main_run_c++_execute main_run_c++_execute

and ref_c++_execute ref_c++_execute

main_seq_c++_convert Run the Insieme compiler using sequential backend

and dump produced source code

main_seq_c++_compile Compiles the produced source code of main_seq_c++_convert

main_seq_c++_convert using a third-party compiler

65

Name Description depends on

main_seq_c++_execute Execute the binary generated in main_seq_c++_compile main_seq_c++_compile

main_seq_c++_check Compare output of main_seq_c++_execute main_seq_c++_execute

and ref_c++_execute ref_c++_execute

Table 7.2.: List of all test steps

In _check test steps the output of two depending steps are compared using a

previously configured awk script. Steps may differ depending on input parame-

ters e.g. an execution step can occur twice using a different number of OpenMP

threads. An overview of test steps including their dependencies can be found in

Figure 7.1.

An example minimal sequence of test steps would be

• insiemecc_c_compile

• insiemecc_c_execute

• ref_c_compile

• ref_c_execute

• insiemecc_c_check

66

Figure 7.1.: Overview of the integration test steps

67

7.3. Metrics

In Table 7.3 all metrics collected by the integration test tool are shown. The

metrics are collected in each step and saved in different output formats (shown

in 7.4).

Name Description collected by

runtime Walltime in seconds, represents the actual /usr/bin/time
runtime of the application.

cputime Cputime in seconds, represents the amount of time /usr/bin/time
which the processor is actively working.

size Size of input code in /usr/bin/du

parType Used parallelization technique for compiling, one of
- OpenMP
- OpenCL
- sequential

numOmpPragmas Count of openMP pragmas in source code

memory Main memory consumption /usr/bin/time

loc Lines of code of the input program CLOC (see 4.2.2)

flops Floating point operations gnu perf tool

llc-load-misses Last Level Cache Load misses gnu perf tool

llc-store-misses Last Level Cache Store misses gnu perf tool

any Any gnu-perf metrics defined by parameters gnu perf tool
(see 7.5)

Table 7.3.: List of all collectable metrics

7.4. Output Formats

The integration test tool supports two output formats to export the collected

metrics:

• SQL: SQL script to create a MySQL database and save all collected re-

sults, details of the generated database can be found in Section 7.4.1.

• CSV: A comma separated value file containing all test runs and results.

68

7.4.1. SQL Database

The Entity-Relationship diagram of the generated database is shown in Fig-

ure 7.2.

Figure 7.2.: ER Diagram of the generated database

Descriptions of generated tables:

• Test: Represents a test case and its static attributes.

• RunConfiguration: Represents the environment for an executed test

step.

– Step: The executed test step.

– Scheduling : The used scheduling variant for openmp parallel for con-

structs (e.g. STATIC).

69

• InsiemeVersion: Represents a version of Insieme including a description

and a timestamp.

• BackendCompiler: A reference compiler and its version (e.g. GCC

4.8.2)

• Host: A machine on which tests are executed including its roofline point

(see Section 4.2.6) and kernel version.

• Metric: Description of a measured metric (e.g. runtime).

• Result: The most important object in the database, it contains the result

of a measured metric of a test execution. The result contains of:

– a run configuration,

– an execution date,

– a metric description and

– the actual value.

7.5. Command Line Arguments

To reduce the amount of command line arguments two end user tools were

made, the first one only executes and checks the integration tests, the second

one additionally collects metrics. Some arguments are set as default in the

metrics tool. In Table 7.4 all available command line arguments including their

default values for the metrics and the integration tool are shown.

Name Description default value

integration metrics

-h [--help] Display help message NO NO

-c [--config] Print the configuration of the test cases NO NO

-m [--mock] Make a mock run just printing the commands NO NO

-p [--panic] Stop on first test step not suceeding NO NO

-l [--list] List all test cases, do not execute them NO NO

-w [--worker] The number of parallel workers executing cases 1 #NA

--cases The test cases to be executed all cases all cases

-s [--step] The test steps to be executed all steps all steps

-r [--repeat] The number of times the tests should be executed 1 1

--clean Remove all output files NO YES

--nocolor No highlighting of output NO NO

--use-median Use median instead of average to calculate metrics #NA NO

70

Name Description default value

integration metrics

--no-perf Disable perf metrics #NA NO

-S Enable runs on all scheduling variants for #NA NO

openmp parallel for pragmas (static, dynamic, guided)

--no-overwrite Do not overwrite existing SQL database #NA NO

-t [--threads] Number of threads used to execute each test step #NA numCores

e.g. -t 4 executes each test step using 1,2 and 4 threads

--load-miss Perf code to determine LLC-load-misses #NA

--store-miss Perf code to determine LLC-store-misses #NA

--flops Perf code to determine FLOPS #NA

-P [--perf-metric] A perf code to be measured additionally #NA

-o [--output] Output formats (SQL or CSV or both) #NA no one

-f [--force] Force to execute all tests, even commented ones NO NO

Table 7.4.: List of all command line arguments

7.6. Implementation Details

This section lists all modules of the integration test framework and shortly intro-

duces in the functionality implemented in each module. For the two test tools

integration test framework and metric collection two different main methods

exist. The other modules are shared for both binaries. The following section

shortly describes all modules, a class diagram of the application can be found

at the end of this section.

Main (Integration Testframework)

The main method of the integration test runner is implemented in the file inte-

gration test.cxx. The following aspects are implemented here:

• Parses the given command line arguments.

• Based on the arguments creates a list of cases by using the method

loadCases implemented in testframework.

• Prints out an overview of all test cases.

• Creates a list of test cases using the method getTestSteps in testframework.

• Executes each test case, if required in parallel using OpenMP.

71

• Collects information about the execution results.

• Prints the results of the execution (runtime and memory consumption).

• Prints a summary of the integration test run.

Main (Metric collection)

The main method of the metric collection binary (implemented in metrics.cxx)

contains the same functionality as the corresponding integration testframework

main method. Additional features are:

• Ensures that either C or C++ version for a test case is executed, not both

of them.

• Disables the functionality to run tests in parallel to ensure accurate mea-

surements.

• Inserts additional test steps to execute them using a different count of

OpenMP threads and different pragma openmp for scheduling variants.

• Implements a functionality to backup test results during execution and

restore them if the framework crashes.

• Write all required output formats to files using the TestOutput class.

TestFramework

The testframework module implemented in test framework.h contains universal

methods and structures used in several parts of the application:

• Structure Options

contains options to control the application flow. Most of them are set

using input parameters or are created in the main method.

Sample options are num threads, clean files, test cases, test steps,

perf metrics.

• Structure Colorize

defines options for colorized output (used in main methods).

• Method getGitVersion

uses the command git describe to return a version of the source code.

• Method loadCases

parses the test framework directories defined as command line parameters

and creates a structure containing the appropriate test cases.

72

• Method getTestSteps

creates a list of test steps based on the given options and command line

parameters.

Integrationtestcase

The class IntegrationTestCase contains all information needed to describe and

execute a test case. Implementation of this class can be found in the file tests.h.

The class contains:

• name,

• directory,

• input files,

• include directories needed for compilation,

• external libraries (directories and names),

• interceptedNameSpaces, a list of namespaces intercepted by the Insieme

compiler frontend,

• interceptedHeaderFileDirectories, a list of directories containing header

files to be intercepted,

• enableOpenmp, a flag which indicates if OpenMP should be used,

• enableOpenCL, a flag indicating if OpenCL should be used,

• enableCXX11, a flag to enable the C++11 standard

• and a structure properties containing other test case options.

Method getCompilerArguments

This method parses the properties of a test case and creates, based on a specific

test step, a list of arguments which have to be passed to the compiler. An

example of such a argument:

• Test case property use libmath is set to true,

• test step is ref c compile,

• used compiler is gcc

• the resulted compiler flag is -lm.

73

In file tests.cpp methods to manipulate test cases are implemented:

• Method loadAllCases takes the path of a directory and loads all con-

tained test cases into a collection. For this it recursively calls itself until

the leaf of the directory tree is reached, then the method

• loadTestCase creates a test case object. Loads all information of the

test configuration file into it and uses

• loadProperties to parse all properties of the test configuration files into

the test case object.

• Methods getAllCases which returns all test cases of a default path and

getAllCasesAt which parses all cases of a specified path use the three

methods above to return a collection of all requested test cases.

Properties

The properties module implemented in properties.h contains all properties of a

test case specified in its configuration file. Methods to parse the input file and

create collections for several options are implemented here.

TestStep

The file test step.h contains all information needed for a specific test step:

• Structure TestSetup contains information needed to execute a test step,

for example number of threads or execution directory.

• StepType, defines if the step is one of

– compile step,

– run step,

– output check step or

– a static metric step.

• TestCase, a concrete test case which this test step belongs to.

• TestRunner, a class which is able to execute the test case.

• String name

• Vector dependencies, defines which test steps need to be executed before

this test step. For Example the test step ref c execute depends on the

successful execution of ref c compile.

74

• Method run, executes the test case using the specified test runner.

The file test step.cpp contains methods to create and execute test steps for a

given test case. It is used by the main methods to execute test cases. The most

important components here are

• Method scheduleSteps, returns a list of test steps based on test case,

dependencies and command line arguments. This method uses

• method getStepByname which returns a test step object based on its

name. Uses

• method createFullStepList. This method creates all test step objects.

If statistic binary is used additional test steps for different thread counts

and scheduling variants are created.

• A method filterSteps filters specific test steps based on a given command

line argument.

• Several methods to create specific test steps are also defined here, e.g. a

RefCheckStep or an InsiemeCompileStep.

• A test runner executeWithTimeout is also implemented here. It uses

the method runCommand to create the execution command (including

environment variables and metric measurement commands) executes the

test step and returns an object of TestResult. After a specified timeout

the execution of the compiled binary is aborted to limit the runtime of the

test tool.

TestResult

The TestResult module contains all results of a test step, it is created after the

execution of the test. The main components are:

• String name,

• integer return value,

• success flag,

• a list of metric results as well as a deviation value if multiple runs are

done,

• string output of the execution,

• string standard error output,

75

• a string representing the executed command,

• a list of produced files,

• an integer value of the used thread count,

• the used scheduling policy,

• a map containing static metrics (e.g. lines of code) and

• a flag if the execution was aborted.

There are also three methods implemented:

• Clean, deletes all produced files,

• returnAvg, returns average values of multiple test runs and

• returnMedian, returns the median of multiple test runs.

TestOutput

The test output class implements methods to write test results onto different

outputs. Currently only two output methods are implemented:

1. CSV, write all results into a comma separated value file

2. SQL, create a SQL script to generate a database and fill in the results.

Class Diagram

Figure 7.3 shows a class diagram of the main components of the integration test

framework.

76

Figure 7.3.: Class diagram of the integration test framework

78

Chapter 8.

Detailed Performance Analysis at the

Example of GALPROP

This work was supported by the Austrian Ministry of Science BMWF as part of

the Konjunkturpaket II of the Focal Point Scientific Computing at the University

of Innsbruck.

The following chapter shows a detailed performance analysis of the GAL-

PROP code. GALPROP is a numerical code for calculating the propagation

of relativistic charged particles and the diffuse emissions produced during their

propagation. It was developed by the University of Stanford, the latest public

version is 54.1.98 released in July 2011. For more information about the code

see [27].

In the following sections a deep analysis of the application is done and

improvements regarding shared memory parallelism are shown.

8.1. Testing Environment

All analysis and improvements were done on the MACH [28] supercomputer.

MACH is a high performance computing system of the Austrian Center for

Scientific Computing and is a collaborative effort of the University of Innsbruck

and the University of Linz. MACH comprises one large shared memory system

with 2048 cores composed by 256 8-core Intel Xeon E78837 processors. MACH

is equipped with an overall of 16 TB of main memory.

The used compilers are intel icpc and ifortran in version 12.0.4.

As profiling tools intel VTune amplifier 2014 and callgrind from the Valgrind

(version 3.5.0) tool suite were used.

GALPROP comes with several sample input files, two of them are chosen for

testing:

79

• NoGamma

Provides a run lasting approximately one hour using one core. Character-

istics are:

– 3 dimensions are used,

– only primary hydrogen and electrons and

– secondary electrons are computed.

– Gamma ray sky maps are not calculated.

– This job only solves the diffusion equation, hence it might be suitable

to probe the performance of the solver.

• WithGamma

Same as NoGamma but gamma ray skymaps are calculated.

Each input file comes with different input sizes, they differ in the accuracy

of the results delivered by GALPROP. For the analysis two input sizes were

chosen Lr (LowResolution) and Mr (MediumResolution). For the exact input

file parameters see appendix A.

8.2. Current Behavior

The original version of GALPROP includes some parallel shared memory aspects

using OpenMP. However the parallelization was done in a very rudimentary way,

therefore the performance results on shared memory systems with more than

eight cores were not satisfactory. The speedup1 and efficiency2 results of a basic

black box measurement are shown in Figures 8.1 and 8.2. It can be seen that

the application only gets three to six times faster when using 15 cores. By

increasing the number of cores the speedup even reaches a value lower than 1,

which means the application gets slower by using more threads.

1Speedup: Sp = T1
Tp

, where T1 is the runtime using one thread Tp the runtime using p

processors. Ideally p is equal to Sp.
2Efficiency: Ep =

Sp

p
, where Sp is the speedup using p threads. Ideally the efficiency is 1,

which indicates a perfect speedup.

80

Figure 8.1.: Speedup of the original GALPROP version

Figure 8.2.: Efficiency of the original GALPROP version

81

8.2.1. Code Regions

Based on their parallelization strategy, the GALPROP code was divided into

seven code regions:

• NoGamma,

• gen IC emiss,

• Serial,

• gen pi0,

• gen bremss,

• gen synch and

• gen IC skymap.

For the WithGamma input all code regions are executed, for the NoGamma

input file only the NoGamma part is used.

The results of a shared memory analysis in intel vTune are shown in Figure 8.3.

Each row represents the execution of one OpenMP thread. For each thread the

CPU load is shown in brown. The light green shows idle times and therefore

lost performance. The small red parts show OpenMP overhead and spin time,

e.g. thread management, work distribution, scheduling, synchronization. The

yellow lines show synchronization points, e.g. barriers or critical regions.

Figure 8.3.: Shared memory analysis of GALPROP running with six threads
using intel vTune

82

This analysis already exposes the major problems of the parallelization strategy.

The NoGamma part contains a high number of synchronization points. How the

efficiency of the code regions behaves when increasing the number of threads is

shown in Figures 8.4 and 8.5. It can be seen that in general all code regions

scale. Exceptions here are NoGamma, gen synch and Serial.

Figure 8.4.: Efficiency of code regions

The following part shows a deeper insight into the code regions.

gen IC

As seen in the Figures 8.3 and 8.4 gen IC scales very well, the runtime decreases

nearly linearly for an increasing number of threads. Therefore this region is not

considered in detail.

gen synch

As gen IC gen synch’s runtime is decreasing continuously by increasing the num-

ber of threads. This part is the longest part when using one thread but for a

higher number of threads it gets more and more irrelevant. Nevertheless a small

part of this code region is not parallelized yet, that is the reason why the effi-

ciency values are not optimal.

83

Figure 8.5.: Absolute runtime of each region

NoGamma

This region is responsible for a big part of the runtime and does not scale well

(shown in Figure 8.4). This part is the main problem for optimization, if this

part gets slower for a high number of threads the whole calculation does not

scale well. The two main procedures in this area are propagate particles and Gal-

prop::propel. Propel is the troublemaker regarding runtime, propagate particles

only calls propel several times.

The propel method offers two solution ways whereby solution method=2 is faster

but numerical less stable than solution method=1. In solution method=1 a ba-

sic parallelization is already done. The problems in this solution are loop carried

dependencies in several nested loop constructs. Therefore it is necessary to in-

sert a high number of barriers (as seen in Figure 8.3). Barriers guarantee that

all threads are synchronized. If the workload is not evenly distributed faster

threads have to wait for slower threads. Waiting time is generated. If now the

number of threads is increased the waiting time grows and at a certain point the

overhead is higher than the improvement gained by load splitting. This is one of

the main problems a developer has to deal with when parallelizing applications

called load inbalance.

84

Serial

The Serial code region is not parallelized at all, the whole calculation is done on

one thread. As already shown in Section 6.1 it is very important to paralellize

even small parts of the calculation. Therefore this part is an essential issue to

increase the scalability of the whole application.

gen bremss and gen pi0

These two regions scale well, therefore no detailed analysis is needed.

gen IC emiss

This part consumes nearly no runtime, a basic parallelization is already done.

So this part is neglectable.

8.3. Improvements

8.3.1. Improvements Regarding Shared Memory Systems

This section shows the improvements done regarding parallelization to run the

application using multiple threads. Optimizations were done in the code regions

NoGamma, Serial and gen synch.

NoGamma

In the propagate particles method a for loop is executed, which executes the

propel method in each iteration. This for loop does not contain any loop carried

dependencies, therefore each iteration can be executed in parallel on different

cores. Unfortunately the number of iterations is not very high, for all tested

problems it is four. The parallelization of this loop would only scale up to

four threads. As a result of this, nested parallelism was introduced. Nested

parallelism means that each thread splits the load onto multiple sub-threads.

Nested parallelism allows to use a high number of available cores even if the

number of the outer loop iterations is low.

85

An example listing of nested parallelism (optimal for a system using six cores)

is shown in listing 8.1.

Listing 8.1: Nested parallelism example

1 omp_set_nested (1); // enable nested parallelism

2 #pragma omp parallel for num_threads (3) // parallelize outer

loop

3 for 1 to 3 do

4 serial_execution ()

5 ...

6 #pragma omp parallel for num_threads (2) //inner loop

7 for 1 to 10 do

8 serial_execution ()

9 ...

10 end for

11 ...

12 end for

If six cores are available the parallelization of one of the two for loops is not

sufficient for load splitting in an optimal way. If the outer loop is parallelized

only three cores can be utilized. If the inner loop is chosen some parts of the

calculation remain serial. In this case the optimal way is to use three threads

for the outer loop and each thread creates again two threads on the inner loop.

In the NoGamma region the outermost loop is located in propagate particles,

the inner loops are present in the Galprop::propel method.

To efficiently use this concept an optimal number of outer and inner threads has

to be calculated. This is done by using the following algorithm:

n species ... number of loop iterations of outer loop

maxThreads ... number of available cores

numInnerThreads = min(8,max(1, f loor(maxThreads
nspecies

)))

numOuterThreads = min(maxThreads, n species)

The best number of inner threads is the number of available cores divided by

the number of iterations of the outer loop. If this value is smaller than 1 it is set

to 1. If this value is bigger than 8 it is set to 8 because in this particular case

the inner loop iterations of the propel method only scale till a thread count of

8 (see also NoGamma in Figure 8.4). If we allow setting the inner thread count

to a value higher than 8 the inner loop calculation would get slower and the

runtime of the whole part would increase. This is a result of the high amount

of loop carried dependencies, details in section 8.2.1.

The best number of outer threads is either the number of cores available or the

number of outer loop iterations.

86

Sometimes it is needed to tune the thread counts, this is done by the algorithm

shown in listing 8.2.

Listing 8.2: Algorithm to tune number of threads in nested parallelism

1 // While not all cores used , increase number of inner

threads

2 while(numOuterThreads*numInnerThreads != maxThreads){

3 numInnerThreads ++;

4

5 //If the number of threads exceeds number of cores reduce

number of outer threads

6 if(numOuterThreads*numInnerThreads >maxThreads)

7 numOuterThreads --;

8

9 //If we run out of bounds (1 for outer , 8 for inner) no

better values are possible -> return to original

values (before tuning)

10 if(numOuterThreads =1 || numInnerThreads =8)

11 set thread values back to original

12 break;

13 }

The results of this improvement are shown in Figure 8.6. The dashed line refers

to the old version, the solid line represents the improved version.

Figure 8.6.: Speedup improvement results of the NoGamma region

87

It can be seen that the NoGamma part scales better than before, but as already

mentioned the high number of barriers in the Galprop::propel method slows

down the whole application.

At a certain point the synchronization overhead is too high. This point is not

avoided it is only moved to a higher number of threads. Now the NoGamma

part scales well until 15 threads, before the optimization this point was at eight

threads.

gen synch

The gen synch emiss method in this region contains a large for loop with no

loop carried dependencies. This loop was parallelized using a simple pragma

omp parallel for pragma. Parallelization of this loop led to a small performance

improvement of the gen synch region, shown in Figure 8.7.

Code Region Serial

In this region two big loops are executed, both of them not containing any loop

carried dependencies. Basic parallelization was done, results can be found in

Figure 8.7.

Figure 8.7.: Performance improvement results of the Serial and the gen synch
region

88

8.3.2. Serial Improvements

In addition to the optimization regarding shared memory systems some improve-

ments of the serial code were done. This includes:

• Usage of slow data structures,

• string comparisons,

• dead code,

• duplicate code and

• many other bad code smells.

However, the code is still highly unstructured and contains the usage of many

bad structures.

Code Region Serial

The method readGasMaps contains unnecessary redundant string comparisons,

they were replaced by boolean variables. Additionally, some if conditionals were

removed and replaced by if-else constructs. Listings 8.3 and 8.4 below show an

excerpt of the changes:

Listing 8.3: initial readGasMaps

1 readGasMaps (String method){

2 ...

3 if(method == "HIR")

4 // occurs 20 times

5 ...

6 if(method == "COR")

7 // occurs 20 times

8 ...

9 }

Listing 8.4: optimized readGasMaps

1 readGasMaps(String method){

2 ...

3 bool cor;

4 //NEW: boolean

5 if(method =="HIR")

6 cor=false;

7 else

8 cor=true;

9 ...

10 if(cor)

11 ...

12 else

13 //NEW: else

14 ...

15 }

The optimization removed 40 string comparisons, which are rather slow, and

replaces them by 20 if-else constructs which use the cached boolean result for

comparing.

89

The benefits of the new version are rather small, the optimization is more a

refactoring step to reach better code readability than a performance improve-

ment. Measurement results for two input parameters are listed in Table 8.1.

input problem initial optimized

HIR 17.6s 17.4s

COR 18.3s 17.1s

Table 8.1.: Performance optimization results of readGasMaps

NoGamma - Method B field 3D model

This method contained a high number of string comparisons, done by a row

of if constructs. These comparisons can be reduced by using if-else constructs

instead. Listings 8.5 and 8.6 show a short excerpt of the optimization:

Listing 8.5: initial B field 3D model

1 ...

2 if(name=="test"){

3 ...

4 }

5 if(name=="circular"){

6 ...

7 }

8 if(name=="circular2"){

9 ...

10 }

11 //25 more

12 ...

Listing 8.6: new B field 3D model

1 ...

2 if(name=="test"){

3 ...

4 }

5 else if(name=="circular"){

6 //NEW: else if

7 ...

8 }

9 else if(name=="circular2"){

10 ...

11 }

12 //25 more

13 ...

The benefit of this version is that not all 25 comparisons have to be done

for each call of the method. The results of this optimization are shown in Ta-

ble 8.2. Since the runtime of the B field 3D model method is highly dependent

initial optimized

19.2s 17.1s

Table 8.2.: Performance optimization results of B field 3D model

90

on input values the table shows the total runtime of the method (sum of all

calls) during a run of GALPROP using the input problem WithGamma.

8.4. Results

This section lists all results of the performance improvements. The absolute

values used for the charts can be found in appendix B.

In Figure 8.8 the achieved increase of speedup is shown. Dashed lines refer to

the old version, solid ones to the new improved version. It can be seen that,

especially for a large number of threads, the speedup is better than before. But

it still does not scale for a large number of threads.

Figure 8.8.: Speedup improvement results

In Figure 8.9 the absolute runtime values are compared. An interesting fact

is that the runtime of the initial version is growing very high for a number of

threads bigger than 64. This is reduced in the new version.

91

Figure 8.9.: Runtime improvement results

8.5. Overhead Analysis

The following section shows an analysis of the overheads occurring in GAL-

PROP. This is helpful to get a detailed understanding of the remaining prob-

lems.

In Figure 8.10 the overhead of LrWithGamma based on the number of threads is

shown. It can be seen that the cpu time stays nearly the same for any number of

threads. Synchronization overhead and wait time increase rapidly by increasing

the number of threads. This is the consequence of the high number of synchro-

nization pragmas. OpenMP overhead is negligible.

To get a better understanding which region generates this overhead an overhead

analysis per region was done. Results of a LrWithGamma run using 16 threads

are shown in Figure 8.11. The chart shows the waiting time (black) and syn-

chronization overhead (white). It is visible that especially NoGamma and Serial

produce a high amount of waiting time. In NoGamma this is a result of the high

number of synchronizations. The reason for the high waiting time in Serial is

the missing parallelization. In this particular case 15 threads have to wait until

the first thread finishes the execution. Gen pi0 and gen synch produce nearly

no waiting time, they are parallelized well.

92

Figure 8.10.: Overhead analysis of GALPROP running with input
LrWithGamma

Figure 8.11.: Overhead analysis based on code regions, input LrWithGamma,
number of threads is 16

Another interesting chart is the normalized waiting time shown in Figure 8.12.

93

Figure 8.12.: Normalized waiting time of GALPROP, input LrWithGamma,
number of threads is 16

This analysis exposes the fact that NoGamma is not the worst code region,

gen IC emiss and Serial behave even worse. NoGamma consumes a high amount

of absolute waiting time but also a high amount of cpu time. Additionally, the

wait time per wait is low. Gen IC emiss and Serial consume for each second

of cpu time over one second of waiting time and each wait lasts for 0.8 to 1.3

seconds. The other code regions, as already seen in other performance statistics,

perform well.

94

8.6. Further Improvements

Propagate particles solution method=1

As already mentionend in 8.2.1 this method is not easy to parallelize. An ap-

proach to get rid of the nested loops and dependend matrix operations would

be to change the whole mathematical algorithm. This would require a rewriting

of the whole method.

Improve Load Balancing in Gamma Part

Load balancing in the Gamma part is done very rudimentary, maybe this could

be improved by changing the whole algorithm.

Prove if Methods in Gamma Part are Independent

The numerous methods called in all code regions (except NoGamma) may run

in parallel, if they do not depend on each other. Most of the methods use results

calculated before but maybe some of them depend on the same results. To find

such parallelization opportunities it is necessary to create a dependency graph

of all methods and search for parallel paths.

Serial Code Improvements

The whole code is full of slow structures, e.g. string comparisons, cache un-

friendly array accesses. The change of the whole code to the usage of perfor-

mant collections, especially to new C++11 features would decrease the runtime.

Since some parts of the code are not easy to read, this would be a big and time

consuming task.

95

96

Chapter 9.

Summary

This master thesis presented the search of input codes for the Insieme compiler

project. The compiler, currently under development by the DPS group, assists

developers in optimizing applications for parallel execution. The compiler sup-

ports C and C++ codes using parallelization paradigms OpenMP, OpenCL and

MPI. A runtime system to execute and further optimize Insieme-compiled ap-

plications is provided.

Input codes for the Insieme project are collected and several metrics to cat-

egorize the codes were measured. The most important metrics are speedup,

efficiency, memory consumption and boundness (memory/compute). All these

metrics are raised by executing the code using a variable count of OpenMP

threads (1, 2, 4, 8, 16, 32, 64). The results of the codes compiled with GCC are

compared to the results gained using the Insieme compiler. The metrics can be

used to optimize the compilation process for a variety of input codes.

The collected test codes additionally act as integration tests for Insieme. To

provide continuous testing during the development process an integration test

framework was built. The test framework is able to compile test codes using a

reference compiler and the Insieme compiler. After the compilation phase test

codes are executed and execution results of the different versions are compared

for a basic proof of validity. Additionally the test framework is able to gain all

mentioned metrics and write them into a CSV and/or into a SQL database.

The second part of the thesis deals with the optimization of a product applica-

tion in the field of astrophysics (GALPROP). The code was developed by the

University of Stanford. Parallelization of the code is present but it was done

very rudimentarily. Reasons why the code does not scale well are shown and pro-

posals to improve the parallel execution are made. For the work on GALPROP,

the MACH supercomputer of the Austrian Center for Scientific Computing was

used.

97

98

Appendix A.

Input Parameters for GALPROP

A.1. NoGamma Low Resolution input file

n spatial dimensions 3

r min 0.0

r max 20.00

dr 0.15

z min −4.0

z max +4.0

dz 0.25

x min −15.0

x max +15.0

dx 1

y min −15.0

y max +15.0

dy 1

Ekin min 1.0e2

Ekin max 1.0e6

Ekin factor 1.5

p Ekin grid Ekin

E gamma min 100.

E gamma max 100000.

E gamma factor 10

integration mode 0

nu synch min 1.0e6

nu synch max 1.0e10

nu synch factor 2.0

long min 0.25

long max 359.75

Table A.1.: Input parameters of the NoGamma low resolution testset

99

lat min −89.75

lat max +89.75

d long 0.5

d lat 0.5

healpix order 7

lat substep number 1

LoS step 0.01

LoS substep number 1

D0 xx 5.80e28

D rigid br 4.0e3

D g 1 0.33

D g 2 0.33

diff reacc 1

v Alfven 30.

damping p0 1.e6

damping const G 0.02

damping max path L 3.e21

convection 0

v0 conv 0.

dvdz conv 10.

nuc rigid br 9.0e3

nuc g 1 1.98

nuc g 2 2.42

inj spectrum type rigidity

electron g 0 1.60

electron rigid br0 4.0e3

electron g 1 2.42 2.3 2.54

electron rigid br 1.0e9

electron g 2 5.0

He H ratio 0.11

n X CO 10

X CO 1.9E20

propagation X CO 2

nHI model 1

nH2 model 1

nHII model 1

B field model 050100020 bbbrrrzzz

B field name galprop original

Table A.1.: Input parameters of the NoGamma low resolution testset

100

n B field parameters 10

B field parameters 7.0e−6 50.0 2.00 00.00

0.00e−6 0.0 0.0 0.0

0.0 0.0

fragmentation 1

momentum losses 1

radioactive decay 1

K capture 1

ionization rate 0

solution method 1

start timestep 1.0e8

end timestep 1.0e2

timestep factor 0.5

timestep repeat 20

timestep repeat2 0

timestep print 10000

timestep diagnostics 10000

control diagnostics 0

network iterations 1

prop r 1

prop x 1

prop y 1

prop z 1

prop p 1

use symmetry 0

vectorized 0

source specification 0

source model 1

source parameters 1 0.475063 1.25 2.35

source parameters 2 2.16570 3.56 5.56283

source parameters 3 15.0

source parameters 4 10.0

n cr sources 0

cr source x 01 10.0

cr source y 01 10.0

cr source z 01 0.1

cr source w 01 0.1

cr source L 01 1.0

Table A.1.: Input parameters of the NoGamma low resolution testset

101

cr source x 02 3.0

cr source y 02 4.0

cr source z 02 0.2

cr source w 02 2.4

cr source L 02 2.0

SNR events 0

SNR interval 1.0e4

SNR livetime 1.0e4

SNR electron sdg 0.00

SNR nuc sdg 0.00

SNR electron dgpivot 5.0e3

SNR nuc dgpivot 5.0e3

proton norm Ekin 1.00e+5

proton norm flux 5.75e−9 6.75e−9 5.75e−9

electron norm Ekin 3.45e4

electron norm flux 0.32e−9

max Z 1

use Z 1 1

use Z 2 1

use Z 3 1

use Z 4 1

use Z 5 1

use Z 6 1

use Z 7 1

use Z 8 1

use Z 9 1

use Z 10 1

use Z 11 1

use Z 12 1

use Z 13 1

use Z 14 1

use Z 15 1

use Z 16 1

use Z 17 1

use Z 18 1

use Z 19 1

use Z 20 1

use Z 21 1

Table A.1.: Input parameters of the NoGamma low resolution testset

102

use Z 22 1

use Z 23 1

use Z 24 1

use Z 25 1

use Z 26 1

use Z 27 1

use Z 28 1

use Z 29 0

use Z 30 0

iso abundance 01 001 1.06e+06

iso abundance 01 002 0.

iso abundance 02 003 9.033

iso abundance 02 004 7.199e+04

iso abundance 03 006 0

iso abundance 03 007 0

iso abundance 04 009 0

iso abundance 05 010 0

iso abundance 05 011 0

iso abundance 06 012 2819

iso abundance 06 013 5.268e−07

iso abundance 07 014 182.8

iso abundance 07 015 5.961e−05

iso abundance 08 016 3822

iso abundance 08 017 6.713e−07

iso abundance 08 018 1.286

iso abundance 09 019 2.664e−08

iso abundance 10 020 312.5

iso abundance 10 021 0.003556

iso abundance 10 022 100.1

iso abundance 11 023 22.84

iso abundance 12 024 658.1

iso abundance 12 025 82.5

iso abundance 12 026 104.7

iso abundance 13 027 76.42

iso abundance 14 028 725.7

iso abundance 14 029 35.02

iso abundance 14 030 24.68

iso abundance 15 031 4.242

Table A.1.: Input parameters of the NoGamma low resolution testset

103

iso abundance 16 032 89.12

iso abundance 16 033 0.3056

iso abundance 16 034 3.417

iso abundance 16 036 0.0004281

iso abundance 17 035 0.7044

iso abundance 17 037 0.001167

iso abundance 18 036 9.829

iso abundance 18 038 0.6357

iso abundance 18 040 0.001744

iso abundance 19 039 1.389

iso abundance 19 040 3.022

iso abundance 19 041 0.0003339

iso abundance 20 040 51.13

iso abundance 20 041 1.974

iso abundance 20 042 1.134e−06

iso abundance 20 043 2.117e−06

iso abundance 20 044 9.928e−05

iso abundance 20 048 0.1099

iso abundance 21 045 1.635

iso abundance 22 046 5.558

iso abundance 22 047 8.947e−06

iso abundance 22 048 6.05e−07

iso abundance 22 049 5.854e−09

iso abundance 22 050 6.083e−07

iso abundance 23 050 1.818e−05

iso abundance 23 051 5.987e−09

iso abundance 24 050 2.873

iso abundance 24 052 8.065

iso abundance 24 053 0.003014

iso abundance 24 054 0.4173

iso abundance 25 053 6.499

iso abundance 25 055 1.273

iso abundance 26 054 49.08

iso abundance 26 056 697.7

iso abundance 26 057 21.67

iso abundance 26 058 3.335

iso abundance 27 059 2.214

iso abundance 28 058 28.88

Table A.1.: Input parameters of the NoGamma low resolution testset

104

iso abundance 28 060 11.9

iso abundance 28 061 0.5992

iso abundance 28 062 1.426

iso abundance 28 064 0.3039

total cross section 2

cross section option 012

t half limit 1.0e4

primary electrons 1

secondary positrons 0

secondary electrons 1

knock on electrons 0

secondary antiproton 0

tertiary antiproton 0

secondary protons 0

gamma rays 0

pi0 decay 0

IC isotropic 0

IC anisotropic 0

synchrotron 0

bremss 0

globalLuminosities 0 1

DM positrons 0

DM electrons 0

DM antiprotons 0

DM gammas 0

DM double0 2.8

DM double1 0.43

DM double2 80.

DM double3 40.

DM double4 40.

DM double5 40.

DM double6 30.

DM double7 50.

DM double8 40.

DM double9 3.e−25

DM int0 1

DM int1 1

DM int2 1

Table A.1.: Input parameters of the NoGamma low resolution testset

105

DM int3 1

DM int4 1

DM int5 1

DM int6 1

DM int7 1

DM int7 1

DM int8 1

DM int9 1

skymap format 0

output gcr full 1

warm start 0

Table A.1.: Input parameters of the NoGamma low resolution testset

106

A.2. WithGamma Low Resolution input file

The WithGamma Low Resolution input file is almost identical to the NoGamma

input file (shown in Table A.1), the differences are shown in Table A.2.

gamma rays 1
pi0 decay 3
IC isotropic 1
synchrotron 2
bremss 1

Table A.2.: Differences of the WithGamma Low Resolution and NoGamma Low
Resolution input files

107

108

Appendix B.

Runtime Measurements of the

Optimized Version of GALPROP

Threads Speedup Efficiency Runtime

initial optimized initial optimized initial optimized

1 1 1 1 1 803 822.5

2 1.83 1.79 0.91 0.89 437 467.5

4 3.04 2.79 0.76 0.7 266 293.5

8 4.22 4.86 0.53 0.61 207 167.5

16 3.86 6.71 0.24 0.42 206.5 117

32 2.78 5.09 0.09 0.16 295.5 156

64 1.98 5.36 0.03 0.08 405.5 147.5

128 0.43 3.66 0 0.03 1880 224.5

Table B.1.: Runtime comparison of GALPROP initial and optimized version.
Input problem NoGamma.

Threads Speedup Efficiency Runtime

initial optimized initial optimized initial optimized

1 1 1 1 1 1820 1826.5

2 1.82 1.87 0.91 0.94 1006 984.5

4 3.1 3.29 0.78 0.82 596 563.5

8 4.79 5.92 0.6 0.74 390 314.5

16 5.36 8.23 0.33 0.51 362 226

32 4.83 8 0.15 0.25 419 243.5

64 3.96 6.94 0.06 0.11 496.5 284.5

128 1.78 4.6 0.01 0.04 1021.5 397

Table B.2.: Runtime comparison of GALPROP initial and optimized version.
Input problem WithGamma.

109

110

List of Figures

2.1. Example setup of the Insieme infrastructure 14

2.2. Example execution of a parallel control flow in INSPIRE 15

4.1. Roofline models for AMD Opteron systems [21] 37

4.2. Roofline model for the used target machine 39

6.1. Runtime in seconds of the health benchmark 52

6.2. Callgrind analysis of the health benchmark 53

6.3. Runtime in seconds of the graphsearch benchmark 54

6.4. Callgrind analysis of the graphsearch benchmark, 1 thread vs 32

threads . 55

6.5. Runtime in seconds of the blackscholes benchmark 56

6.6. Runtime in seconds of the dijkstra algorithm implementation . . 57

6.7. Waiting time of the dijkstra code (per thread) 58

6.8. Runtime in seconds of the NPB/cg implementation 59

6.9. Waiting/computation time of the CG benchmark 60

6.10. Efficiency of different problem sizes of the CG benchmark 60

6.11. Runtime in seconds of the NN implementation in Rodinia 61

6.12. Runtime in seconds of the BFS implementation in Rodinia 62

7.1. Overview of the integration test steps 67

7.2. ER Diagram of the generated database 69

7.3. Class diagram of the integration test framework 77

8.1. Speedup of the original GALPROP version 81

8.2. Efficiency of the original GALPROP version 81

8.3. Shared memory analysis of GALPROP running with six threads

using intel vTune . 82

8.4. Efficiency of code regions . 83

8.5. Absolute runtime of each region 84

8.6. Speedup improvement results of the NoGamma region 87

8.7. Performance improvement results of the Serial and the gen synch

region . 88

111

8.8. Speedup improvement results . 91

8.9. Runtime improvement results . 92

8.10. Overhead analysis of GALPROP running with input LrWith-

Gamma . 93

8.11. Overhead analysis based on code regions, input LrWithGamma,

number of threads is 16 . 93

8.12. Normalized waiting time of GALPROP, input LrWithGamma,

number of threads is 16 . 94

112

List of Tables

3.1. Codes of the Barcelona OpenMP Task Benchmark Suite 21

3.2. Codes of the OpenMP Source Code Repository (OmpSCR) . . . 22

3.3. Selected codes of the Sequoia Benchmark Suite 23

3.4. Proxy apps used from the ExMatEx Suite 25

3.5. Selected benchmarks of the CORAL benchmark suite [13] 26

3.6. List of rudimentary parallelized example codes 28

3.7. List of example codes and their authors 29

3.8. Codes of the NPB Suite . 30

3.9. Codes of the SNU-NPB Suite . 31

3.10. Used Rodinia benchmark kernels 32

5.1. Shared memory performance of all input codes 45

5.2. Main memory footprint of all input codes 48

5.3. Boundness of selected input codes 50

6.1. Absolute runtime values of the graphsearch benchmark 55

7.1. Test framework configuration file options 65

7.2. List of all test steps . 66

7.3. List of all collectable metrics . 68

7.4. List of all command line arguments 71

8.1. Performance optimization results of readGasMaps 90

8.2. Performance optimization results of B field 3D model 90

A.1. Input parameters of the NoGamma low resolution testset 99

A.1. Input parameters of the NoGamma low resolution testset 100

A.1. Input parameters of the NoGamma low resolution testset 101

A.1. Input parameters of the NoGamma low resolution testset 102

A.1. Input parameters of the NoGamma low resolution testset 103

A.1. Input parameters of the NoGamma low resolution testset 104

A.1. Input parameters of the NoGamma low resolution testset 105

A.1. Input parameters of the NoGamma low resolution testset 106

113

A.2. Differences of the WithGamma Low Resolution and NoGamma

Low Resolution input files . 107

B.1. Runtime comparison of GALPROP initial and optimized version.

Input problem NoGamma. 109

B.2. Runtime comparison of GALPROP initial and optimized version.

Input problem WithGamma. 109

114

Bibliography

[1] K.A. Huck, A.D. Malony, R. Bell, and A. Morris. Design and implemen-

tation of a parallel performance data management framework. In Parallel

Processing, 2005. ICPP 2005. International Conference on, pages 473–482,

June 2005.

[2] Insieme Compiler Project. Distributed and parallel systems (dps) on the

university of innsbruck. http://www.insieme-compiler.org/mission.html,

November 2014.

[3] H. Jordan, S. Pellegrini, P. Thoman, K. Kofler, and T. Fahringer. Inspire:

The insieme parallel intermediate representation. In Parallel Architectures

and Compilation Techniques (PACT), 2013 22nd International Conference

on, pages 7–17, Sept 2013.

[4] Peter Thoman. Insieme-RS, A Compiler-supported Parallel Runtime Sys-

tem. Dissertation, Faculty of Mathematics, Computer Science and Physics

of the University of Innsbruck, 2013.

[5] clang: a c language family frontend for llvm. http://clang.llvm.org/, July

2014.

[6] A Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade. Barcelona

openmp tasks suite: A set of benchmarks targeting the exploitation of task

parallelism in openmp. In Parallel Processing, 2009. ICPP ’09. Interna-

tional Conference on, pages 124–131, Sept 2009.

[7] AJ. Dorta, C. Rodriguez, and F. de Sande. The openmp source code repos-

itory. In Parallel, Distributed and Network-Based Processing, 2005. PDP

2005. 13th Euromicro Conference on, pages 244–250, Feb 2005.

[8] High performance computing center stuttgart. Openmp vali-

dation suite. http://www.hlrs.de/research/current-projects/

openmp-validation-suite/, July 2014.

[9] GraphAnalysis.org compendium. Hpc graph analysis. http://www.

graphanalysis.org/benchmark/, July 2014.

115

http://www.insieme-compiler.org/mission.html
http://clang.llvm.org/
http://www.hlrs.de/research/current-projects/openmp-validation-suite/
http://www.hlrs.de/research/current-projects/openmp-validation-suite/
http://www.graphanalysis.org/benchmark/
http://www.graphanalysis.org/benchmark/

[10] Lawrence Berkeley National Laboratory. Apex map benchmark. http://

crd.lbl.gov/groups-depts/ftg/projects/previous-projects/apex/, July

2014.

[11] ExMatEx Center at Los Alamos National Laboratory. Exmatex proxy apps.

http://www.exmatex.org/proxy-over.html, July 2014.

[12] Top 500 list of supercomputers. http://top500.org/lists/2014/06/, July

2014.

[13] Argonne CORAL collaboration, Oak Ridge and Livermore National Lab-

oratory. Coral benchmark suite. https://asc.llnl.gov/CORAL-benchmarks,

July 2014.

[14] Kofler Sandro. Kinecontrol: Parallelization for shared memory parallel

computing systems. Bachelor thesis, Institute of Computer Science, Uni-

versity of Innsbruck, 2012.

[15] Moosbrugger Stefan. Kinecontrol: Conversion from c# to c++ and se-

quential optimizations. Bachelor thesis, Institute of Computer Science,

University of Innsbruck, 2012.

[16] NASA Advanced Supercomputing Division. Npb suite. http://www.nas.

nasa.gov/publications/npb.html, July 2014.

[17] Center for Manycore Programming. Snu npb suite. http://aces.snu.ac.

kr/SNU_NPB_Suite.html, July 2014.

[18] Shuai Che, M. Boyer, Jiayuan Meng, D. Tarjan, J.W. Sheaffer, Sang-Ha

Lee, and K. Skadron. Rodinia: A benchmark suite for heterogeneous com-

puting. In Workload Characterization, 2009. IISWC 2009. IEEE Interna-

tional Symposium on, pages 44–54, Oct 2009.

[19] Al Daniel. Cloc: Count lines of code. http://cloc.sourceforge.net/, 2014.

[20] the free encyclopedia Wikipedia. perf (linux). http://en.wikipedia.org/

wiki/Perf_%28Linux%29, 2014.

[21] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An

insightful visual performance model for multicore architectures. Commun.

ACM, 52(4):65–76, April 2009.

[22] Hpc linpack benchmark. http://khmel.org/?p=527, October 2014.

[23] Stream memory benchmark. http://www.cs.virginia.edu/stream/ref.

html, October 2014.

116

http://crd.lbl.gov/groups-depts/ftg/projects/previous-projects/apex/
http://crd.lbl.gov/groups-depts/ftg/projects/previous-projects/apex/
http://www.exmatex.org/proxy-over.html
http://top500.org/lists/2014/06/
https://asc.llnl.gov/CORAL-benchmarks
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://aces.snu.ac.kr/SNU_NPB_Suite.html
http://aces.snu.ac.kr/SNU_NPB_Suite.html
http://cloc.sourceforge.net/
http://en.wikipedia.org/wiki/Perf_%28Linux%29
http://en.wikipedia.org/wiki/Perf_%28Linux%29
http://khmel.org/?p=527
http://www.cs.virginia.edu/stream/ref.html
http://www.cs.virginia.edu/stream/ref.html

[24] tool suite Valgrind. http://valgrind.org/info/tools.html, June 2015.

[25] the free encyclopedia Wikipedia. Amdahl’s law. http://en.wikipedia.org/

wiki/Amdahl%27s_law#Parallelization, July 2014.

[26] the free encyclopedia Wikipedia. Black-scholes model. http://en.

wikipedia.org/wiki/Black%E2%80%93Scholes_model, April 2015.

[27] The GALPROP development team. The galprop code for cosmic-ray trans-

port and diffuse emission production. http://galprop.stanford.edu/, 2014.

[28] Zentraler Informatikdienst der Universität Innsbruck. Mach: collaborative

system of the universities innsbruck and linz. http://www.uibk.ac.at/zid/

systeme/hpc-systeme/mach/, July 2014.

117

http://valgrind.org/info/tools.html
http://en.wikipedia.org/wiki/Amdahl%27s_law#Parallelization
http://en.wikipedia.org/wiki/Amdahl%27s_law#Parallelization
http://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model
http://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model
http://galprop.stanford.edu/
http://www.uibk.ac.at/zid/systeme/hpc-systeme/mach/
http://www.uibk.ac.at/zid/systeme/hpc-systeme/mach/

	Introduction
	Motivation
	Related Work
	Insieme
	Integration Test Framework
	Input Codes
	Performance Analysis

	The Insieme Compiler
	INSPIRE
	Architecture
	Parallel Model

	Insieme Runtime System
	Topology-aware Multi-Process Scheduling
	Automatic Loop Scheduling
	Optimizing Granularity in Task-based Parallelism

	Overview of all Gathered Codes
	Code Finding Procedure
	Input Codes

	Test Environment
	Hardware and Software Environment
	Metrics
	Runtime and Memory
	Lines of Code
	Linux Perf Tool
	Floating Point Operations
	Memory Transfer
	Boundness
	Callgrind

	Test Results
	Shared Memory Parallelization Performance
	Main Memory Footprint
	Boundness

	Detailed Analysis of Selected Codes
	Amdahl's law
	BOTS Health
	OmpSCR Graphsearch
	PARSEC Blackscholes
	Dijkstra
	NPB cg
	Rodinia nn
	Rodinia bfs

	Integration Test Framework
	Test Database
	Configuration File Options

	Test Steps
	Metrics
	Output Formats
	SQL Database

	Command Line Arguments
	Implementation Details

	Detailed Performance Analysis at the Example of GALPROP
	Testing Environment
	Current Behavior
	Code Regions

	Improvements
	Improvements Regarding Shared Memory Systems
	Serial Improvements

	Results
	Overhead Analysis
	Further Improvements

	Summary
	Input Parameters for GALPROP
	NoGamma Low Resolution input file
	WithGamma Low Resolution input file

	Runtime Measurements of the Optimized Version of GALPROP
	List of Figures
	List of Tables
	Bibliography

