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Abstract

This document provides an insight into the Haskell-based Analysis Toolkit (HAT), allowing develop-
ers and researchers to rapidly prototype and develop static program analyses. It is therefore composed
of an introduction into the topic of static program analysis, an architectural overview of the frame-
work, the specification of a variety of essential analyses and components, a tutorial for designing new
analyses showcasing the framework, followed by an evaluation of the frameworks capabilities. The
conclusion summarises the contributions of this thesis and provides an outlook on future work.

For the tutorial, and to showcase the framework, an array out-of-bounds analysis is constructed. This
analysis is also utilised for evaluating the framework, by investigating its ability of implicitly expand-
ing a program analysis language feature support. Furthermore we evaluate the frameworks perfor-
mance in terms of execution time and memory requirements by analysing 63 622 different properties
within a total of 320 example codes.

The complete code of this project is available on GitHub1 embedded into the high-level analysis
module of the Insieme compiler.

1https://github.com/insieme/insieme
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1. Introduction

This document describes a framework for easing the implementation of data-flow analyses within the
Insieme project. Note that throughout this document the terms framework, toolkit, and Haskell-based
Analysis Toolkit (HAT) are used interchangeably.

The core contribution of this project is the implementation of a scalable, easy-to-use static program
analysis framework, which can be used for rapid development and prototyping of data-flow analy-
ses.

As this project is a joint effort between Herbert Jordan, Thomas Prokosch, and myself, a section
dedicated to the attribution is provided next. It is followed by a motivation section, the objectives,
and a justification for picking Haskell as platform for the framework. The introduction is concluded
with a structural overview of the remaining document.

1.1. Attribution

The theoretical groundwork, as well as a first prototype has been created by Herbert Jordan, who also
plays a major role in the current development of the framework. He is tasked with implementing the
core components of the framework and overlooking the development process.

Thomas Prokosch helped with the initial technology assessment and prototyping components in
Haskell before they are integrated into the framework.

The main tasks of the author of this thesis are:

• integration of the C++ / Haskell interface
• framework interface design
• Intermediate Representation (IR) data structure
• documentation and tutorial
• implementing utilities
• example analyses
• debugging tools

1.2. Motivation

Program analysis, in general, is a big topic, not only in compiler theory. Extracting certain properties
automatically from an input program can be viable for multiple different use-cases (eg auto-tuning
or code validation). When talking about compilers, many of their optimisations rely on some kind of
Data-Flow Analysis (DFA) to identify potential optimisation options.
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1. Introduction

The biggest nugget of motivation can be mined from the idea of having a generic Constraint-Based
Analysis (CBA) framework at hand, which already provides a basic set of common analyses and can
be extended rapidly as needed. The generic DFA analysis provided by the framework presented by
this thesis handles (among others) declarations, parameter and return value passing, closures, support
for composed data types, calls to unknown external functions, inter-procedural analyses, and memory
locations.

By integrating it into a source-to-source compiler, and operating on a high-level intermediate repre-
sentation, little boilerplate code is required to construct new analyses for various tasks. Prototypes
for research as well as for development purposes can be efficiently implemented.

1.3. Objectives

The ultimate goal of this project is the realisation of a scalable implementation of the CBA framework
developed by Jordan [10] exhibiting superior usability. The main objective of this thesis is to help
lay the foundation for this framework and its integration with Insieme. To achieve the ultimate goal,
further development will build upon this work in the future.

The main objective therefore consists of developing the core components of the framework. These
are composed of a fixpoint solver, a smaller set of generic analyses, and a bigger set of basic (more
specific) analyses. The intention behind each of these components and their relationship with each
other is explained in Chapter 4.

The framework is a part of the Insieme project and therefore operators on the Intermediate Representa-
tion of the Insieme compiler – namely the INSieme Parallel Intermediate REpresentation (INSPIRE).
This IR is implemented as C++ data structure in the core of the compiler. However, as the framework
is not realised using C++ (see below), a suitable representation of INSPIRE needs to be established.
This also includes a way to transfer an INSPIRE program from the Insieme compiler to this repre-
sentation. Furthermore, the framework should provide a way of relaying back analysis results to
C++.

Also, it should be possible to use the framework as standalone, without the need for the Insieme
compiler.

Last but not least, creating documentation of the framework and a manual for further analysis devel-
opment is needed. This objective is reflected by this document.

1.4. Picking Haskell

The first prototype of the CBA framework has been implemented using C++. During its development
drawbacks of using C++ manifested in the form of long compile times yielding a very slow develop-
ment cycle. Due to this reason, a different programming language (platform) has been chosen for the
framework.

Due to the mathematical nature of program analysis, a functional programming language is preferred
for the implementation. The mathematical constructs defining analyses can be realised much simpler
via the use of Algebraic Data Types (ADTs) offered by functional languages, compared to structs,
classes, and records of imperative and object-oriented languages.
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1.5. Overview

Haskell [3], popular amongst functional programming languages, features expressive syntax, a strong,
static type system, and a growing community maintaining thousands of packages and libraries. It was
therefore ultimately selected for this task. The average reader of this document may not be familiar
with Haskell – or functional programming languages in general – and is therefore invited to pick it
up and start their functional programming adventure. Lipovaca [14] composed an excellent book
going by the name of Learn You a Haskell for Great Good!: A Beginner’s Guide, endorsed by the
Haskell community, and available online. Core concepts are explained with additional background
information and useful analogies. The playful art style and pop culture references positively influence
the learning experience. We also recommend the books Real World Haskell [17], Haskell Design
Patterns [13], and Haskell High Performance Programming [19].

Other functional programming languages like OCaml [4], F# [2], Scala [5], and Erlang [1] were
considered too, yet have been ruled out during an initial technology assessment phase. Since F#
builds on the .NET framework it was quickly removed from the list of considerations. The overall
footprint seems too large and no benefits of having the .NET framework on-board materialised. Both
Scala and Erlang seem interesting as well as promising, although on further investigation Haskell
promises a more advanced type system and people have reported that its easier applicable and better
designed compared to Scala [16]. In contrast to Erlang, Haskell is statically typed – something we
very much prefer as it makes it easier to catch bugs early in the development process. OCaml, in fact
quite similar to Haskell, has been reconsidered multiple times during the prototyping phase. In the
end, personal preference in the syntax and design of the standard library resulted in the selection of
Haskell instead of OCaml.

For the remainder of this thesis, it is assumed that the reader has a basic understanding of the Haskell
programming language. Nevertheless, details and more complex concepts are introduced when
needed, along with additional references.

1.5. Overview

Chapter 2 provides a brief introduction to static code analysis, focusing on flow-sensitive analysis. The
concept is communicated via an example utilising a more conventional DFA framework, followed by
the constraint-based approach. This leads to a generic CBA framework, which is originally based
on the one presented by Nielson et al. [15]. Additionally, customisations and adaptations towards
integrating CBA capabilities into Insieme have beenmade by Jordan [10] to the framework, which not
only seem promising in theory but also bear in mind real-world use-cases and practical applications
– something not encountered that often in the field of program analysis.

Next, covered by Chapter 3, the overall architecture of Insieme’s Haskell-based Analysis Toolkit
(HAT) is depicted, delivering the big picture of the task at hand. This includes presenting the Insieme
compiler followed by a detailed investigation of INSPIRE [11].

The implementation part, described in Chapter 4, reflects the documentation of the current state of
the framework. The source code can be found on GitHub1 embedded into the analysis module of the
Insieme compiler. Presented code snippets have been simplified for clarity in some cases.

In Chapter 5 a new analysis is constructed showcasing the new framework. Furthermore, the newly
implemented analysis is used to evaluate the framework in Chapter 6. Finally, Chapter 7 summarises
the contributions of this work an provides an outlook on future development.

1https://github.com/insieme/insieme
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2. Static Code Analysis

This chapter provides a concise introduction to the topic of static program analysis with a focus on
Data-Flow Analysis (DFA) and its extension, the constraint-based approach. It serves as a stepping
stone to communicate the theoretical background for the following chapters.

It starts off with a few words about the general purpose of static code analysis and continues with
the introduction of the Control-Flow Graph (CFG). After that the general concept of DFA is com-
municated together with a reaching definitions example. Finally, the constraint-based approach is
tackled and applied to the same example for comparison. The chapter concludes with an overview of
customisations made by Jordan [10] to the Constraint-Based Analysis (CBA) framework.

2.1. Purpose

Static code analysis is about deducing properties of a program without actually running the program.
This happens typically in a compiler during the optimisation stage. Yet there are also other tools
(referred to as static code analysers) which can run various checks on the code and extract properties
from it. Checking for nullpointer dereferences, dead code, and estimating runtime complexity are just
a few examples for checks, that can be conducted by an analysis. In case of a compiler, an optimisation
commonly consists of an analysis identifying structures in the program suitable for optimisation,
followed by a transformation of that structure into one that yields better performance1. Static code
analysers are often used to identify bugs (eg race conditions, iterator invalidation, etc) not caught
by the compiler. But they can also be useful to extract program properties for later use (eg auto-
tuning).

As already mentioned, this introduction section focuses on DFA, which is a flow-sensitive technique.
Meaning, we take the control-flow of the input program into account at the time the analysis is per-
formed. This leads to a more accurate result, but also requires a greater computational effort. Flow-
insensitive analyses, on the other hand, are much faster. However, they yield less accurate results in
the form of over-approximations. Since knowledge about flow-insensitive analysis is not required for
this task, these kinds of techniques are not elaborated further.

There are, of course, different techniques how one could construct a DFA. And while some of them
provide clear benefits over others, they sometimes also suffer drawbacks. But what (nearly) all of
them have in common is the utilisation of CFGs. The following section introduces those.

2.2. Control-Flow Graph

The control flow of a program can be abstracted as a graph, in which each node represents a basic
block. A basic block is a sequence of instructions without any jumps or jump targets (ie labels) in-

1Depending on the current objective, performance can refer to runtime, memory usage, power consumption, etc.
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2. Static Code Analysis

between. It commonly begins with a jump target and ends with a jump instruction. Basic blocks
are connected via directed edges, which represent potential execution paths. An edge that points to
an already visited block during depth-first traversal is referred to as a backward edge and frequently
introduced by a loop. Adding two additional empty blocks, the entry block and exit block, can help
keeping algorithms operating on the graph simple. All control-flows start at the entry block and end
at the exit block. [22]

What exactly constitutes a node of the CFG is not set in stone and varies depending on the application.
While the textbook definition concerns itself with basic blocks, one could easily abstract away whole
functions into a graph’s nodes. Based on the application, attaching additional information to the
edges can be helpful too.

Listing 1 displays a short C programwith three functions. Figure 1 illustrates the corresponding CFG.
Each function features a dedicated entry node annotated with the function’s name and an exit (return)
block. The example contains branching as well as loops.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 void print_something(int times) {

5 for (int i = 0; i < times; ++i) {

6 puts("something");

7 }

8 }

9

10 void print_usage() {

11 puts("some usage");

12 }

13

14 int main(int argc, char* argv[]) {

15 if (argc < 2) {

16 print_usage();

17 return EXIT_FAILURE;

18 }

19 print_something(atoi(argv[1]));

20 return EXIT_SUCCESS;

21 }

Listing 1: cfg.c

During a program analysis run certain properties are tracked across the nodes. These properties (eg
reaching definitions) are recorded when a node is entered and left. These records are referenced by
the labels of the related graph node together with either in or out.

For instance,REACHin[S] andREACHout[S] are the reaching definitions recorded at the entry point
and exit point respectively of the graph node S. This notation is often shortened to in(S) / out(S) if
the specific analysis can be derived from the current context [21].

2.3. Data-Flow Analysis

In this section the basis of Data-Flow Analysis is described. The description itself is keep very
informal and is presented through an example.
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2.3. Data-Flow Analysis

main:

argc < 2

print_usage() print_something(…)

return

F T

print_usage:

puts(…)

return

print_something:

i = 0

i < times

puts(…)

++i

return

T F

Figure 1.: A CFG corresponding to cfg.c.
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2. Static Code Analysis

A Data-Flow Analysis is a static program analysis used to extract certain properties (eg reaching
definitions or live variables) from a program. Traditionally, DFA assumes a given control-flow of the
program – and while one could work on the Abstract Syntax Tree (AST) – using a CFG is often much
simpler and yields similar outcome (with respect to accuracy regarding DFA) [7]. This technique can
be cast into a framework as presented in the remainder of this document.

Furthermore, there are two ways an analysis can operate. It can either be a must analysis or a may
analysis. A must analysis requires that a property must hold in all branches to be still considered
after a meeting point (logical and). Alternatively, in a may analysis a property is considered after a
meeting point if it holds in at least one branch (logical or). An example for a must analysis would be
available expressions [7], while reaching definitions (see Section 2.3.2) is a may analysis.

Most DFA frameworks only yield sound solutions if the domain of the property space forms a lattice.
Because of this, we now take a short detour and glance at the mathematical concept of a lattice.

2.3.1. Lattice

{i, j, k}

{i, j} {i,k} {j,k}

{i} {j} {k}

∅

Figure 2.: A Hasse diagram of
an example lattice.

A complete lattice is an algebraic structure which consists of a par-
tially ordered set in which every two elements share a unique upper
bound (join) and a unique lower bound (meet). Furthermore there ex-
ists one element ⊥ that is smaller, and one element ⊤ that is larger
than every other element in the set. The purpose of the lattice, with
respect to program analysis, is to model a domain of program prop-
erties. The height of a lattice is given by the longest path through
partial order from greatest to least. Elements of the lattice represent
flow values (in and out sets) while ⊥ and ⊤ represent the best-case
and worst-case information respectively. The meet operator ⊔ de-
scribes how two flow values are merged. [20, 6, 18]

Figure 2 shows an example application for a lattice where three vari-
ables i, j and k are given. A flow value can exhibit any combination
of them. Hence the ⊤ and ⊥ value can be mapped to the set of all
variables and ∅ respectively. The height of the lattice, 4, which can be immediately deduced from
the illustration and the ordering of the lattice (⊑) is mapped to ⊆. This representation is known as a
Hasse Diagram [23].

There exists also the concept of a semilattice, which resembles a normal lattice, but only features
either a least upper bound or greatest lower bound, known as join-semilattice or meet-semilattice,
respectively.

The interested reader is encouraged to take a look at the more comprehensive introduction to lattices
provided by Jovanovic [12].

2.3.2. Reaching Definitions Example

A definition of a variable at program point p1 reaches program point p2 if there is a control-flow
path from p1 to p2 along which the variable defined by p1 is not redefined. Positive and negative
examples are provided. [21]

8



2.3. Data-Flow Analysis

p1: x = 42

p2: y = 12

p3

The definition of x from p1 reaches the
program point p3.

p4: z = 24

p5: z = 16

p6

The definition of z from p4 does not
reach p6. It is killed by the definition
at p5.

Lattice

Before concerning ourselves with the DFA itself, we have to define the lattice of the property we
would like to obtain. Let V be the set of all variables, S = 0, 1, . . . the set of all statements in the
CFG and L = S ∪ {?}. The lattice is then given by

(2V×L,⊆)

‘?’ is used to represent an input to the program. From this, ⊥ = ∅ and ⊤ = V × L can be derived.
Since the elements of V and L are ordered, we can also derive an order for V × L. The join and meet
operators can be mapped to ∪ and ∩ respectively.

Data-Flow Analysis

The data-flow equations for calculating reaching definitions are: for all basic blocks b of a given
CFG,

in(b) =
∪

p∈pred(b)

out(p)

out(b) = gen(b) ∪ (in(b) \ kill(b))

where gen(b) is the set of definitions contained in block b, kill(b) the set of definitions killed in
block b and pred(b) is the set of predecessors of b. Killing a definition means that it is no longer
available in subsequent blocks, as illustrated in the initial example of this subsection.

Let us take the following program computing x! together with the corresponding CFG in Figure 3.
Note that we only focus on the calculating part here and assign each statement its own block for
simplicity. This example is based on the introduction provided by Nielson et al. [15, pp. 5–10].

Running a reaching definition analysis on this code results in the following twelve equations, two for
each block.

in(1) = {(x, ?)} out(1) = {(y, 1)} ∪ (in(1) \ {(y, l) | l ∈ L})

in(2) = out(1) out(2) = {(z, 2)} ∪ (in(2) \ {(z, l) | l ∈ L})

in(3) = out(2) ∪ out(5) out(3) = in(3)

in(4) = out(3) out(4) = {(z, 4)} ∪ (in(4) \ {(z, l) | l ∈ L})

in(5) = out(4) out(5) = {(y, 5)} ∪ (in(5) \ {(y, l) | l ∈ L})

in(6) = out(3) out(6) = {(y, 6)} ∪ (in(6) \ {(y, l) | l ∈ L})

Each pair consists of a variable (x, y or z) and a label, where the label is either the number of the block
or ‘?’ if the variable is not initialised within this context. Uninitialised variables can be considered
input to the program. When focusing on block 3 one can see that the information flowing into the
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2. Static Code Analysis

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int factorial(int x) {

5 int y = x;

6 int z = 1;

7 while (y > 1) {

8 z = z * y;

9 y = y - 1;

10 }

11 y = 0;

12 return z;

13 }

14

15 int main(int argc, char* argv[]) {

16 int x = atoi(argv[1]);

17 printf("%d! = %d\n", x, factorial(x));

18 return EXIT_SUCCESS;

19 }

Listing 2: factorial.c, a simple factorial program.

block is the same as the information flowing out of the block since no variables are modified. At
block 3 two different control-flows meet yielding a merge of facts.

One can observe a different result for the first equation when comparing it to the original source of this
example. This change results from the way this example is presented. In our case the two variables
y and z do not exist prior to executing the algorithm, hence the analysis does not need to consider
them as input. [15, p. 7]

As stated by Nielson et al. [15, pp. 7–8], only a finite number of solutions exist for the derived sys-
tem of equations. Furthermore each of these solutions is a fixed point and all of them are partially
ordered. Most interestingly, the least fixed point solution, obtained this way, contains the fewest pairs
of reaching definitions. Therefore this is the most accurate result, and the one we are interested in. It
looks as follows:

in(1) = {(x, ?)} out(1) = {(x, ?), (y, 1)}

in(2) = {(x, ?), (y, 1)} out(2) = {(x, ?), (y, 1), (z, 2)}

in(3) = {(x, ?), (y, 1), (y, 5), (z, 2), (z, 4)} out(3) = {(x, ?), (y, 1), (y, 5), (z, 2), (z, 4)}

in(4) = {(x, ?), (y, 1), (y, 5), (z, 2), (z, 4)} out(4) = {(x, ?), (y, 1), (y, 5), (z, 4)}

in(5) = {(x, ?), (y, 1), (y, 5), (z, 4)} out(5) = {(x, ?), (y, 5), (z, 4)}

in(6) = {(x, ?), (y, 1), (y, 5), (z, 2), (z, 4)} out(6) = {(x, ?), (y, 6), (z, 2), (z, 4)}

2.4. Constraint-Based Analysis

Previously we dealt with the extraction of multiple equations from a CFG by traversing it, and then
solving a system of equations to derive information (ie facts) about the program. The main idea
behind the constraint-based approach is to directly extract these constraints and handle them explicitly,
instead of implicitly handling equations given by the structure of the CFG.Due to the explicit handling
of these constraints the two processes of generating and solving them can be separated, resulting in
a constraint generator and constraint solver. [15, 10]

10



2.4. Constraint-Based Analysis

int y = x

int z = 1

y > 1

z = z * y

y = y - 1

y = 0

T F

1

2

3

4

5

6

Figure 3.: A CFG corresponding to factorial.c.

We continue straight on with the example of the previous section to demonstrate the differences
between the mentioned two approaches.

2.4.1. Reaching Definitions Example (cont)

Taking the constraint-based approach, the following list of constraints can be derived from the previ-
ous example. See Figure 3. Note that the format of constraint may be more complex (eg conditions),
depending on the scenario. Theymay also be derived from other sources than the CFG (eg an AST).

out(1) ⊇ in(1) \ {(y, l) | l ∈ L} out(1) ⊇ {(y, 1)}

out(2) ⊇ in(2) \ {(z, l) | l ∈ L} out(2) ⊇ {(z, 2)}

out(3) ⊇ in(3)

out(4) ⊇ in(4) \ {(z, l) | l ∈ L} out(4) ⊇ {(z, 4)}

out(5) ⊇ in(5) \ {(y, l) | l ∈ L} out(5) ⊇ {(y, 5)}

out(6) ⊇ in(6) \ {(y, l) | l ∈ L} out(6) ⊇ {(y, 6)}

Upon close investigation of this list and the original program, a pattern emerges. Every time a vari-
able is assigned, two constraints are generated. One for excluding (killing) all pairs generated by
prior assignments of this variable, and one for adding (generating) a new pair corresponding to this
assignment. Otherwise, if no variable is assigned, everything is simply passed through.

Note the similarities of this discovered pattern and the original dataflow equations:

out(b) = gen(b) ∪ (in(b) \ kill(b)) Dataflow equation

out(b) ⊇ gen(b) Constraints
out(b) ⊇ in(b) \ kill(b)

Nevertheless, these constraints only tell us how information flows through each block, we are still
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2. Static Code Analysis

missing how information flows between blocks. Therefore the following list is derived.

in(2) ⊇ out(1)

in(3) ⊇ out(2) in(3) ⊇ out(5)

in(5) ⊇ out(4)

in(6) ⊇ out(3)

Again a pattern is immediately visible: each edge in the CFG results in a constraint connecting the
exit set of a block with the entry set of its successor.

The last constraint we need relates to the input of our program.

in(1) ⊇ {(x, ?)}

Finally, the same solution obtained in the data-flow analysis approach is also valid for this system of
constraints. In fact, it is also the least solution. [15, p. 10]

2.5. Insieme CBA framework

The constrained-based approach, as presented by Nielson et al. [15], resembles a generic framework
suitable for various kinds of analysis. While we only focused on reaching definitions for now, other
kinds (eg live variable analysis) can be realised in a similar fashion.

H
AT

System of 
Constraints SolutionSolve

INSPIRE

Program 
Point

Memory 
Location

…

C
B

A

AST
System of 

Constraints
Generate SolutionSolve

D
FA

CFG SolutionSolve

Figure 4.: Illustrating the difference between DFA, CBA and HAT.
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2.5. Insieme CBA framework

In Figure 4 the core difference between DFA, CBA and our Haskell-based Analysis Toolkit (HAT)
are illustrated. In DFA a system of equations is implicitly derived from the CFG and immediately
solved to obtain a valid solution for an analysis. In CBA the generation and solving of constraints
is replaced by two stages: first generating a system of constraints and solving the system afterwards.
Both stages are clearly separated and the second is initiated after the first one is completed. HAT,
on the other hand, relaxes the strict design of two separated stages. This is made possible by the
introduction of a lazy constraint solver [10].

The lazy constraint solver allows the toolkit to generate constraints on the fly, as needed, and to inject
them into the system of constraints during an analysis run. Furthermore, HAT is not limited to using
an (annotated) CFG. As already hinted in the introduction to this chapter, not all analyses operate on
a CFG. Instead, they could directly use an AST or their own custom data structure.

Using the INSieme Parallel Intermediate REpresentation (INSPIRE) together with additional sources
of information, including but not limited to Program Points and Memory Locations, analyses can be
more flexible and can output more accurate results than by just using a CFG. In general, the framework
allows multiple different structures to be associated with analysis variables. Also, the extraction of
a CFG from an AST can be skipped. In particular, this design enables the unification of control- and
data-flow problems, facilitating the computation of the actual (inter-procedural) flow of control as
part of the DFA.

The design of the modified CBA framework, including lots of details and examples, can be found in
[10, pp. 198–289]. Certain parts have been cherry-picked and summarised in the remainder of this
section. Section 3.2 is dedicted to INSPIRE.

2.5.1. Property Space

A property space consists of a domain, representing all possible values a property may exhibit and
a combination operator. The operator is used to merge the results of different control-flow paths
considered by the analysis. [10, p. 187]

Using the reaching definitions example, presented previously, the property space would be given by

(2D,
∪

D
)

where

D = V × L∪
D
: 2D → D

{d1,d2, . . . ,dN} 7→
∪

1⩽i⩽N

di

Each property space is inducing a lattice (D,⊆) by defining a ⊆ b ⇐⇒ b =
∪
{a,b}. Thus,

⊥ =
∪
∅ and ⊤ =

∪
D.

2.5.2. Analysis Variables

Analysis variables are given by a pair connecting the type of analysis (eg arithmetic value) and some
id associated with an element of an underlying structure. For example, given the labelled expression
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2. Static Code Analysis

[[7]1 + [4]2]3 where the labels are written in superscript, the variable A(3) refers to the arithmetic
value of the expression labelled 3. This would lead to the following set of constraints.

{7} ⊆ A(1)

{4} ⊆ A(2)

{x+ y | x ∈ A(1), y ∈ A(2)} ⊆ A(3)

2.5.3. Assignment

An assignment maps each analysis variable to a value of the corresponding property space. At the
beginning of an analysis each analysis variable is initialisedwith the⊥ value of the respective property
space. The solver (see below) modifies this mapping until all constraints are satisfied. The final
assignment corresponds to the (least) solution of the system of constraints.

2.5.4. Constraint Guards

A detail omitted in the previous example is the option of having conditional constraints. These are,
in other words, guarded constraints which are only considered if their guard evaluates to true. Taking
one of the previous constraints we encountered out of context and attaching a random guard, just for
the sake of it, gives us the following expression

x = 4∧ y < 2 =⇒ in(4) \ {(z, l) | l ∈ L} ⊇ out(4)

, where ‘x = 4 ∧ y < 2’ is the guard and ‘in(4) \ {(z, l) | l ∈ L} ⊇ out(4)’ is the constraint. Also,
the term on the right of the ⊇ operator must be a single variable – the constraint or target variable.

Constraints without an explicit guard can be viewed as one with a guard that is always true.

2.5.5. Constraint Generator

A constraint generator constructs new analysis variables and constraints. The constraints are attached
to the variable and may depend on other analysis variables. Hence connections (ie dependencies)
between variables are established. For new analyses, a constraint generator must be provided. It
hooks into the framework and is used for the corresponding analysis. The framework already comes
with some analyses and therefore their related property spaces and constraint generators. They can
be used as a starting point for new analyses.

2.5.6. Analysis

An analysis combines a given property space with a constraint generator. It (and its variables) are
distinguished from other analyses (and their variables) by an identifier. Already mentioned examples
have been A, REACHin, and REACHout.
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2.5. Insieme CBA framework

2.5.7. Constraint Solver

As presented by Nielson et al. [15], the solver was required to have a complete set of constraints from
the get go. The modifications made by Jordan [10] include a lazy-solver capable of incorporating
constraints during the solving process. Furthermore, this addition enables analyses to bemore flexible
since they can take temporary results into account – partial solutions obtained by the solver can
influence the generation process of new constraints.

Additionally, in the original framework constraint guards were required to be monotone predicates.
With the new local restart feature this restriction can be relaxed. This enables the analysis to make
assumptions. This can lead to more accurate results, if the assumptions turn out to be valid. But
results obtained from an assumption that turns out to be invalid need to be forgotten through resetting
a set of interdependent analysis variables. This mechanism works fine as long as reset-events do not
repeatedly trigger each other1, see [10, pp. 216] for more information.

The constraint solver itself is a fixpoint solver which utilises worklists. The algorithm initialises the
assignment with the property spaces’ ⊥ values and updates it step by step until all constraints are
satisfied. Section 4.5.5 covers its internal working.

1This problem does not occur if the constraint set is stratifiable.
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3. Architecture

This chapter provides a grand overview of the system’s architecture. It starts with a brief outline of the
Insieme project and continues with investigating the INSieme Parallel Intermediate REpresentation
(INSPIRE). Next, each module of the toolkit is described shortly by summarising its purpose.

3.1. Insieme

The Insieme project is split into two parts, the Insieme compiler and the Insieme Runtime. Both are
designed in such a way that they can also be used separately. Figure 5 displays the typical pipeline
where the compiler is combined with the runtime library. Insieme’s mission statement follows. [8]

AllScale API
OpenMP

CilkC
C++

Frontend
High Level 
Optimizer

Backend Target Code
Backend 
Compiler

Binary

Clang Inspire Runtime Library

Figure 5.: The Insieme compiler architecture.

Parallel computing systems have become omnipresent in recent years through the pen-
etration of multi-core processors in all IT markets, ranging from small scale embedded
systems to large scale supercomputers. These systems have a profound effect on soft-
ware development in science as most applications are not designed to exploit multiple
cores. The complexity in developing and optimizing parallel programs will rise sharply
in the future, as many-core computing systems become highly heterogeneous in nature,
integrating general purpose cores with accelerator cores. Modern and in particular future
parallel computing systems will be so complex that it appears to be impossible for any
human programmer to effectively parallelize and optimize programs across architectures.

The main goal of the Insieme project of the University of Innsbruck is to research ways of
automatically optimizing parallel programs for homogeneous and heterogeneous multi-
core architectures and to provide a source-to-source compiler that offers such capabilities
to the user.

Insieme’s Runtime maintains a set of worker threads to concurrently processing tasks. It knows
about the system architecture and can take records of previously run programs for scheduling and
optimisation decisions into account. We won’t concern ourselves with the runtime any further since
no interaction with it is required for this work.
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Insieme’s compiler is a source-to-source compiler taking C/C++ code as input and generating stan-
dard C++11 code as output (optionally with OpenCL1). Along with this, the frontend accepts the
AllScale API2, OpenMP3 and Cilk4 for parallelism. An important aspect of Insieme is that it is built
as a framework, not just a single compiler with a fixed set of options. This design decision keeps
Insieme’s architecture modular and prevents interference between modules.

Despite resembling a framework, the design is still similar to other compilers. It consists of a fron-
tend, a backend and some complex parts in-between them. The frontend’s purpose is to validate and
transform input code into INSPIRE. The original input code is no longer needed after transformation.
The INSPIRE program is all that is needed for subsequent steps and is capable of modelling parallel
constructs and control-flow. The complex parts are made up of the core module (mainly responsible
for managing INSPIRE), the analysis module and the transformation module. The analysis module
is relevant for identifying code optimisation candidates and feature extraction. It takes a program
represented in INSPIRE as input and, depending on the configuration, runs various analyses on it.
The information derived in this step can further be used in the transformation module to realise opti-
misations. The optimised program can then be fed to the backend, which is responsible for producing
target code.

3.2. INSPIRE

In order to use the Insieme infrastructure and create analyses with the new toolkit, a certain under-
standing of Insieme’s Intermediate Representation (IR) is required. This section communicates the
most important aspects of INSPIRE. The information provided here comes in handy, when imple-
menting an analysis.

INSPIRE has multiple different representations. Inside the compiler it is handled as a Direct Acyclic
Graph (DAG), but a text representation resembling a functional programming language is available
as well, for development and testing purposes. Pretty printer and parser are part of the infrastructure
allowing conversions between the DAG and text representation, while a binary dumper as well as
a JavaScript Object Notation (JSON)5 dumper are provided for exporting INSPIRE. These exports
can then be used by other tools like the Haskell-based Analysis Toolkit (HAT) or INSPYER (see
Appendix A).

The structure of INSPIRE is presented next.

1https://www.khronos.org/opencl
2http://www.allscale.eu
3http://www.openmp.org
4https://www.cilkplus.org
5http://www.json.org
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3.2. INSPIRE

Node

Value Statement

Expression

Support

Record

Type

Figure 6.: Hierarchy composed of node categories.

3.2.1. Structure

Each node belongs to a category which are hierarchically organised, as can be seen in Figure 6. On
top we have the base class Node from which the six categories Value, Type, Statement, Program and
Support are derived. Furthermore Expression is derived from Statement and Record is derived from
Support.

In this subsection the complete structure of INSPIRE is given, yet only selected node types, relevant
for the remainder of this document, are described. For further information see [11] and [10, pp. 37–
172].

Notation

The block below is just an example used to communicate the notation used in this section. Categories
are always written in italic, while the node type defined is written in bold. The types stated after a
node definition are the fields (children) of that node. The following block defines the node categories
Example. It contains four different types of nodes, BreakStmt, CompoundStmt, ForStmt and Decla-
rationStmt. BreakStmt has no children and is therefore a terminal. CompoundStmt contains a list
(annotated by the square brackets) of Statements. ForStmt holds a DeclarationStmt, two Expressions
followed, by a CompoundStmt. Lastly, the DeclarationStmt consists of a Declaration and a Variable.
Note that member field indices are currently the main method of addressing sub-structures in HAT.

Example ::= BreakStmt
| CompoundStmt [Statement]
| ForStmt DeclarationStmt Expression Expression CompoundStmt
| DeclarationStmt Declaration Variable
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The actual structure of INSPIRE follows.

Nodes

Node ::= Value
| Type
| Statement
| Support
| Program [Expression]

This category builds the root of the hierarchy and only defines one node type itself. Program repre-
sents an entire program with its entry points.

Value Nodes

Value ::= BoolValue bool

| CharValue char

| IntValue int

| UIntValue unsigned

| StringValue std::string

These nodes are simple wrappers around values of the stated C++ type.

Type Nodes

Type ::= FunctionType Types Type UIntValue Types
| GenericType StringValue Parents Types
| GenericTypeVariable StringValue Types
| NumericType Expression
| TagType TagTypeReference TagTypeDefinition
| TagTypeReference StringValue
| TupleType [Type]
| TypeVariable StringValue
| VariadicGenericTypeVariable StringValue Types
| VariadicTypeVariable StringValue

GenericTypes and GenericTypeVariables are used for abstract operators (see Section 3.3) and, hence
mainly for language extensions. TagTypes, on the other hand, are for records / structs. Yet, these
nodes are of little relevance to the program analysis since the semantics are mainly modelled by the
language extensions. Also note that the framework assumes a valid input program, therefore no type
checking is required by the framework.

20



3.2. INSPIRE

Statement Nodes

Statement ::= Expression
| BreakStmt
| ContinueStmt
| GotoStmt StringValue
| LabelStmt StringValue
| CompoundStmt [Statement]
| DeclarationStmt Declaration Variable
| IfStmt Expression CompoundStmt CompoundStmt
| WhileStmt Expression CompoundStmt
| ForStmt DeclarationStmt Expression Expression CompoundStmt
| MarkerStmt UIntValue Statement
| ReturnStmt Declaration
| SwitchStmt Expression SwitchCases CompoundStmt
| ThrowStmt Expression
| TryCatchStmt CompoundStmt [CatchClause]

The provided statements are equivalent to their C/C++ counterparts, just note the ForStmt which is
actually a range-based for-loop. The Expression inside its Declaration marks the start, while the other
two Expressions inside the ForStmt are the end and step, respectively. TheMarkerStmt wraps another
Statement connecting it to a unique identifier which can be used later on. This is especially helpful
for testing and debugging purposes.

Expression Nodes

Expression ::= BindExpr FunctionType Parameters CallExpr
| CallExpr Type Expression [Declaration]
| CastExpr Type Expression
| InitExpr GenericType Expression Expressions
| JobExpr GenericType Expression Expression
| LambdaExpr FunctionType LambdaReference LambdaDefinition
| LambdaReference FunctionType StringValue
| Literal Type StringValue
| MarkerExpr Type UIntValue Expression
| TupleExpr TupleType Expressions
| Variable Type UIntValue

Like Statement nodes, Expression nodes are akin to C/C++. Similar to the statements, expressions
can be marked too using MarkerExpr. BindExpr enables the construction of closures, while JobExpr
is used for parallel constructs.
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Support Nodes

Support ::= Record
| CatchClause Variable CompoundStmt
| Declaration Type Expression
| Expressions [Expression]
| Field StringValue Type
| Fields [Field]
| Lambda FunctionType Parameters CompoundStmt
| LambdaBinding LambdaReference Lambda
| LambdaDefinition [LambdaBinding]
| MemberFunction StringValue BoolValue Expression
| MemberFunctions [MemberFunction]
| Parameters [Variable]
| Parent BoolValue UIntValue Type
| Parents [Parent]
| PureVirtualMemberFunction StringValue FunctionType
| PureVirtualMemberFunctions [PureVirtualMemberFunction]
| SwitchCase Literal CompoundStmt
| SwitchCases [SwitchCase]
| TagTypeBinding TagTypeReference Record
| TagTypeDefinition [TagTypeBinding]
| Types [Type]

These nodes are utilised for building up types, expressions and statements. As the name of this node
category hints, the purpose of these nodes is to keep the remaining structure of INSPIRE less complex
and easier to work with.

Record Nodes

Record ::= Struct StringValue Fields Expressions Expressions BoolValue
MemberFunctions PureVirtualMemberFunctions Parents

| Union StringValue Fields Expressions Expressions BoolValue
MemberFunctions PureVirtualMemberFunctions

Struct is used to model C++ classes, including virtual functions and inheritance. The Parents node
holds a list of parent (ie base) classes plus information about the type of inheritance (public, protected,
or private). A Struct is composed of (in order): name, fields, constructors, destructors, destructor
virtual flag, member functions, and pure virtual member functions. Since unions can not inherit
structure, Union does not feature Parents.
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3.3. Extension Mechanism

3.3. Extension Mechanism

INSPIRE supports language extensions, similar to (abstract) libraries, which allow the structured in-
tegration of complex functionality (eg parallel directives). Insieme itself already uses this mechanism
to model the semantics of C++ programs.

Language extensions do not add additional node types, instead they build abstract data types (and
operators) by combining the previously (Section 3.2) defined node types (core language). An abstract
data type (not to be confused with Algebraic Data Type) is defined by its semantics and handled as a
black box. For example, the abstract data type int<4> represents a 4 byte wide integer, yet we do not
state how this integer is represented in its binary form.

Abstract operators enable us to work with abstract data types, despite not having their inner workings
defined. For instance, the abstract operator int_add is defined semantically as adding two integers
together, however we do not state how exactly this addition is to be performed.

By combining abstract operators we are able to craft new, derived operators having their semantics
defined programmatically. For instance, given the abstract integer operation modulo (%) and equality
(==), we are able to define a derived operator calculating the greatest common divisor of two integers.
The definition combines aforementioned abstract operators with constructs of the INSPIRE core lan-
guage (eg IfStmt, ReturnStmt, etc). In INSPIRE these derived operators are realised as lambdas.

Each abstract data type and operator is available in INSPIRE under its own name and operators
are called like regular functions using a CallExpr. A more detailed description of the extension
mechanism can be found in [10, pp. 119–141].

Extensions are defined in the lang subdirectory of the Insieme coremodule via the use of preprocessor
macros. The following list displays the different options available for building abstract data types and
operators.

Abstract / Composed Type Anew, generic abstract data type can be created using the LANG_EXT_TYPE
macro. The two arguments are the new abstract data type’s handle in C++ and the specification
in INSPIRE. The following code snippet creates the boolean and 4 byte wide integer types.

1 LANG_EXT_TYPE(Bool, "bool")

2 LANG_EXT_TYPE(Int4, "int<4>")

Composed types are created by combining type constructors, like tuple, struct, or function type
with already declared data types. The following code snippet composes the type int4_pair

using two 4 byte wide integers.

TYPE_ALIAS("int4_pair", "(int<4>, int<4>)")

Abstract / Derived Operators An abstract operator is declared using the LANG_EXT_LITERALmacro
with an id (C++ handle), name, and its respective type. The integer modulo operation and
equality are provided as examples.

1 LANG_EXT_LITERAL(IntAdd, "int_mod", "(int<'a>, int<'a>) -> int<'a>")

2 LANG_EXT_LITERAL(IntEq, "int_eq", "(int<'a>, int<'a>) -> bool")

Derived operators are defined using LANG_EXT_DERIVED. The name, under which they are avail-
able in INSPIRE is derived from their C++ handle (first argument) by converting it fromCamel-
Case to snail_case – in this case int_gcd.
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1 LANG_EXT_DERIVED(IntGcd, "(a : int<'a>, b : int<'b>) -> int<'a> {"

2 " if (int_eq(a, 0)) {"

3 " return b;"

4 " } else {"

5 " return int_gcd(int_mod(b, a), a);"

6 " }"

7 "}")

Constants Constants are actually a special case of abstract operators. They are abstract operators
which’s type is not a function type. We therefore use the same macro as for creating abstract
operators. Here the two boolean constants true and false are declared.

1 LANG_EXT_LITERAL(True, "true", "bool")

2 LANG_EXT_LITERAL(True, "false", "bool")

Constants are used directly in INSPIRE using a Literal node – no CallExpr is needed.

Operators and Analyses The operators of language extensions represent semantics which need
to be handled by an analysis. For abstract operators, the analysis designer has to provide an Oper-

atorHandler (Section 4.7.1) to interpret their semantics accordingly. This is optional for derived
operators, as their semantics are encoded in their definitions.

3.3.1. The Basic Language Extension

The list of node types of INSPIRE does not contain primitive types and operations like integers or
boolean, nor does it feature basic operators like + or ||. These are defined in the basic language
extension using a similar set of macros as previously introduced by this section.

The content of this language extension can further be divided into logical sections, which are pre-
sented next. The implementation of the content covered in this section can be found in:

File: code/core/include/insieme/core/lang/inspire_api/basic.def

Identifiers

The basic language extension defines identifiers as a distinct type of the INSPIRE language. There
do not exist any operators for this type.

TYPE(Identifier, "identifier")

This abstract data type is used by the identifier analysis in Section 4.10.1 to determine the value of
expressions representing identifiers.

Arithmetic Types and Operations

This part of the basic language extension defines various numeric types and operations. Here we find
the generic integer type int<'a> as well as its specialisations (eg int<4>, int<16>, etc). All primitive
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operations (eg int_add, uint_lshift, etc) are defined as abstract operators. Table 1 shows the five
basic integer operations.

Operator / Type Description
int_add
(int<'a>, int<'a>) -> int<'a>

Integer addition.

int_sub
(int<'a>, int<'a>) -> int<'a>

Integer subtraction.

int_mul
(int<'a>, int<'a>) -> int<'a>

Integer multiplication.

int_div
(int<'a>, int<'a>) -> int<'a>

Integer division.

int_mod
(int<'a>, int<'a>) -> int<'a>

Integer modulo.

Table 1.: Abstract operators defined by the basic language extension for integer operations.

The semantics implied by these operations needs to be handled by the corresponding analysis (in this
case the arithmetic analysis, described in Section 4.10.2).

Boolean Types and Operations

The boolean type with the two literals true and false is defined as follows:

1 TYPE(Bool, "bool")

2 LITERAL(True, "true", "bool")

3 LITERAL(False, "false", "bool")

The three boolean operations and, or, and not are implemented as derived operators modelling short-
circuit evaluation. They are summarised by Table 2

Operator / Type Description
bool_not
(bool) -> bool

Boolean not.

bool_and
(bool, ()=>bool) -> bool

Boolean and supporting short-circuit evaluation.

bool_or
(bool, ()=>bool) -> bool

Boolean or supporting short-circuit evaluation..

Table 2.: Derived operators defined by the basic language extension for boolean operations.

Numeric comparisons also fall in this part and are defined as abstract operators for the types char,
int<'a>, uint<'a> and real<'a>. The following table (Table 3) summarises them for the type int<'a>.
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Operator / Type Description
int_eq
(int<'a>, int<'a>) -> bool

Integer equality comparison.

int_ne
(int<'a>, int<'a>) -> bool

Integer inequality comparison.

int_lt
(int<'a>, int<'a>) -> bool

Integer less than comparison.

int_gt
(int<'a>, int<'a>) -> bool

Integer greater than comparison.

int_le
(int<'a>, int<'a>) -> bool

Integer less than or equal comparison.

int_ge
(int<'a>, int<'a>) -> bool

Integer greater than or equal comparison.

Table 3.: Abstract operators defined by the basic language extension for integer comparison.

3.3.2. Reference Extension

In INSPIRE, references are the only means to address memory locations and memory locations are
used for modelling mutual state.

Implicit and explicit C/C++ references are modelled by this extension. Implicit references are trans-
lated to plain references in INSPIRE. Explicit references, as available in C++, are mapped to cpp_ref

or cpp_rref depending on whether we are dealing with an ordinary, l-value, or r-value reference. In
addition to the reference kind, it can be stated if the referenced variable is const, volatile or both.

Several operators are provided formemorymanagement. For allocation the generic operator ref_alloc
is provided returning a reference to a memory location allocated to fit an element of the requested
type. This function can be combined with memory location information to specify whether the data is
allocated on the heap or stack. ref_delete allows memory to be freed after it is no longer needed.

Accessing the data stored in a memory location addressed by a reference for reading is done by using
ref_deref and ref_assign for writing. The following two tables provide an overview of common
abstract (Table 4) and derived (Table 5) operators defined by this language extension.

File: code/core/include/insieme/core/lang/reference.h

3.3.3. Parallel Extension

Up until this point we have not really talked about the parallel constructs available in INSPIRE. This
extension covers the relevant primitives. At the most fine grained level INSPIRE provides parallelism
by allowing multiple threads to be spawned at once, resulting in a thread group and joining them later
on. The thread group is always tasked with a specific job. Basic identification queries like getting
the index of the current thread in a group and getting the overall group size are available. Common
parallel directives like barriers, mutexes and atomics are provided as well.
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Operator / Type Description

ref_alloc
(type<'a>, memloc) -> ref<'a,f,f>

Allocates memory for an object of given type at a
given memory location.

ref_decl
(type<ref<'a,'c,'v,'k>>)

-> ref<'a,'c,'v,'k>

References memory allocated in a surrounding dec-
laration context.

ref_delete
(ref<'a,f,'v>) -> unit

Frees memory of the given reference.

ref_deref
(ref<'a,'c,'v,'k>) -> 'a

Used to obtain the data stored in the memory loca-
tion linked to the given reference.

ref_assign
(ref<'a,'c,'v,'k>, 'a) -> unit

Used to update the value stored in the memory loca-
tion linked to the given reference.

ref_reinterpret
(ref<'a,'c,'v,'k>, type('b))

-> ref<'b,'c,'v,'k>

A reinterpret cast altering the actual interpretation
of the referenced memory cell.

ref_narrow
(ref<'a,'c,'v,'k>, datapath<'a,'b>)

-> ref<'b,'c,'v,'k>

Obtain a reference to a sub-object within a refer-
enced object.

ref_expand
(ref<'b,'c,'v,'k>, datapath<'a,'b>)

-> ref<'a,'c,'v,'k>

The inverse operation to ref_narrow.

ref_null
(type<'a>, type<'a>, type<'v>)

-> ref<'a,'c,'v,plain>

Creates a null-reference pointing to no memory lo-
cation.

ref_cast
(ref<'a,'c,'v,'k>, type<'nc>, type<'nv>,

type<'nk>)

-> ref<'a,'nc,'nv,'nk>

A simple reference cast merely altering the view on
the otherwise untouched memory location.

Table 4.: Abstract operators defined by the reference language extension.

Operator / Type Description

ref_new
(type<'a>) -> ref<'a,f,f>

Allocates memory for an object of given
type on the heap by using ref_alloc.

ref_array_element
(ref<array<'a,'s>,'c,'v,plain, int<8>)

-> ref<'a,'c,'v,plain>

Provides access to an element in an array
by using ref_narrow.

ref_member_access
(ref<'a,'c,'v,'k>, identifier, type<'b>)

-> ref<'b,'c,'v,plain>

Provides access to an element of a struct
/ union by using ref_narrow.

ref_scalar_to_array
(ref<'a,'c,'v,plain>)

-> ref<array<'a>,'c,'v,plain>

A reference-navigation operator provid-
ing an array view on a scalar using
ref_expand.

Table 5.: Derived operators defined by the reference language extension.
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This extensions will by investigated further as it is not relevant to this work.

File: code/core/include/insieme/core/lang/parallel.h

3.4. Semantics

In this section we look at some example input codes, and compare them to the corresponding IN-
SPIRE representations.

Empty Program

Below you can see the C++ input program on the left, the corresponding INSPIRE pretty printer
output on the right and the simplified tree structure below. Omissions are indicated by an ellipsis.

1 int main() {

2 return 0;

3 }

1 decl IMP_main : () -> int<4>;

2 // Inspire Program

3 int<4> function IMP_main (){

4 return 0;

5 }

1 (Program |

2 (LambdaExpr |

3 (FunctionType | ... )

4 (LambdaReference |

5 (FunctionType | ...)

6 (StringValue "IMP_main"))

7 (LambdaDefinition |

8 (LambdaBinding |

9 (LambdaReference | ... )

10 (Lambda |

11 (FunctionType | ... )

12 (Parameters )

13 (CompoundStmt |

14 (ReturnStmt | ... )))))))

Listing 3: inspire_semantics/empty.{cpp,ir,tree}

The pretty printer output starts off with a declaration of the function IMP_main, here IMP stands for
Insieme Mangling Prefix. It is followed by the definition of IMP_main. () -> int<4> is the type of
IMP_main and states that no parameters are taken and an integer of 4 bytes is returned.

In the tree structure we see that the root node is a Program containing a LambdaExpr. Every function
in the input code is translated to a lambda in INSPIRE (unless inlined). The lambda is composed
of LambdaExpr, LambdaReference, LambdaDefinition, LambdaBinding and finally Lambda nodes.
The Lambda node holds the CompoundStmt of the main function with its single ReturnStmt. Note
that there are no Declarations in the actual IR structure. The Declaration seen in the pretty print is a
presentation artefact. So are comments.

Variable Declaration

Next we define a single integer variable and observe the resulting INSPIRE output.
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1 int main() {

2 int i = 42;

3 return 0;

4 }

1 decl IMP_main : () -> int<4>;

2 // Inspire Program

3 int<4> function IMP_main (){

4 var ref<int<4>,f,f,plain> v1 = 42;

5 return 0;

6 }

1 (Program | ...

2 (CompoundStmt |

3 (DeclarationStmt |

4 (Declaration |

5 (GenericType | ... )

6 (Literal |

7 (GenericType | ... )

8 (StringValue "42")))

9 (Variable |

10 (GenericType | ... )

11 (UIntValue 1)))

12 (ReturnStmt | ... ))...)

Listing 4: inspire_semantics/decl.{cpp,ir,tree}

The original variable i gets translated to v1 of type ref<int<4>,f,f,plain>, meaning it is a plain1
reference to an integer. The reference is neither const nor volatile.

The DeclarationStmt creates an uninitialised memory location for a 4 byte integer on the stack. It is
automatically destroyed when the reference goes out of scope. The value 42 is used to initialise the
memory location created by the Declaration, which ends up being referenced by v1. All variables are
indexed by natural numbers. In our case it receives an id of 1.

Basic Arithmetic

Now we add some basic arithmetic by multiplying two integer variables.

1A reference might either be plain, cpp_ref, or cpp_rref depending on its C++ semantic.
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1 int main() {

2 int a = 2;

3 int b = 3;

4 int c = a * b;

5 return 0;

6 }

1 decl IMP_main : () -> int<4>;

2 // Inspire Program

3 int<4> function IMP_main (){

4 var ref<int<4>,f,f,plain> v1 = 2;

5 var ref<int<4>,f,f,plain> v2 = 3;

6 var ref<int<4>,f,f,plain> v3 = (*v1) * (*v2);

7 return 0;

8 }

1 (Program | ...

2 (CompoundStmt |

3 (DeclarationStmt | ... )

4 (DeclarationStmt | ... )

5 (DeclarationStmt |

6 (Declaration |

7 (GenericType | ... )

8 (CallExpr |

9 (GenericType | ... )

10 (Literal |

11 (FunctionType | ... )

12 (StringValue "int_mul"))

13 (Declaration |

14 (GenericType | ... )

15 (CallExpr |

16 (GenericType | ... )

17 (Literal |

18 (FunctionType | ... )

19 (StringValue "ref_deref"))

20 (Declaration |

21 (GenericType | ... )

22 (Variable |

23 (GenericType | ... )

24 (UIntValue 1)))))

25 (Declaration |

26 (GenericType | ... )

27 (CallExpr |

28 (GenericType | ... )

29 (Literal |

30 (FunctionType | ... )

31 (StringValue "ref_deref"))

32 (Declaration |

33 (GenericType | ... )

34 (Variable |

35 (GenericType | ... )

36 (UIntValue 2)))))))

37 (Variable |

38 (GenericType | ... )

39 (UIntValue 3)))

40 (ReturnStmt | ... ))...)

Listing 5: inspire_semantics/mul.{cpp,ir,tree}

Again, the variables a and b are translated to v1 and v2 respectively, referencing memory locations
storing their corresponding integer value. When multiplying the referenced value, we need to deref-
erence first using the dereference operator *. In C/C++ this variable-dereferencing is implicit, while
in INSPIRE those steps are explicit.

Multiplication and dereferencing are part of the arithmetic and reference extension. They are provided
as operators and can be called via CallExpr.

In the CompoundStmt (line 2 in mul.tree) we see two DeclarationStmts on top. They contain the
same structure as in the previous example. The third DeclarationStmt, on the other hand, holds two
CallExpr (lines 15 and 27 in mul.tree) for dereferencing the variables v1 and v2 and another CallExpr
(line 8 in mul.tree) for multiplying the two referenced integer values.
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Function Call

Let us investigate how parameters and return values are passed. We therefore call a function square

passing in an integer parameter and receive the squared value as return.

1 int square(int x) {

2 return x * x;

3 }

4

5 int main() {

6 int i = square(3);

7 return 0;

8 }

1 decl IMP_main : () -> int<4>;

2 decl IMP_square : (int<4>) -> int<4>;

3 def IMP_square = function (v1 : ref<int<4>,f,f,plain>)

4 -> int<4> {

5 return (*v1) * (*v1);

6 };

7 // Inspire Program

8 int<4> function IMP_main (){

9 var ref<int<4>,f,f,plain> v2 = IMP_square(3);

10 return 0;

11 }

1 (Program | ...

2 (CompoundStmt |

3 (DeclarationStmt |

4 (Declaration |

5 (GenericType | ... )

6 (CallExpr |

7 (GenericType | ... )

8 (LambdaExpr |

9 (FunctionType | ... )

10 (LambdaReference | ... )

11 (LambdaDefinition |

12 (LambdaBinding |

13 (LambdaReference | ... )

14 (Lambda |

15 (FunctionType | ... )

16 (Parameters |

17 (Variable |

18 (GenericType | ... )

19 (UIntValue 1)))

20 (CompoundStmt |

21 (ReturnStmt |

22 (Declaration | ... )))))))

23 (Declaration |

24 (GenericType | ... )

25 (Literal |

26 (GenericType | ... )

27 (StringValue "3")))))

28 (Variable |

29 (GenericType | ... )

30 (UIntValue 2)))

31 (ReturnStmt | ... ))...)

Listing 6: inspire_semantics/call.{cpp,ir,tree}

In addition to the IMP_main declaration we now also have a declaration of IMP_square receiving and
returning an int<4>. In the function definition the variable v1 references the passed-in value. Note
that since C/C++ is implicitly allocating memory for parameters passed by value, the parameter type
is actually ref<int<4>,f,f,plain> instead of int<4>.

In the Abstract Syntax Tree (AST), the CallExpr (line 6 in call.tree) directly contains the Lambda-
Expr (line 8 in call.tree) holding the translated IMP_square function plus the argument to the func-
tion, in this case the literal 3 (line 25 in call.tree). The list of Declarations (line 23 in call.tree) in
CallExpr reflects the arguments of the call. The IMP_square function’s body is composed of a Com-
poundStmt (line 20 in call.tree) with a single ReturnStmt (line 21 in call.tree). The squaring of
values happens inside the Declaration (line 22 in call.tree) like shown in the previous example.
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For Loop

This example is given to illustrate the use of ForStmt.

1 int main() {

2 int sum = 0;

3 for (int i = 0; i < 10; i++) {

4 sum += i;

5 }

6 return 0;

7 }

1 decl IMP_main : () -> int<4>;

2 // Inspire Program

3 int<4> function IMP_main (){

4 var ref<int<4>,f,f,plain> v1 = 0;

5 {

6 for( int<4> v20 = 0 .. 10 : 1) {

7 comp_assign_add(v1, v20);

8 }

9 }

10 return 0;

11 }

1 (Program | ...

2 (CompoundStmt |

3 (DeclarationStmt |

4 (Declaration | ... )

5 (Variable |

6 (GenericType | ... )

7 (UIntValue 1)))

8 (CompoundStmt |

9 (ForStmt |

10 (DeclarationStmt |

11 (Declaration |

12 (GenericType | ... )

13 (Literal |

14 (GenericType | ... )

15 (StringValue "0")))

16 (Variable |

17 (GenericType | ... )

18 (UIntValue 20)))

19 (Literal |

20 (GenericType | ... )

21 (StringValue "10"))

22 (Literal |

23 (GenericType | ... )

24 (StringValue "1"))

25 (CompoundStmt |

26 (CallExpr |

27 (GenericType | ... )

28 (LambdaExpr |

29 (FunctionType | ... )

30 (LambdaReference |

31 (FunctionType | ... )

32 (StringValue "comp_assign_add"))

33 (LambdaDefinition | ... ))

34 (Declaration |

35 (GenericType | ... )

36 (Variable |

37 (GenericType | ... )

38 (UIntValue 1)))

39 (Declaration |

40 (GenericType | ... )

41 (Variable |

42 (GenericType | ... )

43 (UIntValue 20)))))))

44 (ReturnStmt | ... ))...)

Listing 7: inspire_semantics/for.{cpp,ir,tree}

The ForStmt models a range-based for-loop with its beginning, end, and step size. The compound
assignment operator += inside the for-loop is translated to the comp_assign_add derived operator.

For simplicity the Insieme frontend is translating every for-loop into a while-loop in a first step, before
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attempting to restore for-loops qualifying as range-based loops.

When the original for-loop was translated to aWhileStmt, it was placed in a new CompoundStmt (line
8 in for.tree) to account for the scoping of the index variable. This CompoundStmt remains even
after theWhileStmt has been converted to a ForStmt. The ForStmt consists of a DeclarationStmt (line
10 in for.tree) initialising the loop index, two literals (lines 19 and 22 in for.tree) for marking the
end and stepsize, and finally a CompoundStmt for the translated body of the original for-loop (line
25 in for.tree. Here it contains the call to the comp_assign_add operator (line 26 in for.tree).

The derived operator comp_assign_add is a lambda, including an implementation defining its semantic
by combining other primitives.

3.5. Haskell-based Analysis Toolkit
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Figure 7.: Simplified architecture of HAT, interfacing with Insieme.

In Figure 7 we see a slightly simplified design of HAT. At the top we can see Insieme with its basic
structure and beneath it the Adapter module attaching the toolkit to the High Level Optimiser. The
INSPIRE module is responsible for holding an input program and providing queries to specific parts
of the underlying data structure. The analysis module, here titled CBA, can be divided into three
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submodules. Note that the architecture may evolve over time and certain parts of the module layout
may be revisited in the future. This document describes the state of the toolkit at the time of writing
(February 2017).

Adapter The adapter is the only module of the toolkit existing in both, the C++ and Haskell domain
of Insieme. It therefore bridges these two worlds via a foreign function interface. Data, relevant for
the analysis, can be passed in both directions. Typically, an INSPIRE representation of an input
program is transferred to the toolkit plus the information what analysis should be run on which part
of the program. After the analysis has been completed the result may be transferred back to the C++
domain. Depending on the chosen analysis, the result can have many different formats (see analyses
presented in Section 4.10).

Utilities The two interesting submodules in Utils are Arithmetic and BoundSet. Arithmetic pro-
vides a data structure for simple arithmetic formulas, which can be combined using basic arithmetic
operations. BoundSet is also a data structure, similar to the regular Data.Set found in Haskell’s con-
tainers package1. The main difference is that you can set an upper limit on how many elements the
set can hold. Upon adding another element, that is not already a member of the set, the set turns
into Universe representing every possible value of the domain. This mechanism is required for some
property spaces to ensure corresponding analyses to terminate.

INSPIRE The input program, represented in INSPIRE, is transferred to the toolkit through a binary
export. The INSPIREmodule maintains a BinaryParser which takes the binary encoding as input and
creates a representation of it, in the form of a rose tree, in Haskell. The related concepts of node paths
and node addresses are translated as well and a collection of queries eases working with the tree.

A rose tree is defined as a tree where each node can have a variable number of children. The most
basic definition looks like this (in Haskell):

data Tree a = Node a [Tree a]

Framework During an analysis the toolkit constructs additional data structures which expose crit-
ical information for analyses. These data structures include INSPIRE, Program Points, and Memory
State information but can be extended as needed. The framework is responsible for elevating a user
defined analysis to declarations, parameter and return value passing, closures, calls to unknown ex-
ternal functions, inter-procedural analyses and memory locations automatically. This is illustrated in
Chapter 5 and achieved via the use of base analyses.

Base Analyses The generic Data-Flow Analysis (DFA), part of the framework, not only utilises
multiple of these specialised analyses, but the Base Analysis themselves are specialisations of the
generic DFA. Therefore the Base Analyses and Framework module depend on each other. These
Base Analyses are necessary to correctly deduce the control flow of a program. For instance, the
Arithmetic and Boolean value analysis are important for branches and loops, while Callable is vital
for inter-procedural analyses.

1https://hackage.haskell.org/package/containers
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User Analyses Last but not least, user defined analyses build on top of the framework. While the
illustration shows them combined into a single module, this is not necessary. How complex these
analyses are is left to the user and we will see how Array Bounds Checking is realised later on in
Chapter 5. Note that the framework imposes only few restrictions on what the property space can be.
The downside of this feature is that the adapter needs to be extended in some cases. Otherwise the
result cannot be used outside the Haskell domain.
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Now, that our stage has been properly decorated with the required background knowledge and a grand
overview, we can dive into the actual implementation of the framework.

First we take a look at the build infrastructure and the adapter used for communication between
Haskell and C++. The modelling of the INSieme Parallel Intermediate REpresentation (INSPIRE)
in Haskell follows. The fixpoint solver; together with modelling of arrays, structures, and unions;
program points; and memory state is presented next. The final part investigates the base analyses
required and provided by the framework.

4.1. Build Process

First, we examine the build process. Remember that the Adapter module exists in both, the Haskell
and C/C++ domain, as it bridges the gap between them. Because of this, we do not solely rely on
the Haskell Stack1 build tool but also on CMake2, utilised by Insieme. For Insieme’s fully auto-
mated build process, CMake invokes Haskell Stack with the required parameters to build the Haskell
modules of the toolkit.

4.1.1. Compiling HAT into a Library

Haskell Stack is not only designed for automating the build process of Haskell packages, but also
serves as a package manager to download, build and install third-party packages. Packages for this
mechanism are hosted on Stackage3 in different versions. Furthermore Haskell Stack also sets up a
suitable compiler for the chosen release. On Stackage a release, like lts-7.0, groups together a set of
packages, a specific version for each of these packages, and a specific version of the Glasgow Haskell
Compiler (GHC).

In our case we are using the release lts-6.17 which brings GHC-7.10.3 along. This release contains
almost all packages we need, except attoparsec-binary4 and directory5. Fortunately, Haskell Stack
allows us to specify these requirements in the corresponding config file (stack.yaml) where we also
state which release we are using. When specifying these extra dependencies, we also need to supply
a specific version for each of them. In our case the entries are attoparsec-binary-0.2 and directory-

1.2.6.3.

Haskell Stack downloads all required packages and the Haskell compiler into a directory referred to as
Stack Root. By default this is a folder named .stack inside the home-directory of the user invoking

1https://www.haskellstack.org
2https://cmake.org
3https://www.stackage.org
4https://www.stackage.org/package/attoparsec-binary
5https://www.stackage.org/package/directory
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the Haskell Stack binary stack. This default setting can be overwritten by setting the STACK_ROOT

environment variable when executing stack. The version of stack we are currently using (1.0.4)
turned out to be quite picky about the ownership of the directory containing the Stack Root folder. If
the directory belongs to a different user than the one invoking stack, it complains – even though the
user has sufficient permissions to create the Stack Root folder.

A pre-compiled binary for Haskell Stack is available for common distributions and allows one to use
it without having any Haskell related stuff installed. The only dependencies are the GNU Multiple
Precision (GMP) and zlib libraries, which are widely available for any Linux based platform.

4.1.2. Linking the Shared Libraries

Stack itself is capable of building a shared library out of a Haskell project. Typically each third-party
package is built as a shared library and so is the Haskell-based Analysis Toolkit (HAT). The library
resulting from HAT, named libHSinsieme-hat-0.2.so, depends on the shared libraries of the third-
party packages. Furthermore, neither the shared library of HAT nor any of the other third-parties
contain the Haskell runtime environment. We therefore need to link the shared library libHSrts-

ghc7.10.3.so containing the runtime explicitly when building Insieme.

During this process we discovered that Stack, at least in the version used, strips symbols, which are
required for the linking process, from a shared library. It is therefore required to patch Haskell Stack,
and hence remove this behaviour, since there was no option provided to prevent this from happening.
The patch can be viewed in Listing 8 and shows that the only change needed is to pass the --disable-
library-stripping flag to the Cabal1 library. The Cabal library is responsible for the compilation
process and used by Stack. Luckily Insieme comes with a dependencies installer capable of building
third-party software from source and injecting patches.

1 --- a/src/Stack/Types/Build.hs

2 +++ b/src/Stack/Types/Build.hs

3 @@ -606,6 +606,7 @@ configureOptsNoDir :: EnvConfig

4 -> [String]

5 configureOptsNoDir econfig bco deps wanted isLocal package = concat

6 [ depOptions

7 + , ["--disable-library-stripping"]

8 , ["--enable-library-profiling" | boptsLibProfile bopts || boptsExeProfile bopts]

9 , ["--enable-executable-profiling" | boptsExeProfile bopts && isLocal]

10 , ["--enable-split-objs" | boptsSplitObjs bopts]

Listing 8: Patch for Haskell Stack preventing stripping of symbols from shared libraries.

A different issue, mainly arising from the way CMake operates, is finding the resulting shared library.
Files generated during the build process, as well as the output files, are placed inside a folder named
.stack-work inside the project directory. In our case the wanted shared library is located at

.stack-work/dist/x86_64-linux/Cabal-1.22.5.0/build/libHSinsieme-hat-0.2-7YeplHX5wtl1qxdm

3bLxLA-ghc7.10.3.so.

Yet, the .stack-work directory does not exist prior to the build process and certain meta information
is encoded in the path. Among architecture (x86_64), Cabal library version (1.22.5.0), and GHC

1https://www.haskell.org/cabal
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version (7.10.3), a so-called package key1 (7YeplHX5wtl1qxdm3bLxLA) is present. This package key
is a hash of the package name, package version, and its dependencies. It is therefore very likely to
change during development. CMake requires one to explicitly state the name of a shared library for
linking plus its location, which must be known during the CMake run – before building the library.
In our case, since the file name is likely to change, a workaround has been put into place. A script
named copyLibs.hs is executed by CMake after invoking stack, which finds the shared library inside
the .stack-work directory using a glob2 and copies it to CMake’s build directory of HAT. Version
and package key are stripped resulting in the file name libHSinsieme-hat.so.

Now linking this shared library can be stated explicitly in the CMake configuration, but the linker
proofs to be to smart for our con. The original file name (containing version and package key) is
present inside the shared library’s meta data3 which is used by the linker. The linker now complains
that it cannot find the file with this name – so we need another workaround for the workaround. This is
achieved by copying the library to the build directory not only once, but twice. Once with the version
and package key stripped from the file name so we can state it in the CMake configuration and once
without anything stripped so the linker finds the correct file. This is to be found in the following file
of the Insieme code base:

File: code/analysis/src/cba/haskell/insieme-hat/CMakeLists.txt

4.2. Adapter

The Adapter is responsible for attaching HAT to the Insieme compiler. It therefore consists of Haskell,
as well as, C/C++ code. Through the use of a Foreign Function Interface (FFI) data can be transferred
between the two domains. This works by exporting Haskell and C++ function in such a way that they
can be linked and called like regular C functions. It follows that the names are not mangled and the
platform’s default C calling convention4 is used for these functions.

4.2.1. Foreign Function Interface

Both languages provide a simple mechanism to export functions for FFI. Two examples, one for C++
(left) and one for Haskell (right) are given.

1 #include <iostream>

2

3 extern "C" {

4 void hello_world(void) {

5 std::cout << "Hello World"

6 << std::endl;

7 }

8 }

1 {-# LANGUAGE ForeignFunctionInterface #-}

2

3 foreign export ccall "hello_world"

4 helloWorld :: IO ()

5

6 helloWorld = putStrLn "Hello World"

In C++ the directive extern "C" is all that is required to export the function correctly. In the Haskell
domain we first have to declare that we are using the FFI language extension in the first line. Next,
in addition to a regular function definition (line 6) we declare that a function should be exported
using C calling convention (ccall) and with the symbol hello_world in line 3. The following line

1https://ghc.haskell.org/trac/ghc/wiki/Commentary/Packages/Concepts
2https://en.wikipedia.org/wiki/Glob_(programming)
3see Executable and Linkable Format (ELF)
4https://en.wikipedia.org/wiki/Calling_convention
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(4) belongs to that FFI declaration and states which Haskell function is to be exported, including the
type signature of that function. Note that all functions exported via the FFI live in the IO monad.

That alone is quite nice, but not very useful. We also require to import a function exposed via the
FFI. The following code does exactly that.

1 extern "C" {

2 void hello_world(void);

3 }

1 {-# LANGUAGE ForeignFunctionInterface #-}

2

3 foreign import ccall "hello_world"

4 helloWorld :: IO ()

In C++we just need to wrap the function declaration inside extern "C". For Haskell instead of export
we now use import followed by stating C calling convention and the name of the symbol to import.
The following line (4) states under which name that function is made available in Haskell and which
type signature it has.

While this example does not illustrate data being transferred between the two domains, it shows the
basic structure of building an FFI. Primitives1 can be passed back and forth just like regular function
parameters / return values. Haskell’s Foreign.Ptr and Foreign.C.Typesmodules contain the relevant
types for sending and receiving data over the FFI. Additionally the module Foreign.C.String is
dedicated to transferring C strings.

In this context we have two different types of pointers, depending on where the target pointed to is
located. If the pointer refers to an object living in the C++ domain we use the generic type Ptr a in
Haskell. When exposing a pointer to a Haskell object2 we use StablePtr a. The function

newStablePtr :: a -> IO (StablePtr a)

gives us a pointer to a Haskell object and marks the object as stable, meaning it will not be moved
or deallocated by the garbage collector. Similar to dynamic memory management, we later have
to un-stable the object by calling freeStablePtr. Note that the pointers can be passed back and
forth between the two domains as needed. To dereference a pointer in Haskell one can either use
deRefStablePtr or peek depending on the type.

Most of the time we do not use peek directly. Since working with arrays and strings is quite common,
Haskell serves us some convenience functions like peekArray and withArrayLen for reading, and
pokeArray for writing.

Despite the fact thatmarshalling3 can be done in Haskell, we do not use it in the framework. INSPIRE,
being the most complex data structure transferred from C++ to Haskell, is exported to its binary
format, which is then parsed into a rose tree (see Section 3.5). To pass complex data structures from
Haskell to C++, we first recreate the data structure in C++ and export its constructor(s) via FFI. An
example of this is provided in the Arithmetic module (Section 4.4.2).

4.2.2. Haskell RunTime System

In order to use Haskell in a C++ project, like Insieme, we not only have to link together all the correct
parts and use a correct FFI. We also have to initiate (and tear down) the Haskell RunTime System
(Haskell RTS). The two functions hs_init and hs_exit fulfil this functionality, where the initialise

1integers, doubles and pointers
2By Haskell object in C++ we actually mean an instantiated Algebraic Data Type (ADT)
3https://en.wikipedia.org/wiki/Marshalling_(computer_science)
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function optionally takes arguments which are then passed to the Haskell RTS. Since GHC does no
longer support calling hs_exit from a non-static object’s destructor, the Haskell RTS is initialised
and terminated by a static object. No arguments are passed to the runtime.

1 extern "C" {

2 void hs_init(int*, const char**[]);

3 void hs_exit(void);

4 }

5

6 class Runtime {

7 public:

8 Runtime() { hs_init(nullptr, nullptr); }

9 ~Runtime() { hs_exit(); }

10 } rt;

File: code/analysis/src/cba/haskell/runtime.cpp

4.2.3. Context

For easier interaction between the two domains a context is established. This context consists of a
Haskell object and a C++ object which are linked to each other by pointers. We will see its benefits
when talking about the Intermediate Representation (IR) components in Section 4.3.

On the Haskell end, the context is used to retain a received INSPIRE program and the solver’s state.
Holding on to the solver’s state is important to reuse already computed information for new analysis
runs. When using the toolkit without the Insieme compiler, this context can still be used by setting
the reference to its corresponding C++ object to nullPtr. By allowing for this dummy context we do
not require an additional interface for the toolkit because it is used without Insieme.

4.3. IR Components

Next, we take a look at the components relevant to model INSPIRE. The bottom layer is composed
of the node types and a rose tree. Node addresses, visitors and queries build upon this. An INSPIRE
program is converted to its binary representation (using Insieme’s binary dumper) and passed to the
toolkit via the FFI. The binary dump’s format can be inferred manually from the Insieme source
code1. Relevant parts are covered in the presentation of the binary parser.

The binary dump, representing an INSPIRE program also comes with a list that states operators used
by that program together with a node address pointing to the function describing it.

4.3.1. Node Types

The full set of node types is defined in the ir_nodes.def file of the Insieme core. It is processed
via the use of the C pre-processor to construct an enum holding all node types, which is then used
by Insieme. Luckily we also have the option to process such a file in Haskell using c2hs2. With

1code/core/src/dump/binary_dump.cpp
2https://github.com/haskell/c2hs
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this tool, we can get a full list of available node types in exactly the same order as the Insieme core
does. Maintaining the order is important since the binary dump simply uses the index in this enum
for communicating the node type. Yet we do not use this enum directly. What we seek is something
like this:

1 data NodeType = BoolValue Bool

2 | CharValue Char

3 | IntValue Int

4 | UIntValue Int

5 | StringValue String

6 | CompoundStmt

7 | IfStmt

8 | WhileStmt

9 | CompoundStmt

10 -- | ...

This data structure is a list of all possible node types, where the value nodes have their value already
attached. With this approach we run into two problems. First, we cannot derive this exact type
definition from ir_nodes.def using c2hs. Second, we cannot let the compiler derive an enum instance
for this data structure. To circumvent these two problems we have to resort to Template Haskell (TH).
TH offers a way tomodify the Haskell syntax tree prior to compilation – it is basically a pre-process.

First the ir_nodes.def file gets included filling a C enum that is then converted to Haskell using
c2hs. All entries of this enum are prefixed with NT_. Based on this enum TH is used to define a data
structure NodeType similar to the enum and two functions fromNodeType and toNodeType. NodeType is
composed of all node types (without the NT_ prefix) and value nodes have their corresponding value
attached to them. This is exactly the data structure we want.

File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Inspire/NodeType.chs

4.3.2. Node Path

type NodePath = [Int]

A node path is a list of child indices describing a path along the tree starting at some node. It is
commonly used to reference a node in INSPIRE. Each index tells you which child to go to next. You
have reached the target upon depleting the list.

File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Inspire/NodeAddress.hs

4.3.3. Binary Parser

The binary parser of the Inspire module builds upon Attoparsec1, which is a library for constructing
combinator parsers. Together with the attoparsec-binary2 package it becomes quite easy to build
a binary parser for the INSPIRE export. The binary dump is mainly composed of three differently

1https://hackage.haskell.org/package/attoparsec
2https://hackage.haskell.org/package/attoparsec-binary
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sized integer types and strings. We therefore define ourselves the following parser combinators.

1 anyInt8 :: Parser Int

2 anyInt8 = fromIntegral <$> anyWord8

3

4 anyInt16 :: Parser Int

5 anyInt16 = fromIntegral <$> anyWord16le

6

7 anyInt32 :: Parser Int

8 anyInt32 = fromIntegral <$> anyWord32le

9

10 parseString :: Parser String

11 parseString = liftM BS8.unpack $ take =<< anyInt32

Integers larger than one byte are dumped in little endian1, while strings are always prefixed with their
length and do not contain a terminator.

The header of the binary dump starts with themagic number 0x494e5350495245 and a list of converters.
Like strings, lists are prefixed with the number of elements. Converters are only relevant when using
annotations attached to the INSPIRE program and since we do not use them, they are discarded by
the main parser. The header is parsed with this set of combinators.

1 parseHeader :: Parser [String]

2 parseHeader = parseMagicNr *> parseConverters

3

4 parseMagicNr :: Parser Word64

5 parseMagicNr = word64le 0x494e5350495245

6 <|> fail "wrong magic number"

7

8 parseConverter :: Parser String

9 parseConverter = parseString

10

11 parseConverters :: Parser [String]

12 parseConverters = do

13 n <- anyInt32

14 count n parseConverter

The main part of the binary dump – the encoding of the IR nodes – is a list of nodes, where each node
starts with an integer encoding its type. If the node is a value node, the value follows, otherwise a
list of integers follows telling us the node’s children. The integers are list indices referring to other
nodes in the same list. Each node can be followed by a list of annotations which is discarded by our
parser. We first parse the whole list of nodes from the dump to create an integer map of, so called,
DumpNodes, where the key is the corresponding index in the list. A DumpNode is a node where child
nodes are referenced through indices, instead of actual nodes. The following code parses a single

1https://en.wikipedia.org/wiki/Endianness
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DumpNode.

1 data DumpNode = DumpNode IR.NodeType [Int]

2

3 parseDumpNode :: Parser DumpNode

4 parseDumpNode = do

5 -- get node type

6 t <- toEnum <$> anyInt16

7

8 -- create corresponding node

9 n <- case t of

10 -- value nodes

11 IR.NT_BoolValue -> DumpNode <$> IR.BoolValue <$> (/=0) <$> anyInt8 <*> pure []

12 IR.NT_CharValue -> DumpNode <$> IR.CharValue <$> chr <$> anyInt8 <*> pure []

13 IR.NT_IntValue -> DumpNode <$> IR.IntValue <$> anyInt32 <*> pure []

14 IR.NT_UIntValue -> DumpNode <$> IR.UIntValue <$> anyInt32 <*> pure []

15 IR.NT_StringValue -> DumpNode <$> IR.StringValue <$> parseString <*> pure []

16

17 -- other nodes

18 _ -> do

19 c <- anyInt32

20 is <- count c anyInt32

21 return $ DumpNode (IR.fromNodeType t) (fromIntegral <$> is)

22

23 -- skip annotations

24 a <- anyInt32

25 count a anyWord64le

26

27 return $ n

After this phase is completed, the DumpNodes are gradually converted into a single rose tree. The first
node, the one with index zero, marks the root of the tree. Nodes may be referenced by the indices
multiple times, yet it is important to construct a node only once and reuse already constructed ones.
Otherwise we end up with multiple instances of the same node in memory, wasting not only a big
amount of space, but also a lot of time when checking for equality later on. This concept is referred
to as node sharing and, while Haskell does not offer us a way to handle references explicitly, we can
deal with them by carefully using the constructor and already defined nodes. Each constructed node
is temporarily stored using the State monad and a map during the construction of the rose tree.

1 connectDumpNodes :: IntMap.IntMap DumpNode -> IR.Tree

2 connectDumpNodes dumpNodes = evalState (go 0) IntMap.empty

3 where

4 go :: Int -> State (IntMap.IntMap IR.Tree) IR.Tree

5 go index = do

6 memo <- get

7 case IntMap.lookup index memo of

8 Just n -> return n

9 Nothing -> do

10 let (DumpNode irnode is) = dumpNodes IntMap.! index

11 children <- mapM go is

12 let n = IR.mkNode index irnode children []

13 modify (IntMap.insert index n)

14 return n

Now that we have the rose tree representing the received INSPIRE program we still need to do one
slight modification. We go over each node one more time and attach information about operators (ie
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language extensions). This step is done by the function markBuiltins in line 15 (next code snippet).
As already mentioned, after the binary dump of the INSPIRE program, a list of node paths addressing
operators is provided by the binary dump.

We now have all the parts to construct the complete binary parser. The function parseBinaryDump

combines what we have established in this section. It takes the whole binary dump as input and
returns either the constructed rose tree or an error message.

1 parseBinaryDump :: BS.ByteString -> Either String IR.Tree

2 parseBinaryDump = parseOnly $ do

3 -- parse components

4 parseHeader

5 n <- anyInt32

6 dumpNodes <- IntMap.fromList <$> zip [0..] <$> count n parseDumpNode

7 m <- anyInt32

8 dumpBuiltins <- Map.fromList <$> count m parseBuiltin

9 l <- anyInt32

10 paths <- count l parseNodePath

11

12 -- connect components

13 let root = connectDumpNodes dumpNodes

14 let builtins = resolve root <$> dumpBuiltins

15 let ir = markBuiltins root builtins

16

17 return ir

18

19 where

20 resolve :: IR.Tree -> [Int] -> IR.Tree

21 resolve node [] = node

22 resolve node (x:xs) = resolve (IR.getChildren node !! x) xs

File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Inspire/BinaryParser.hs

Let us now take a final look at the adapter to see how this parser is used.

1 foreign export ccall "hat_initialize_context"

2 initializeContext :: Ctx.CContext -> CString -> CSize -> IO (StablePtr Ctx.Context)

3

4 initializeContext context_c dump_c size_c = do

5 dump <- BS8.packCStringLen (dump_c, fromIntegral size_c)

6 let Right ir = BinPar.parseBinaryDump dump

7 newStablePtr $ Ctx.mkContext context_c ir

Upon setting up a context, the Haskell side receives a reference to the corresponding C++ object
(Ctx.CContext) and the binary dump in form of a byte array (plus its length). This array is packed –
necessary so the parser can work with it – and then parsed. The result is our rose tree. This allows
us to setup an analysis context in Haskell.

File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Adapter.hs
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4.3.4. Rose Tree – HAT’s INSPIRE Representation

We start this subsection off with a look at the definition of HAT’s IR tree.

1 data Tree = Tree { getID :: Int

2 , getNodeType :: NodeType

3 , getChildren :: [Tree]

4 , builtinTags :: [String]

5 }

6

7 instance Eq Tree where

8 (==) = (==) `on` getID

9

10 instance Ord Tree where

11 compare = compare `on` getID

Each instance of this data structure represents one node and we refer to the whole tree by the root
node. Furthermore, each node is uniquely identified by an id which eases the definition of ordering
and equality (lines 7–11). From the binary parser we simply use the list index of a node as id. We
can see each node has a node type, which in case of being a value node also contains the value. Next
we have the list of children, followed by a List of tags marking subtrees as being operators.

This data structure corresponds to Insieme’s NodePtr in C++.

File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Inspire.hs

4.3.5. Node Address

A node address is basically defined as a node path plus a root node. Since we are working a lot with
node addresses during an analysis we attach more information to these instances for faster access to
relevant data. The definition follows.

1 data NodeAddress = NodeAddress { getPathReversed :: NodePath

2 , getNode :: IR.Tree

3 , getParent :: Maybe NodeAddress

4 , getRoot :: IR.Tree

5 , getAbsoluteRootPath :: NodePath

6 }

The first thing to notice is that the node path is actually stored in reverse. The main reason for this is
to speed up the common case of creating node addresses of children, given their parent.

Next we have three references, one to the addressed node, an optional one pointing to the parent node
address (Nothing in case of being the root node address) and a reference to the root.

The absolute node path was introduced some time later during development. Together with the func-
tions append and crop one can create node addresses with roots different than the one of the original
tree.

For transferring node addresses between C++ and Haskell the following two functions are exposed
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by the adapter.

1 foreign export ccall "hat_mk_node_address"

2 mkNodeAddress :: StablePtr Ctx.Context -> Ptr CSize -> CSize

3 -> IO (StablePtr Addr.NodeAddress)

4

5 mkNodeAddress ctx_hs path_c length_c = do

6 ctx <- deRefStablePtr ctx_hs

7 path <- peekArray (fromIntegral length_c) path_c

8 newStablePtr $ Addr.mkNodeAddress (fromIntegral <$> path) (Ctx.getTree ctx)

9

10 foreign export ccall "hat_node_path_poke"

11 nodePathPoke :: StablePtr Addr.NodeAddress -> Ptr CSize -> IO ()

12

13 nodePathPoke addr_hs path_c = do

14 addr <- deRefStablePtr addr_hs

15 pokeArray path_c $ fromIntegral <$> Addr.getAbsolutePath addr

mkNodeAddress receives the node path as an array, its length, and a reference to the current context.
From the context the root node is taken and used for constructing the node address together with the
node path. A stable pointer to the newly constructed node address is returned. nodePathPoke takes
such a stable pointer, dereferences it and places the indices of the node path in the provided array.

This data structure corresponds to Insieme’s NodeAddress in C++.

File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Inspire/NodeAddress.hs

4.3.6. Visitors

Since we have defined our own tree structure for INSPIRE we also have to provide some basic visitor
functionality. For performance critical reasons one can stop the visiting process at a controlled depth.
This is referred to as pruning. The following visitors are provided.

foldTree Folds the whole tree. No pruning takes place. (fold is the Haskell equivalent of a
reduction)

foldTreePrune Same as foldTree, but allows you to prune at any point.

foldAddress Folds the subtree starting at a given address. No pruning takes place.

foldAddressPrune Same as foldAddress, but allows you to prune at any point.

collectAll Returns a list of node addresses to all nodes satisfying a given predicate of the
NodeType. No pruning takes place.

collectAllPrune Same as collectAll, but allows you to prune at any point.

foldTree and foldTreePrune operate on nodes while foldAddress and foldAddressPrune operate on
node addresses.

File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Inspire/Visit.hs
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4.3.7. Node References and Queries

To facilitate using the tree IR structure and node addresses a list of useful queries are implemented.
These include, for example, checking if the given node is an operator or getting its type. The type-
class NodeReference has been defined in order to allow nodes of the tree and node addresses to use
the same queries, hence both of them implement this type class. The list of queries can be extended
later on. Note that there exist a few1 queries which can only be used with node addresses. This is
due to the fact that a node address allows you to look at the parent of the referred node, which is not
possible by using only plain nodes.

Furthermore a function findDecl is provided, which takes a node address pointing to a variable and
tries to find its declaration.

File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Inspire/Query.hs

4.3.8. Context

Up until now we have already heard that a context is established in both domains and keeps track of
the solver’s state. We now take a look at the context’s definition in C++ and how it is setup and used.

1Currently isLoopIterator, hasEnclosingStatement. isEntryPoint and isEntryPointParameter.
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The important parts are displayed below.

1 typedef void* StablePtr;

2 typedef void* HaskellNodeAddress;

3

4 class Context {

5

6 StablePtr context_hs;

7

8 core::NodePtr root;

9

10 std::map<core::NodeAddress, HaskellNodeAddress> addresses;

11

12 public:

13

14 Context();

15 explicit Context(const core::NodePtr& root);

16 ~Context();

17

18 // move semantics

19 Context(const Context& other) = delete;

20 Context(Context&& other) = default;

21

22 Context& operator=(const Context& other) = delete;

23 Context& operator=(Context&& other) = default;

24

25 // -- haskell engine specific requirements --

26

27 StablePtr getHaskellContext() const;

28 void setHaskellContext(StablePtr);

29

30 void setRoot(const core::NodePtr&);

31 core::NodePtr getRoot() const;

32

33 HaskellNodeAddress resolveNodeAddress(const core::NodeAddress& addr);

34 core::NodeAddress resolveNodeAddress(const HaskellNodeAddress& addr);

35

36 };

The context holds a stable pointer to its counter part in the Haskell domain and a specific INSPIRE
program is associated with it. Furthermore it caches already transferred node addresses. Since the
context in C++ is responsible for freeing (ie un-stabling Haskell objects) it has a custom destructor
and no copy semantics. Node addresses can be resolved in both directions using resolveNodeAddress.
To use it, just create an instance of the class, passing the root of an INSPIRE program to the con-
structor. Functions initiating an analysis take the context as their first argument, which is then used
to convert IR information. This allows us to isolate the FFI code from the rest of Insieme. Two func-
tion declarations, providing the user-interface to HAT-based analyses, are given as examples. Their
signatures do not contain any Haskell related parts.

1 bool mayBeTrue(Context& ctxt, const ExpressionAddress& expr);

2

3 ArithmeticSet getArithmeticValue(Context& ctxt, const ExpressionAddress& expr);

First the context needs to be established as described. Afterwards both functions can be used di-
rectly. What exactly these two functions do is covered later in the Base Analyses part (Sections 4.10.2
and 4.10.3).
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File: code/analysis/include/insieme/analysis/cba/haskell/context.h

4.4. Utilities

Before continuing with investigating the actual framework we take a look at some utilities used by
the framework. The two most notable are bound sets and arithmetic formulas.

4.4.1. Bound Sets

A bound set is similar to a regular set, apart from the fact that it is associated with an upper bound.
When the number of elements within the set exceeds this upper bound, the set turns into universe
representing every possible value of the domain. Of course, using this set as property spaces for
program analyses likely yields over approximations as soon as the set turns into universe. Yet it is
necessary to maintain termination of the analyses (thus decidability). Note that the bound can be
adjusted even during an analysis run to maximise flexibility, but adjusting it changes the type of the
bound set. Its definition:

data BoundSet bb a = BoundSet (Data.Set.Set a) | Universe

The functions provided are quite similar to the ones from Data.Set, as can be seen by the export
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list.

1 module Insieme.Utils.BoundSet (

2 BoundSet(Universe),

3 empty, singleton,

4 size, null, isUniverse, member,

5 fromSet, fromList, toSet, toList,

6 insert, applyOrDefault, filter, map, lift2,

7 union, intersection, cartProduct,

8 -- ...

9 ) where

Bounds are defined in the following way.

1 class Typeable b => IsBound b where

2 bound :: p b a -> Int

3

4 getBound :: IsBound bb => BoundSet bb a -> Int

5 getBound bs = bound bs

6

7 changeBound :: (IsBound bb, IsBound bb', Ord a)

8 => BoundSet bb a -> BoundSet bb' a

9 changeBound Universe = Universe

10 changeBound (BoundSet s) = fromSet s

11

12 data Bound10 = Bound10

13 instance IsBound Bound10 where

14 bound _ = 10

15

16 data Bound100 = Bound100

17 instance IsBound Bound100 where

18 bound _ = 100

The type-class requires the implementation of boundwhich takes a bounded object as input and returns
the capacity associated with this bound. Two bounds, Bound10 and Bound100, are already defined.
More bounds can be added as needed. Having the bound encoded into the type of the bounded
container prevents accidental combining of differently bound containers. A function changeBound

can be used to explicitly convert between them.

Although we took Data.Set as a reference, bound sets are not interoperable with it. Yet, sometimes
an unbound set is required (or helpful) and it would be convenient to use the same interface. We
therefore define ourselves the Unbound bound.

1 data Unbound = Unbound

2

3 instance IsBound Unbound where

4 bound _ = -1

5

6 type UnboundSet a = BoundSet Unbound a

7

8 toUnboundSet :: (IsBound bb, Ord a) => BoundSet bb a -> UnboundSet a

9 toUnboundSet = changeBound

Some analyses yield a result in the form of a bound set (eg arithmetic value). Therefore a similar data
structure exists at the C++ side. With it, results wrapped in a bound set can be transferred across the
two domains as long as the element type is transferable.
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Along with this, convenience functions are provided, among them map, lift2, cartProduct, and ap-

plyOrDefault.

File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Utils/BoundSet.hs

4.4.2. Arithmetic Formulas

The purpose of the Arithmetic module is to model arithmetic formulas. For now only basic integer
operations are implemented. On both sides – C++ and Haskell – a data structure is defined to model
these formulas. Here is the definition of the Haskell part.

1 -- v...variable type

2 -- c...constant type

3

4 -- Something like x2.

5 data Factor c v = Factor { base :: v

6 , exponent :: c }

7

8 -- Something like x2y2.

9 data Product c v = Product { factors :: [Factor c v] }

10

11 -- Somethign like −2x2y3.

12 data Term c v = Term { coeff :: c

13 , product :: Product c v }

14

15 -- Something like −2x2y3 + 5z3 + 2.
16 data Formula c v = Formula { terms :: [Term c v] }

The types of variables v and coefficient / exponent c are generic. Node addresses are commonly used
as variables to reference a variable (or expression) in the INSPIRE program. Using integer types
from Foreign.C.Types instead of Integer allows more accurate modelling of overflow behaviour.

Two formulas can be added, subtracted and multiplied. Division by a constant is supported, but may
only be accurate if the remainder is zero. For now this model seemed adequate, but can be replaced
in the future by one more accurate.

In addition to the representation of arithmetic formulas, we bring a different definition of numeric
ordering along.

1 data NumOrdering = NumLT | NumEQ | NumGT | Sometimes

2

3 class NumOrd a where

4 numCompare :: a -> a -> NumOrdering

5

6 fromOrdering :: Ordering -> NumOrdering

7 fromOrdering LT = NumLT

8 fromOrdering EQ = NumEQ

9 fromOrdering GT = NumGT

A formula can either always be greater than, less than, or equal to another formula; or the ordering
depends on the value of variables (Sometimes). These four different outcomes are modelled here.

For transferring an arithmetic formula fromHaskell to C++we have to reconstruct the formula part by
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part. For this purpose the corresponding constructors are wrapped and made available to the Adapter
via the FFI as seen below.

1 foreign import ccall "hat_mk_arithmetic_formula"

2 arithmeticFormula :: Ptr (Ptr CArithmeticTerm) -> CSize -> IO (Ptr CArithmeticFormula)

3

4 foreign import ccall "hat_mk_arithmetic_product"

5 arithmeticProduct :: Ptr (Ptr CArithmeticFactor) -> CSize -> IO (Ptr CArithmeticProduct)

6

7 foreign import ccall "hat_mk_arithmetic_term"

8 arithmeticTerm :: Ptr CArithmeticProduct -> CULong -> IO (Ptr CArithmeticTerm)

9

10 foreign import ccall "hat_mk_arithemtic_factor"

11 arithemticFactor :: Ptr CArithmeticValue -> CInt -> IO (Ptr CArithmeticFactor)

12

13 foreign import ccall "hat_mk_arithmetic_value"

14 arithmeticValue :: Ctx.CContext -> Ptr CSize -> CSize -> IO (Ptr CArithmeticValue)

The following function does all the heavy lifting on the Haskell side.

1 passFormula :: Integral c

2 => Ctx.CContext

3 -> Ar.Formula c Addr.NodeAddress

4 -> IO (Ptr CArithmeticFormula)

5

6 passFormula ctx_c formula_hs = do

7 terms_c <- forM (Ar.terms formula_hs) passTerm

8 withArrayLen' terms_c arithmeticFormula

9 where

10 passTerm :: Integral c => Ar.Term c Addr.NodeAddress -> IO (Ptr CArithmeticTerm)

11 passTerm term_hs = do

12 product_c <- passProduct (Ar.product term_hs)

13 arithmeticTerm product_c (fromIntegral $ Ar.coeff term_hs)

14

15 passProduct :: Integral c => Ar.Product c Addr.NodeAddress -> IO (Ptr CArithmeticProduct)

16 passProduct product_hs = do

17 factors_c <- forM (Ar.factors product_hs) passFactor

18 withArrayLen' factors_c arithmeticProduct

19

20 passFactor :: Integral c => Ar.Factor c Addr.NodeAddress -> IO (Ptr CArithmeticFactor)

21 passFactor factor_hs = do

22 value_c <- passValue (Ar.base factor_hs)

23 arithemticFactor value_c (fromIntegral $ Ar.exponent factor_hs)

24

25 passValue :: Addr.NodeAddress -> IO (Ptr CArithmeticValue)

26 passValue addr_hs = withArrayLen' (fromIntegral <$> Addr.getAbsolutePath addr_hs)

27 (arithmeticValue ctx_c)

28

29 withArrayLen' :: Storable a => [a] -> (Ptr a -> CSize -> IO b) -> IO b

30 withArrayLen' xs f = withArrayLen xs (\s a -> f a (fromIntegral s))

The formula is reconstructed from the bottom up, where value here refers to node addresses and are
the variables of the formula.

File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Utils/Arithmetic.hs
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4.5. Fixpoint Solver

This section describes the solver itself together with the Lattice type-class and used data structures
for Variables, Assignments, and Constraints.

4.5.1. Lattice

For implementation, two different names for the (complete) lattice and join-semi-lattice are used –
ExtLattice and Lattice respectively.

1 class (Eq v, Show v, Typeable v, NFData v) => Lattice v where

2 join :: [v] -> v

3 join [] = bot

4 join xs = foldr1 merge xs

5

6 merge :: v -> v -> v

7 merge a b = join [a,b]

8

9 bot :: v

10 bot = join []

11

12 less :: v -> v -> Bool

13 less a b = (a `merge` b) == b

14

15 class (Lattice v) => ExtLattice v where

16 top :: v

join describes how a list of values is combined into a single one. merge is just the binary version
of join as can be seen by the default implementation. less determines whether one element of the
lattice is less1 than another element. This type-class must be instantiated by the property space of
each analyses.

1a < b ⇐⇒ a is a more accurate value for an analyses thanb
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4.5.2. Variables

Analysis variables are described briefly in Section 2.5.2. An analysis variable is associated with a
list of constraints restricting potential Assignments and a unique identifier. The definition follows.

1 data Identifier = Identifier { analysis :: AnalysisIdentifier

2 , idValue :: IdentifierValue

3 , idHash :: Int }

4

5 data AnalysisIdentifier = AnalysisIdentifier { aidToken :: TypeRep

6 , aidName :: String

7 , aidHash :: Int }

8

9 data IdentifierValue = IDV_Expression NodeAddress

10 | IDV_ProgramPoint ProgramPoint

11 | IDV_MemoryStatePoint MemoryStatePoint

12 | IDV_Other BS.ByteString

13 deriving (Eq,Ord,Show)

14

15

16 data Var = Var { index :: Identifier

17 , constraints :: [Constraint]

18 , bottom :: Dynamic

19 , valuePrint :: Assignment -> String }

20

21 instance Eq Var where

22 (==) a b = (index a) == (index b)

23

24 instance Ord Var where

25 compare a b = compare (index a) (index b)

26

27

28 newtype TypedVar a = TypedVar Var

29 deriving (Show,Eq,Ord)

30

31 mkVariable :: (Lattice a) => Identifier -> [Constraint] -> a -> TypedVar a

Note that most of the complexity of these definitions comes from the necessary performance optimi-
sations – in particular for Variable comparison.

The identifier used for analysis variables contains an identifier for the corresponding type of analysis
(AnalysisIdentifier) and a value (NodeAddress, ProgramPoint, MemoryStatePoint, or byte string)
followed by a hash. The Identifier’s hash is used to speed up equality checks and takes the hash of
AnalysisIdentifier into account.

The bottom value of an analysis variable depends on the analysis’ property space. We therefore use
Dynamic as type. We could use a generic type variable for this, but this would make it difficult to
directly work with and combine variables of different analyses. See the related Haskell Wiki page for
more information about using heterogeneous collections1.

The structure TypedVar is used to statically connect a variable with its related property space – where
possible. This is used in the Assignment. A Var is created and wrapped by mkVariable given an
Identifier, a list of Constraints, and the bottom value of the corresponding property space. Only
TypedVars may be created.

1https://wiki.haskell.org/Heterogenous_collections
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4.5.3. Assignments

An Assignment is defined as a mapping from analysis variables to values of the related property space.
The interface definition is given below.

1 newtype Assignment = Assignment -- ...

2

3 get :: (Typeable a) => Assignment -> TypedVar a -> a

4

5 set :: (Typeable a, NFData a) => Assignment -> TypedVar a -> a -> Assignment

get returns the value associated to the given TypedVar in the Assignment. The use of TypedVar allows
us to return the correct type of the value. setmodifies an Assignment by associating a given TypedVar

with the given value.

4.5.4. Constraints

1 data Event = None

2 | Increment

3 | Reset

4

5 data Constraint = Constraint

6 { dependingOn :: Assignment -> [Var]

7 , update :: (Assignment -> (Assignment,Event))

8 , updateWithoutReset :: (Assignment -> (Assignment,Event))

9 , target :: Var }

A Constraint is always associated with the one variable which’s value it is constraining, here referred
to as target. Depending on an Assignment a list of variables can be deduced on which the Constraint
depends on.

A Constraint provides us with the two functions update and updateWithoutReset which mutate a
given Assignment. The update function also gives us information about what happened in the form
of an Event. The three possible outcomes are.

None The Assignment did not change, we can continue without any additional work.

Increment The Assignment changed during the update monotonously, all depending variables
need to be reconsidered.

Reset The current Assignment changed in a non-monotonous way, hence a local restart needs
to be triggered.

The function updateWithoutReset is used to prevent local restarts from triggering each other by forc-
ing monotonous updates. How exactly these three events are handled can be seen in Section 4.5.5.

Dependencies between Variables

It is essential that the dependencies between variables is correctly established for all analyses. The
framework’s functions expect this to be done correctly be the analysis designer. This means that for
a given Assignment, all analysis variables used to calculate the value of the current analysis variable
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must be present in the dependency list of the current variable. The correct use is illustrated in the
following code snippet, given two analysis variables var1 and var2, and an Identifier for the new
analysis variable (lines 1–3).

1 var1 :: Solver.TypedVar Int

2 var2 :: Solver.TypedVar Int

3 varId :: Identifier

4

5 con :: Constraint

6 con = createConstraint dep val var

7

8 var :: Solver.TypedVar Int

9 var = mkVariable varId [con] Solver.bot

10

11 dep :: Assignment -> [Var]

12 dep _ = [Solver.toVar var1, Solver.toVar var2]

13

14 val :: Assignment -> Int

15 val a = Solver.get a var1 + Solver.get a var2

In lines 6 and 9, a constraint and analysis variable are generated. Since the value (val) of the constraint
depends on the values yielded by var1 and var2, the new analysis variable var depends on var1 and
var2. This is stated in lines 6 and 12 where dep contains all analysis variable var is depending on,
which is used to create the constraint.

4.5.5. Solver

Before talking about the solving process itself, we model the state of the solver. SolverState, as seen
below, captures the current Assignment and all processed analysis variables (and thus their constraints)
using the already introduced VariableIndex structure (Section 4.5.2).

1 SolverState = SolverState { assignment :: Assignment

2 , variableIndex :: VariableIndex }

The solve function takes an initial SolverState and a list of desired analysis variables as input, yield-
ing a new SolverState containing the modified Assignment, containing the least fixpoint solution for
the passed analysis variables.

solve :: SolverState -> [Var] -> SolverState

Behind the scene solve calls solveStep which contains the main solver logic.

solveStep :: SolverState -> Dependencies -> [IndexedVar] -> SolverState

solveStep takes as input a SolverState, the Dependencies between variables and a worklist in form of
a list of IndexedVar. The result is a new SolverState. The function takes one IndexedVar after another
from the worklist (third parameter) and processes the constraints associated with this variable.

To process a constraint, the update function of this constraint is called with the current assignment,
yielding a new assignment and an Event (Section 4.5.4). In case the Event is None, the processing sim-
ply continues since the Assignment did not change. If it is Increment the constraints depending on the
target variable of the current constraint need to be re-evaluated and the related variables are therefore
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added to the worklist. The old Assignment has been updated by the constraint’s update. On Reset the
function behaves similarly as on Increment, however the transitive closure of all dependent variables
is reset to their respective bottom values – unless the current target value is indirectly depending on
itself.

At each step, newly generated analysis variables are added to the worklist whenever encountered. The
VariableIndex, as well as the Dependencies, are updated accordingly.

File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Analysis/Solver.hs

4.6. Modelling Arrays, Structs, and Unions

This section describes how arrays, structs, and unions are modelled in the current state of the frame-
work. This is a bit tricky since in C/C++ (and thus in INSPIRE) all three structures can be combined
with each other, multiple times. For example having an array of structs or a struct embedded in a
struct embedded in a union, and so on.

The two main building blocks we need are DataPath and FieldIndex. A FieldIndex is used to refer-
ence a field in case of a struct or union, or an element (index) in case of an array. DataPath allows
us to reference elements of multi-level structures using a list of FieldIndex. Both of these building
blocks are implemented in a generic way to be easily extensible in the future. Thus FieldIndex is a
type-class for which SimpleFieldIndex is our main implementation.

1 class (Eq v, Ord v, Show v, Typeable v, NFData v) => FieldIndex v where

2 -- ...

3

4 data SimpleFieldIndex = Field String

5 | Index Int

6 | UnknownIndex

7

8 data Symbol = Constant NodeAddress

9 | Variable NodeAddress

10

11 instance FieldIndex SimpleFieldIndex where

12 -- ...

13

14 type SymbolicFormula = Ar.Formula CInt Symbol

The data structure Symbol is used together with CInt to specialise the generic arithmetic formula data
structure (see Section 4.10.2). The result, SymbolicFormula, is used when acessing an element of an
array.

1 data DataPath i = Root

2 | Narrow [i]

3 | Expand [i]

4 | Invalid

DataPath is used to access the underlying structure of structured memory locations, where Root refers
to the whole structure and Narrow to a path starting at the root pointing to a specific sub-structure.
Expand is the inverse to Narrow and is used to navigate from a sub-structure to an enclosing structure
[10, pp. 133–134].

58



4.6. Modelling Arrays, Structs, and Unions

We now combine these building blocks with the ComposedValue type-class.

1 -- c...composed value type, for modelling the value of composed bojects

2 -- like arrays, structs, ...

3 -- i...field index type

4 -- v...leaf value type to be covered

5

6 class (Solver.ExtLattice c, FieldIndex i, Solver.ExtLattice v)

7 => ComposedValue c i v | c -> i v where

8

9 toComposed :: v -> c

10 toValue :: c -> v

11

12 setElement :: DataPath i -> c -> c -> c

13 getElement :: DataPath i -> c -> c

14

15 composeElements :: [(i,c)] -> c

16

17 top :: c

Note the functional dependency1 c -> i v stating that i and v are uniquely determined by c. Take a
look at [9] for more information on the topic of functional dependencies. An instance is provided for
our use in the framework.

1 data ValueTree i a = Leaf a

2 | Node (Data.Map.Map i (Tree i a))

3 | Empty

4 | Inconsistent

5

6 instance (FieldIndex i, Solver.ExtLattice a) => ComposedValue (Tree i a) i a where

7 -- ...

Each level in this ValueTree data structure corresponds to one level in the structured memory. Let us
look at an example.

1 int a[2][3] = {

2 {1, 2, 3},

3 {4, 5, 6}

4 };

1 let a = composeElements [

2 (Index 0, composeElements [ (Index 0, toComposed 1),

3 (Index 1, toComposed 2),

4 (Index 2, toComposed 3) ]),

5 (Index 1, composeElements [ (Index 0, toComposed 4),

6 (Index 1, toComposed 5),

7 (Index 2, toComposed 6) ])]

On the left we see the original structure from an input program, on the right the corresponding Val-

ueTree instance. Since we are representing a 2D array, the ValueTree instance also has two levels
and Index is used for field indexing (see definition of the SimpleFieldIndex type in Section 4.6). One
more example using a struct follows.

1 struct vector3 {

2 int x;

3 int y;

4 int z;

5 };

6

7 struct vector3 u = {7, 8, 9};

1 let u = composeElements [ (Field "x", toComposed 7),

2 (Field "y", toComposed 8),

3 (Field "z", toComposed 9) ]

1https://wiki.haskell.org/Functional_dependencies
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Since we are using a struct instead of Index we use Field together with the corresponding field name
as string.

File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Analysis/Entities/FieldIndex.hs
File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Analysis/Framework/PropertySpace/ComposedValue.hs
File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Analysis/Framework/PropertySpace/ValueTree.hs

4.7. Generic Data-Flow Analysis

The generic Data-Flow Analysis (DFA) is implemented by a combination of data structures, more
specific analyses, and by the main function dataflowValue. Some of the data structures and more
specific analyses are covered in Section 4.5.5. The remaining analyses are covered afterwards and
grouped under Section 4.10.

To easily manage the more specific analyses the DataFlowAnalysis data structure represents a specific
instance of a DFA and is composed of the following fields.

1 -- a...analysis type

2 -- v...property space

3

4 data DataFlowAnalysis a v = DataFlowAnalysis

5 { analysis :: a,

6 , analysisIdentifier :: Solver.AnalysisIdentifier,

7 , variableGenerator :: NodeAddress -> Solver.TypedVar v,

8 , topValue :: v,

9 , entryPointParameterHandler :: NodeAddress -> Solver.TypedVar v,

10 , initialValueHandler :: NodeAddress -> v,

11 , initValueHandler :: v }

The analysis field is equivalent to the aidToken field in AnalysisIdentifier. It serves the purpose of
distinguishing different analyses by their type. Yet, we also have to maintain the AnalysisIdentifier
itself.

The variableGenerator is used for hooking the variable / constraint generator of the specific analysis
into the generic framework. It follows the top value of the corresponding property space. As a safe
fallback, the top value is used by the DFA whenever something unsupported is encountered.

The entryPointParameterHandler is used for covering parameters of program entry points – com-
monly argc, argv.

initialValueHandler and initValueHandler specify the respective value for memory locations – ei-
ther upon an initialisation or program start. The initialValueHandler is consulted for dynamic mem-
ory locations, while initValueHandler deals with static memory locations.
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While the data constructor DataFlowAnalysis is exported, a simplified version is also provided.

1 mkDataFlowAnalysis :: (Typeable a, Solver.ExtLattice v)

2 => a

3 -> String

4 -> (NodeAddress -> Solver.TypedVar v)

5 -> DataFlowAnalysis a v

In this function the analysisIdentifier is populated with an AnalysisIdentifier constructed from
the given analysis token and string. The third parameter is used as the variable / constraint generator.
The respective top value can be deduced from the type and is outputted as result by all handlers,
thus entryPointParameterHandler, initialValueHandler, and initValueHandler are set to yield the
property space’s top value.

An instance of DataFlowAnalysis can then be used with the main function of generic DFA dataflow-

Value. Its signature looks as follows.

1 dataflowValue :: (ComposedValue.ComposedValue a i v, Typeable d)

2 => NodeAddress

3 -> DataFlowAnalysis d a

4 -> [OperatorHandler a]

5 -> Solver.TypedVar a

The first argument specifics the node for which a variable, representing the dataflow value, needs
to be computed. Next an instance of DataFlowAnalysis is required to indicate the specific nature
of the analysis. A list of OperatorHandlers (see Section 4.7.1) follows. The result is, of course, an
analysis variable corresponding to the specific analysis. Note that dataflowValue can be specialised
to a variable / constraint provider by fixing the second and third parameter.

Figure 8 illustrates how dataflow values are aggregated for the expression 1+ 2× 3. As can be seen,
the aggregation happens bottom-up.

+

1 ×

2 3

{x+ y | x ∈ v0,y ∈ v3} ⊆ v4

{1} ⊆ v0 {x× y | x ∈ v1,y ∈ v2} ⊆ v3

{2} ⊆ v1 {3} ⊆ v2

{7}

{1} {6}

{2} {3}

IR Variable / Constraint Assignment

Figure 8.: Illustrating dataflow value aggregation of dataflowValue.

File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Analysis/Framework/Dataflow.hs
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4.7.1. Operator Handler

Before continuing on, the concept of OperatorHandler is presented. They provide a simple means to
hook more specific logic into the generic DFA (or ProgramPoint analysis as we will see later).

This is used to interpret the semantics of abstract operators (and optionally derived operators) (see
Section 3.3). The definition is straight forward and looks like this.

1 data OperatorHandler a = OperatorHandler { covers :: NodeAddress -> Bool,

2 , dependsOn :: Assignment -> [Var],

3 , getValue :: Assignment -> a }

covers is used by the generic DFA to check whether this operator handler is to be used for the inter-
pretation of a call to a given function symbol / operator. The other two functions house the logic of
the handler itself.

4.8. Program Point

In the next two subsections we focus on the two interconnected concepts of program points and
memory state. Both concepts have their dedicated generic variable / constraint generator which are
utilised by the generic DFA.

The definition of program points follows.

1 data Phase = Pre | Internal | Post

2

3 data ProgramPoint = ProgramPoint NodeAddress Phase

A ProgramPoint models a specific point in the execution of an INSPIRE program. For this purpose a
NodeAddress referencing a specific node is used together with a Phase. The Phase describes at which
phase of the execution the referenced node is referenced. It can be either

Pre before the referred node is processed;

Internal while the referred node is processed (only relevant for interpreting operators); or

Post after the referred node is processed.

4.8.1. Program Point Analysis

The purpose of the program point analysis is to derive properties from a given ProgramPoint. The
generic variable / constraint generator function programPointValue of this analysis has the following
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signature.

1 programPointValue :: (Solver.ExtLattice a)

2 => ProgramPoint

3 -> (ProgramPoint -> Solver.Identifier)

4 -> (ProgramPoint -> Solver.TypedVar a)

5 -> [OperatorHandler a]

6 -> Solver.TypedVar a

The result is a variable representing the requested information, for which the given ProgramPoint

(first argument) represents a state value. The second argument is simply a variable id generator used
to generate (unique) identifiers for analysis variables. The third argument is the analysis for which
programPointValue is the base. The list of OperatorHandlers is used to intercept and interpret certain
operators.

programPointValue utilises the predecessor analysis (covered in Section 4.11.3). The following code
example and figure illustrate how the INSPIRE tree is traversed by programPointValue.

1 // pseudo code

2 {

3 a = 6;

4 b = 7;

5 f(a, b);

6 }

{}

=

a 6

=

b 7

call

b a f

Figure 9.: Illustrating INSPIRE backward traversal by programPointValue.

Each node in Figure 9 has two grey bullets, one to its left, the other to its right. They represent the
ProgramPoint’s Phases, Pre or Post respectively. These points are traversed in backward direction by
the program point analysis – thus in reverse execution order. This concept is the basic building block
for modelling the backwards analyses in the analysis framework.

Like the data-flow function, this is a generic base for analyses – not an analysis itself.

Data-Flow vs Program Point The purpose of a data-flow analysis is to determine the value(s) a
given expression may exhibit. In contrast to this, a program point analysis determines the state(s) of
some (shared) structure at some point of program execution.
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4.9. Memory State

A memory location is defined by a NodeAddress referencing its creation point. Furthermore, we can
combine MemoryLocation with ProgramPoint to define ourselves MemoryStatePoint. A MemoryState-

Point references the state of a memory location at a given ProgramPoint.

1 data MemoryLocation = MemoryLocation NodeAddress

2

3 data MemoryStatePoint = MemoryStatePoint ProgramPoint MemoryLocation

In order to find the state of a MemoryLocation at a given ProgramPoint, a reaching definitions analysis
has to be conducted.

4.9.1. Reaching Definitions Analysis

A reaching definitions analysis is capable of identifying all definitions of a given memory location
reaching the ProgramPoint of interest. We therefore now look at the definition of the reaching defini-
tions analysis’ property space.

1 data Definition = Initial

2 | Creation

3 | Declaration NodeAddress

4 | MaterializingCall NodeAddress

5 | Assignment NodeAddress

6 | Initialization NodeAddress

7

8 type Definitions = BSet.UnboundSet Definition

9

10 instance Lattice Definitions where

11 bot = BSet.empty

12 merge = BSet.union

13

14 instance ExtLattice Definitions where

15 top = BSet.Universe

Definition models the different ways a memory location in INSPIRE can be initialised.

Initial The definition is obtained at program startup.

Creation The variable is left undefined at its point of allocation.

Declaration The definition is conducted by an assignment triggered through a materializinga

declaration. The node address refers to that Declaration.

MaterializingCall The definition is conducted by an assignment triggered through a material-
izing call. The node address refers to that CallExpr.

Assignment The definition is conducted by an assignment. The node address refers to that as-
signment.

Initialization The definition is conducted by an initialisation expression. The node address
refers to that initialisation.

aA temporary (r-value) is written to a memory location so that it can be referenced – constructor and destructor are
managed accordingly – see https://clang.llvm.org/doxygen/classclang_1_1MaterializeTemporaryExpr.html#details.
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4.9. Memory State

The signature of reachingDefinitions looks as follows:

reachingDefinitions :: MemoryStatePoint -> Solver.TypedVar Definitions

This analysis is used by the memory state analysis.

4.9.2. Memory State Analysis

Finding the state of a MemoryLocation at a given ProgramPoint can now be achieved by the mem-
ory state analysis, which’s variable / constraint generator builds on top of the reaching definitions
analysis.

The analysis variable constructed by reachingDefinitions, for a given MemoryState ms, can be passed
to the Solver’s get function together with an Assignment a to yield the Definitions.

reachingDefVar = reachingDefinitions ms

reachingDefVal = Solver.get a reachingDefVar

This is almost the information we want. From the Definitions we need to deduce the actual value
the memory location exhibits. This is done by the following step.

1 definingValueVars a = BSet.applyOrDefault [] (concat . (map go) . BSet.toList)

2 $ reachingDefVal a

3 where

4 go (Declaration addr) = [variableGenerator analysis $ goDown 1 addr]

5 go (MaterializingCall addr) = [variableGenerator analysis $ addr]

6 go (Assignment addr) = [definedValue addr ml analysis]

7 go (Initialization addr) = [definedValue addr ml analysis]

8 go _ = []

Here, definedValue models the underlying memory structure of the given MemoryLocation ml using
an instance of the ComposedValue type-class. Note that neither for Initial nor for Creation we can
deduce a value more accurate than the worst-case ⊤ element (line 8).

With this last piece in place we can define the memory state analysis’ variable / constraint generator
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function memoryStateValue.

1 memoryStateValue (MemoryStatePoint _ ml@(MemoryLocation loc)) analysis = var

2 where

3 var = Solver.mkVariable varId [con] Solver.bot

4 con = Solver.createConstraint dep val var

5

6 dep a = (Solver.toVar reachingDefVar) : (

7 if BSet.isUniverse defs || BSet.member Creation defs

8 then []

9 else (map Solver.toVar $ definingValueVars a)

10 )

11 where

12 defs = reachingDefVal a

13

14 val a = case () of

15 _ | BSet.isUniverse defs -> Solver.top

16 | BSet.member Initial defs -> Solver.merge init value

17 | otherwise -> value

18 where

19 init = initialValueHandler analysis loc

20

21 value = if BSet.member Creation $ defs

22 then ComposedValue.top

23 else Solver.join $ map (Solver.get a) (definingValueVars a)

24

25 defs = reachingDefVal a

26

27 varId = -- ..

The initialValueHandler is used in line 16 if the set of definitions defs contains an Initial. The
initialValueHandler’s result is merged with deduced values. Constraints (and dependencies) are
created accordingly.

4.10. Specific Analyses

Now, after covering the generic DFA, we look at more specific analyses. As already mentioned, these
specialised analyses are used by the generic DFA. While the generic DFA covers the INSPIRE core
language, the specific analyses cover individual language extensions. This relationship is illustrated
in Figure 10.

As each language extension typically defines a new type and operators, eachmatching analysis defines
an abstract value space for the values of expressions composed by the language extension. Further-
more, it models the semantics of the associated operators on top of these property spaces. Thereby
we have the cases:

• Operators are abstract literals, hence an OperatorHandler has to be defined.

• Operators are derived functions, for which their interpretation is implicitly covered by inter-
preting their definitions – or an OperatorHandler may be defined, if desired.

Another important aspect to note is that the property spaces of analyses are not unique. There are
infinitely many different ones, differing in their correctness, accuracy and evaluation performance.
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4.10. Specific Analyses

The designer of an analyses has to chose the right one for a given task.

Also note that not all language extensions are clearly separated. In Insieme’s current state, the
basic language extension combines some frequently used language constructs like arithmetic and
boolean.

covered by
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Specific 
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covered by
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Figure 10.: Connection between language a extension, INSPIRE core language, a specific analysis
and the generic DFA.

4.10.1. Identifier Analysis

The purpose of the identifier analysis is to determine the value of expressions representing identifiers.
Thus expressions of type Identifier (see Section 3.3.1).

This analysis is used by the data path analysis (see Section 4.10.4) to track the field names of structs
and unions. Its property space is defined as follows.

1 data Identifier = Identifier String

2 deriving (Eq,Ord,Generic,NFData)

3

4 instance Show Identifier where

5 show (Identifier s) = s

6

7 type IdentifierSet = BSet.UnboundSet Identifier

8

9 instance Solver.Lattice IdentifierSet where

10 bot = BSet.empty

11 merge = BSet.union

12

13 instance Solver.ExtLattice IdentifierSet where

14 top = BSet.Universe

The bottom value of the property space represents no identifiers, while the top element represents all
identifiers – hence BSet.empty and BSet.Universe are used respectively. When two data-flows merge,
the resulting data-flow should contain all identifiers from the two branches, therefore BSet.union is
used as merge operator. Also note that the identifier analysis is a may analysis.

For the analysis to be usable by the framework, a unique identifier is required. Together with this
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identifier we provide the constraint generator function identifierValue.

1 data IdentifierAnalysis = IdentifierAnalysis

2 deriving (Typeable)

3

4 identifierValue :: NodeAddress -> Solver.TypedVar (ValueTree SimpleFieldIndex IdentifierSet)

5 identifierValue addr = case getNode addr of

6

7 IR.Node IR.Literal [_, IR.Node (IR.StringValue x) _] ->

8 Solver.mkVariable (idGen addr) [] (compose $ BSet.singleton (Identifier x))

9

10 _ -> dataflowValue addr analysis []

11

12 where

13 analysis = mkDataFlowAnalysis IdentifierAnalysis "I" identifierValue

14 idGen = mkVarIdentifier analysis

15 compose = ComposedValue.toComposed

In line 13, a DataFlowAnalysis is instantiated using the unique identifier, a string "I" for easy iden-
tification of the associated analysis variables, and identifierValue, holding the main logic of the
identifier analysis.

The interpretation of most IR constructs is handled by the generic DFA. We only need to cover the
nodes relevant to us. In our case a Literal, where the second child is a StringValue1. An analysis
variable is created, using mkVariable (line 8) and a newly generated identifier (line 14). No constraints
are associated with the variable and the value associated with the variable is a (bound) set containing
the identifier, wrapped up in a ValueTree.

One can also see that that no OperatorHandlers are used when invoking dataflowValue in line 10.
This means that all information derived from Literal nodes is passed along the data-flow without any
additional modifications.

Connection Between Generic DFA and Specialised Analysis In line 10 we can see the interaction
between the generic DFA and a specialised analysis. The user would simply invoke identifierValue
and pass the result to the solver. If the node targeted is not a Literal, the input program falls back
to the generic DFA, which calls our specialised analysis function identifierValue for the relevant
nodes. The results are merged according to the Lattice instantiation.

File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Analysis/Identifier.hs

4.10.2. Arithmetic Analysis

Section 4.4.2 has already presented the concept and implementation of arithmetic formulas. Their
main use appears in the arithmetic analysis. Its task is to derive the arithmetic values a given expres-
sion may exhibit.

As mentioned in Section 3.3.1, arithmetic types and operators are defined in the basic language
extension. The arithmetic analysis thus covers this part of the basic language extension.

1Note that this is an simplification that does not cause harm since all literals are covered, where only those of the type
‘identifier’ would be required.
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The type alias SymbolicFormula, previously introduced in Section 4.6, is used together with BoundSet

to compose the arithmetic property space.

1 type SymbolicFormulaSet b = BSet.BoundSet b SymbolicFormula

2

3 instance BSet.IsBound b => Solver.Lattice (SymbolicFormulaSet b) where

4 bot = BSet.empty

5 merge = BSet.union

6

7 instance BSet.IsBound b => Solver.ExtLattice (SymbolicFormulaSet b) where

8 top = BSet.Universe

Similar to the identifiers analysis, the arithmetic analysis is a may analysis, therefore BSet.empty,
BSet.Universe, and BSet.union are used for ⊥, ⊤, and the merge operator respectively.

An integer literal in the input program is translated to INSPIRE as a Literal containing a StringValue
node. As the string contained needs to be parsed, a utility parseInt is provided. parseInt understands
the different C/C++ integer literal formats (eg 0xf, 072, 1ul, -24).

1 data CInt = CInt32 Int32 -- ^ Represents @int@

2 | CInt64 Int64 -- ^ Represents @long@

3 | CUInt32 Word32 -- ^ Represents @unsigned int@

4 | CUInt64 Word64 -- ^ Represents @unsigned long@

5 deriving (Eq,Ord,Generic,NFData)

6

7 instance Show CInt where -- ...

8 instance Num CInt where -- ...

9 instance Enum CInt where -- ...

10 instance Real CInt where -- ...

11 instance Integral CInt where -- ...

12

13 parseInt :: String -> Maybe CInt

Before looking at the body of arithmeticValue we need to setup the variable / constraint generator
implementing the arithmetic analysis, to be used by the solver.

1 data ArithmeticAnalysis = ArithmeticAnalysis

2 deriving (Typeable)

3

4 analysis = (mkDataFlowAnalysis ArithmeticAnalysis "A" arithmeticValue) {

5

6 initialValueHandler = \a -> compose $ BSet.singleton

7 $ Ar.mkVar

8 $ Constant (Addr.getNode a) a,

9

10 initValueHandler = compose $ BSet.singleton $ Ar.zero

11 }

12

13 idGen = mkVarIdentifier analysis

The default initial value handler yield the top element of the property space. For the arithmetic
analysis this default is not desired, hence we override it in lines 6–10. For static memory locations
(handled by initValueHandler) we can assume the memory location’s value to be initialised to 0. For
dynamic memory locations we handle the location as a variable, which enables us to reason about it
in more detail than just assuming its content to be ⊤. For instance, we can deduce that the value of
the memory location subtracted from itself yields 0 as result.
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Now we are ready to look at arithmeticValue.

1 arithmeticValue :: Addr.NodeAddress

2 -> Solver.TypedVar (ValueTree SimpleFieldIndex

3 (SymbolicFormulaSet BSet.Bound10))

4

5 arithmeticValue addr = case Addr.getNode addr of

6

7 IR.Node IR.Literal [t, IR.Node (IR.StringValue v) _] | isIntType t ->

8 case parseInt v of

9 Just cint -> Solver.mkVariable (idGen addr) [] (compose $ BSet.singleton

10 $ Ar.mkConst cint)

11

12 Nothing -> Solver.mkVariable (idGen addr) [] (compose $ BSet.singleton

13 $ Ar.mkVar c

14 where

15 c = Constant (Addr.getNode addr) addr)

16

17 IR.Node IR.Variable _ | Addr.isLoopIterator addr ->

18 Solver.mkVariable (idGen addr) [] (compose $ BSet.Universe)

19

20 IR.Node IR.Variable (t:_) | isIntType t && isFreeVariable addr ->

21 Solver.mkVariable (idGen addr) [] (compose $ BSet.singleton

22 $ Ar.mkVar

23 $ Variable (Addr.getNode addr) addr)

24

25 IR.Node IR.CastExpr (t:_) | isIntType t -> var

26 where

27 var = Solver.mkVariable (idGen addr) [con] Solver.bot

28 con = Solver.forward (arithmeticValue $ Addr.goDown 1 addr) var

29

30 _ -> dataflowValue addr analysis ops

31 where

32 -- ...

In case the given node address points to a Literal of type integer (line 7), the integer parser utility
is consulted (line 8). If the parse was successful, the result is wrapped in a (constant) arithmetic
formula, a (bound) set, and a ValueTree (lines 9 and 10). Otherwise the given node is handled as a
mathematical constant and wrapped similarly (lines 12–15).

If we encounter a variable, which is a loop-iterator (line 17), we immediately return Universe as the
range is commonly to big to consider all possible values in the analysis. Free variables of type integer
are handled explicitly by arithmeticValue (line 20). Such an explicitly handled variable is wrapped
in an arithmetic formula, a (bound) set, and a ValueTree. Other variables are covered by the default
dataflow analysis.

A CastExpr of (target) type integer simply forwards the arithmeticValue of its argument. For all
other nodes, the generic DFA is used, hooking the defined operator handlers and this analysis into the
framework. The DFA also covers declarations, parameter and return value passing, closures, calls to
unknown external functions, inter-procedural analyses, and memory locations.

Since all arithmetic operators are abstract, OperatorHandlers need to be defined, however their im-
plementation is straightforward. The encountered operator is simply mapped to the corresponding
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arithmetic operation.

1 ops = [add, mul, sub, div, mod]

2

3 add = OperatorHandler cov dep (val Ar.addFormula)

4 where

5 cov a = any (isBuiltin a) ["int_add", "uint_add", "gen_add"]

The result of each integer operation depends on the arithmetic value of its operands. Thus we invoke
arithmeticValue on the left- and right-hand side (lines 1 and 2).

1 lhs = arithmeticValue $ Addr.goDown 2 addr

2 rhs = arithmeticValue $ Addr.goDown 3 addr

3

4 val op a = compose $ (BSet.lift2 op) (extract $ Solver.get a lhs)

5 (extract $ Solver.get a rhs)

6

7 dep _ = Solver.toVar <$> [lhs, rhs]

8

9 compose = ComposedValue.toComposed

10 extract = ComposedValue.toValue

For division, we first need to check if it is safe to divide using the two operands (see Section 4.4.2).
If possible, the division is applied, otherwise Universe is used as result.

1 div = OperatorHandler cov dep val

2 where

3 cov a = any (isBuiltin a) [ "int_div", "uint_div", "gen_div" ]

4 val a = compose $ tryDiv (extract $ Solver.get a lhs) (extract $ Solver.get a rhs)

5

6 tryDiv x y = if not (BSet.isUniverse prod) && all (uncurry Ar.canDivide)

7 (BSet.toList prod)

8 then BSet.map (uncurry Ar.divFormula) prod

9 else BSet.Universe

10 where

11 prod = BSet.cartProduct x y

We have already described how an arithmetic formula is passed from Haskell back to C++ in Sec-
tion 4.4.2. We therefore now look at making the arithmetic analysis available to C++.

1 foreign export ccall "hat_arithmetic_value"

2 arithValue :: StablePtr Ctx.Context

3 -> StablePtr Addr.NodeAddress

4 -> IO (Ptr CArithmeticSet)

5

6 arithValue ctx_hs expr_hs = do

7 ctx <- deRefStablePtr ctx_hs

8 expr <- deRefStablePtr expr_hs

9 let (res,ns) = Solver.resolve (Ctx.getSolverState ctx) (Arith.arithmeticValue expr)

10 let results = ComposedValue.toValue res

11 let ctx_c = Ctx.getCContext ctx

12 ctx_nhs <- newStablePtr $ ctx { Ctx.getSolverState = ns }

13 updateContext ctx_c ctx_nhs

14 passFormulaSet ctx_c $ BSet.map (fmap SymbolicFormula.getAddr) results

arithValue, exported as hat_arithmetic_value, receives a Context and an expression. The arithmetic
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analysis is invoked in line 9. The initial state of the solver is taken from the received Context. A new
solver state ns, as well as the result of the analysis res is returned by Solver.resolve. The Context is
updated with the new solver state in line 13, while the result is passed to C++ using passFormulaSet.

As the arithmetic analysis yields a (bound) set of arithmetic formulas, we pass this whole set via the
FFI. Since we already know how a single formula is passed, we can easily build upon this knowledge
and define ourselves passFormulaSet.

1 foreign import ccall "hat_mk_arithmetic_set"

2 arithmeticSet :: Ptr (Ptr CArithmeticFormula) -> CInt -> IO (Ptr CArithmeticSet)

3

4 passFormulaSet :: Integral c

5 => Ctx.CContext

6 -> BSet.BoundSet bb (Ar.Formula c Addr.NodeAddress)

7 -> IO (Ptr CArithmeticSet)

8

9 passFormulaSet _ BSet.Universe = arithmeticSet nullPtr (-1)

10 passFormulaSet ctx_c bs = do

11 formulas <- mapM (passFormula ctx_c) (BSet.toList bs)

12 withArrayLen' formulas arithmeticSet

13 where

14 withArrayLen' :: Storable a => [a] -> (Ptr a -> CInt -> IO b) -> IO b

15 withArrayLen' xs f = withArrayLen xs (\s a -> f a (fromIntegral s))

The imported function hat_mk_arithmetic_set simply takes an array of arithmetic formulas (C++)
and combines them into an ArithmeticSet, the C++ equivalent to SymbolicFormulaSet. A negative
length (second argument) indicates that the set is Universe.

passFormulaSet passes every formula of the arithmetic set from Haskell to C++ first, and uses arith
meticSet to combine them to an ArithmeticSet (C++).

The arithmetic analysis is provided in C++:

1 extern "C" {

2 ArithmeticSet* hat_arithmetic_value(StablePtr ctx, const HaskellNodeAddress expr_hs);

3 }

4

5 ArithmeticSet getArithmeticValue(Context& ctxt, const ExpressionAddress& expr) {

6 auto expr_hs = ctxt.resolveNodeAddress(expr);

7 ArithmeticSet* res_ptr = hat_arithmetic_value(ctxt.getHaskellContext(), expr_hs);

8 ArithmeticSet res(std::move(*res_ptr));

9 delete res_ptr;

10 return res;

11 }

File: code/analysis/src/cba/haskell/arithmetic_analysis.cpp
File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Adapter.hs
File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Analysis/Arithmetic.hs

4.10.3. Boolean Analysis

Next, the boolean analysis is presented. Its task is to describe the truth value an expression might
have during execution. For the property space we define the possible outcomes, together with the
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Lattice instance.

1 data Result = AlwaysTrue

2 | AlwaysFalse

3 | Both

4 | Neither

5 deriving (Eq,Enum,Show,Generic,NFData)

6

7 instance Solver.Lattice Result where

8 bot = Neither

9

10 merge Neither x = x

11 merge x Neither = x

12 merge x y | x == y = x

13 merge _ _ = Both

14

15 instance Solver.ExtLattice Result where

16 top = Both

If the analysis can determine that the boolean value of an expression is constant (ie is not input
dependent), the result is either AlwaysTrue or AlwaysFalse. If the boolean value is not constant, the
result is Both. Neither is the initial state, until more accurate information regarding the analysed
expressions could be determined. Also, it is the value of expressions which are never evaluated (dead
code) due to the implicit dead-code detection of our framework.
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Again, we have to setup an identifier for the analysis and provide the main logic of the analysis.

1 data BooleanAnalysis = BooleanAnalysis

2 deriving (Typeable)

3

4 booleanValue :: NodeAddress -> Solver.TypedVar (ValueTree SimpleFieldIndex Result)

5 booleanValue addr =

6 case () of _

7 | isBuiltin addr "true" -> Solver.mkVariable (idGen addr) []

8 $ compose AlwaysTrue

9 | isBuiltin addr "false" -> Solver.mkVariable (idGen addr) []

10 $ compose AlwaysFalse

11 | otherwise -> dataflowValue addr analysis ops

12 where

13 compose = ComposedValue.toComposed

14 extract = ComposedValue.toValue

15

16 analysis = mkDataFlowAnalysis BooleanAnalysis "B" booleanValue

17 idGen = mkVarIdentifier analysis

18

19 ops = [ lt, le, eq, ne, ge, gt ]

20

21 le = OperatorHandler cov dep (val cmp)

22 where

23 cov a = any (isBuiltin a) ["int_le", "uint_le"]

24 cmp x y = case numCompare x y of

25 NumEQ -> AlwaysTrue

26 NumLT -> AlwaysTrue

27 Sometimes -> Both

28 _ -> AlwaysFalse

29

30 -- lt, eq, ne, ge and gt following the same pattern as le

31

32 lhs = arithmeticValue $ goDown 2 addr

33 rhs = arithmeticValue $ goDown 3 addr

34

35 dep a = Solver.toVar <$> [lhs, rhs]

36

37 val op a = combine (extract $ Solver.get a lhs) (extract $ Solver.get a rhs)

38 where

39 combine BSet.Universe _ = compose Both

40 combine _ BSet.Universe = compose Both

41 combine x y = compose . Solver.join $ [ u `op` v | u <- BSet.toList x

42 , v <- BSet.toList y ]

Initially, we check if a given node is equivalent to the operators true or false. If so, we wrap Al-

waysTrue or AlwaysFalse in a ValueTree and return an analysis variable with it as initial value. Oth-
erwise we resort to the generic DFA.

The OperatorHandlers lt, le, eq, ne, ge, and gt are setup to cover their respective comparators in
lines 21–30. Furthermore, we have to state the dependency (lines 32–35) between the left and right
hand side’s arithmetic value and the current expression.

arithmeticValue, part of the arithmetic analysis (see Section 4.10.2), yields a (bound) set of arith-
metic formulas representing the arithmetic values of an expression. The OperatorHandler defined in
line 21 covers the operators int_le and uint_le, which are used in INSPIRE for the (unsigned) inte-
ger comparison less than or equal. The remaining OperatorHandlers are defined similarly. Together
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with val, defined in line 37, it

• extracts the (bound) sets of arithmetic formulas for the left and right hand sides;

• compares each element of the lhs’s set with each element of the rhs’s set, using numCompare

(see Section 4.4.2); and

• maps the result of each comparison to the corresponding analysis outcome, defined by the
OperatorHandler;

It is important not that the logical operations bool_not, bool_and, and bool_or are defined in the basic
language extension using IfStmts and closures to correctly model short-circuit-evaluation of C/C++.
We do not need to handle this explicitly thanks to the framework.

This analysis is made available to Insieme via FFI.

1 foreign export ccall "hat_check_boolean"

2 checkBoolean :: StablePtr Ctx.Context -> StablePtr Addr.NodeAddress -> IO CInt

3

4 checkBoolean ctx_hs expr_hs = do

5 ctx <- deRefStablePtr ctx_hs

6 expr <- deRefStablePtr expr_hs

7 let (res,ns) = Solver.resolve (Ctx.getSolverState ctx) $ booleanValue expr

8 let ctx_c = Ctx.getCContext ctx

9 ctx_nhs <- newStablePtr $ ctx { Ctx.getSolverState = ns }

10 updateContext ctx_c ctx_nhs

11 evaluate $ fromIntegral $ fromEnum $ ComposedValue.toValue res

The structure of checkBoolean is quite similar to arithValue, defined Section 4.10.2. It is sufficient
to use a CInt for the boolean analysis’ result as it is just an enumeration. The conversion happens by
combining fromIntegral, fromEnum, and ComposedValue.toValue.
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In C++, hat_check_boolean is imported and wrapped.

1 extern "C" {

2 int hat_check_boolean(StablePtr ctxt, const HaskellNodeAddress expr_hs);

3 }

4

5 enum class BooleanAnalysisResult : int {

6 AlwaysTrue,

7 AlwaysFalse,

8 Both,

9 Neither

10 };

11

12 BooleanAnalysisResult checkBoolean(Context& ctxt, const ExpressionAddress& expr) {

13 auto expr_hs = ctxt.resolveNodeAddress(expr);

14 int res_hs = hat_check_boolean(ctxt.getHaskellContext(), expr_hs)

15 auto res = static_cast<BooleanAnalysisResult>(res_hs);

16 if(res == BooleanAnalysisResult::Neither) {

17 std::vector<std::string> msgs{"Boolean Analysis Error"};

18 throw AnalysisFailure(msgs);

19 }

20 return res;

21 }

The result of hat_check_boolean is received as integer and mapped to the corresponding enum value
in line 15. The following four convenience functions are provided.

1 bool isTrue(Context& ctxt, const ExpressionAddress& expr) {

2 return checkBoolean(ctxt, expr) == BooleanAnalysisResult::AlwaysTrue;

3 }

4

5 bool isFalse(Context& ctxt, const ExpressionAddress& expr) {

6 return checkBoolean(ctxt, expr) == BooleanAnalysisResult::AlwaysFalse;

7 }

8

9 bool mayBeTrue(Context& ctxt, const ExpressionAddress& expr) {

10 auto res = checkBoolean(ctxt, expr);

11 return res == BooleanAnalysisResult::AlwaysTrue

12 || res == BooleanAnalysisResult::Both;

13 }

14

15 bool mayBeFalse(Context& ctxt, const ExpressionAddress& expr) {

16 auto res = checkBoolean(ctxt, expr);

17 return res == BooleanAnalysisResult::AlwaysFalse

18 || res == BooleanAnalysisResult::Both;

19 }

Note that for clarity BooleanAnalysisResult has been defined in C++ and Haskell. In reality, a C
enum is defined in a header file which is imported in C++ and Haskell (via c2hs). This way they
share the exact same definition and are thus implicitly consistent.

File: code/analysis/src/cba/haskell/boolean_analysis.cpp
File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Adapter.hs
File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Analysis/Boolean.chs
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4.10.4. Data Path Analysis

DataPaths have been covered in Section 4.6. The framework also contains an analysis for deducing the
(bound) set of possible DataPath values for a given expression. This analysis is used by the reference
analysis (see Section 4.10.5).

As we can use the DataPath entity directly we can focus immediately on the lattice instance.

1 type DataPathSet i = BSet.UnboundSet (DataPath i)

2

3 instance (FieldIndex i) => Solver.Lattice (DataPathSet i) where

4 bot = BSet.empty

5 merge = BSet.union

6

7 instance (FieldIndex i) => Solver.ExtLattice (DataPathSet i) where

8 top = BSet.Universe

Note that the data path analysis is, again, a may analysis.

dataPathValue does not need to handle specific types of nodes, it is only concerned with operators
as it covers the datapath language extension1.

We therefore only have to define the relevant OperatorHandlers. The following operators are han-
dled:

dp_root This operator indicates the root of the object, hence DataPath.root is wrapped and
returned.

dp_member The identifier analysis is used to deduce the target field name, which is then used to
modify the DataPath. One DataPath.step is added using the field name.

dp_element Causes a recursion to find the nested path within and uses the arithmetic analysis
to find the index used when calling the operator. Both results are then merged.

dp_component Same as dp_element.

Note that this analysis is currently not accessible from C++.

File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Analysis/DataPath.hs

4.10.5. Reference Analysis

Upon encountering a reference during an analysis, we are often interest in the location this reference
points to. The reference analysis is tasked with answering this question. Note that the reference
language extension is covered by Section 3.3.2.

In the common case, a reference can be defined by the creation point of the (root) object and a DataPath
to reference a sub-object within. The other two edge cases include NULL references and uninitialised

1File: code/core/include/insieme/core/lang/datapath.h
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references. This composes our property space.

1 data Reference i = Reference { creationPoint :: NodeAddress

2 , dataPath :: DP.DataPath i }

3 | NullReference

4 | UninitializedReference

5 deriving (Eq,Ord,Show,Generic,NFData)

6

7 type ReferenceSet i = BSet.UnboundSet (Reference i)

8

9 instance (FieldIndex i) => Lattice (ReferenceSet i) where

10 bot = BSet.empty

11 merge = BSet.union

12

13 instance (FieldIndex i) => ExtLattice (ReferenceSet i) where

14 top = BSet.singleton UninitializedReference

Again we have a may analysis.

Next we take a look at the corresponding constraint generator function.

1 data ReferenceAnalysis = ReferenceAnalysis

2 deriving (Typeable)

3

4 referenceValue :: (FieldIndex i)

5 => NodeAddress

6 -> TypedVar (ValueTree i (ReferenceSet i))

7

8 referenceValue addr = case getNodeType addr of

9 IR.Literal ->

10 mkVariable (idGen addr) [] $ compose

11 $ BSet.singleton

12 $ Reference (crop addr) DP.root

13

14 IR.Declaration | isMaterializingDeclaration (Addr.getNode addr) ->

15 mkVariable (idGen addr) [] $ compose

16 $ BSet.singleton

17 $ Reference addr DP.root

18

19 IR.CallExpr | isMaterializingCall (Addr.getNode addr) ->

20 mkVariable (idGen addr) [] $ compose

21 $ BSet.singleton

22 $ Reference addr DP.root

23

24 _ -> dataflowValue addr analysis opsHandler

25 where

26 analysis = (mkDataFlowAnalysis ReferenceAnalysis "R" referenceValue){

27 entryPointParameterHandler = epParamHandler,

28 initValueHandler = compose $ BSet.singleton $ NullReference }

29 idGen = mkVarIdentifier analysis

30 compose = ComposedValue.toComposed

31 -- ...

As can be seen, the main node types we are interested in are Literals, Declarations and CallExprs
where the latter two are only relevant when they are materializing. This is due to the fact that these
are the only occurrences where memory is allocated.
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The operators defined by the reference language extension are covered by the OperatorHandlers. The
following list describes how each of them are handled. Note that we do not have to handle derived
operators as their interpretation is covered by their definition.

ref_alloc The reference points to a newly allocated object, we can therefore use the current
node address as creation point and DataPath.root to model the resulting reference.

ref_decl The target reference can be modelled by using the enclosing Declaration of this node
as creation point. Again we use DataPath.root to refer to the whole object.

ref_null Yields a NullReference.

ref_narrow Since this operator is used to obtain a reference to a sub-object within a referenced
object, we not only have to initiate another reference analysis for the referenced object,
but also combine the DataPath(s) of that analysis’ results with the DataPath provided to
the invocation of ref_narrow.

ref_expand Handled similarly to ref_narrow, just expanding instead of narrowing the DataPath
of references.

ref_cast Causes a recursive call of the reference analysis to the referenced object.

ref_reinterpret Same as ref_cast.

File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Analysis/Reference.hs
File: code/core/include/insieme/core/lang/reference.h

4.10.6. Callable Analysis

The callable analysis is a special case of specific analyses as it does not cover a language extension.
Instead it covers function types, which are part of the INSPIRE core language, together with the
related node types Literal, Lambda, and BindExpr.

It is used to identify the target function of a call expression. The three different callable types are
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Lambda, Literal, and Closure. We therefore have the following property space:

1 data Callable = Lambda NodeAddress

2 | Literal NodeAddress

3 | Closure NodeAddress

4 deriving (Eq,Ord,Generic,NFData)

5

6 type CallableSet = BSet.UnboundSet Callable

7

8 instance Solver.Lattice CallableSet where

9 bot = BSet.empty

10 merge = BSet.union

11

12 instance Solver.ExtLattice CallableSet where

13 top = BSet.Universe

The analysis is straight forward in that it handles the related nodes.

1 data CallableAnalysis = CallableAnalysis

2 deriving (Typeable)

3

4 callableValue :: NodeAddress -> Solver.TypedVar (ValueTree SimpleFieldIndex CallableSet)

5 callableValue addr = case getNodeType addr of

6 IR.LambdaExpr ->

7 Solver.mkVariable (idGen addr) [] (compose $ BSet.singleton

8 $ Lambda (fromJust $ getLambda addr))

9

10 IR.LambdaReference ->

11 Solver.mkVariable (idGen addr) [] (compose $ getCallables4Ref addr)

12

13 IR.BindExpr ->

14 Solver.mkVariable (idGen addr) [] (compose $ BSet.singleton (Closure addr))

15

16 IR.Literal ->

17 Solver.mkVariable (idGen addr) [] (compose $ BSet.singleton (Literal addr))

18

19 _ -> dataflowValue addr analysis []

20 where

21 analysis = mkDataFlowAnalysis CallableAnalysis "C" callableValue

22 idGen = mkVarIdentifier analysis

23 compose = ComposedValue.toComposed

24 getCallables4Ref = -- ...

The only special case is encountered when dealing with a LambdaReference. In this case the tree is
searched upwards from the LambdaReference for a matching LambdaDefinition. If the search was
successful the Lambda contained in the LambdaDefinition is used, otherwise the property space’s ⊤
value is returned. This is achieved by getCallables4Ref. This is indicating that any unknown target
function may be represented by the targeted expression.

File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Analysis/Callable.hs
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4.11. Helper Analyses

The analyses described in this section are different from the previously described specific analyses in
that they do not cover a certain language extension (or INSPIRE core language construct) and are not
based on the generic DFA. However, they are supporting the definition of the generic DFA as well as
the specific analyses.

4.11.1. Reachability Analysis

The reachability analysis is divided into two parts, reachableIn and reachableOut. Despite both
of them being distinct analyses with their own respective analysis variables, they work together in
tandem to answer the question of reachability. In detail, reachableIn indicates whether the beginning
of the given node is reachable. In contrast to this, reachableOut indicates whether the end of a given
node is reachable during some execution trace.

For instance, the beginning of a statement inside a CompoundStmt is reachable iff the end of the
previous statement is reachable. If there is no previous statement within the CompoundStmt, the
reachability depends on whether the beginning of the CompoundStmt is reachable.

The property space definitions for both analyses are trivial:

1 newtype Reachable = Reachable Bool

2 deriving (Eq,Show,Generic,NFData)

3

4 instance Solver.Lattice Reachable where

5 bot = Reachable False

6 merge (Reachable a) (Reachable b) = Reachable $ a || b

Note that this definition for the property space is sufficient and does not require to be an ExtLattice

as this analysis is not a DFA.

It follows the definition of the analysis identifier token:

1 data ReachableInAnalysis = ReachableInAnalysis

2 deriving (Typeable)

3

4 reachableInAnalysis :: Solver.AnalysisIdentifier

5 reachableInAnalysis = Solver.mkAnalysisIdentifier ReachableInAnalysis "R[in]"

6

7 data ReachableOutAnalysis = ReachableOutAnalysis

8 deriving (Typeable)

9

10 reachableOutAnalysis :: Solver.AnalysisIdentifier

11 reachableOutAnalysis = Solver.mkAnalysisIdentifier ReachableOutAnalysis "R[out]"

Reachable In

We now look at the definitions of the constraint generators reachableIn and reachableOut. As both
of them are too long to be displayed easily in this thesis as a whole, they are broken up into their
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logical parts.

1 reachableIn :: NodeAddress -> Solver.TypedVar Reachable

2 reachableIn a | isRoot a = Solver.mkVariable (reachableInIdGen a) [] (Reachable True)

3 reachableIn a = case getNodeType parent of

4 -- ...

5 where

6 parent = fromJust $ getParent a

7 idGen = Solver.mkIdentifierFromExpression reachableInAnalysis a

8 compose = ComposedValue.toComposed

We define the beginning of the root node of INSPIRE to be always reachable reflecting the premise
that the analysed code fragment is indeed invoked. For a given node, not being the root, we need to
distinguish a couple of cases, depending on the type of the parent node. All of the following code
snippets (until reaching the definition of reachableOut) are replacing line 4.

IR.Lambda -> Solver.mkVariable (idGen a) [] (Reachable True)

Considering Lambdas to always be reachable is an over-approximation needed to reduce runtime
complexity. Otherwise the necessity for a context sensitive reachability analysis would arise.

1 IR.CompoundStmt -> var

2 where

3 n = getIndex a

4 var = Solver.mkVariable (idGen a) [con] Solver.bot

5 con = if n == 0

6 then Solver.forward (reachableIn parent) var

7 else Solver.forward (reachableOut $ goDown (n-1) parent) var

As already mentioned by the introduction to this subsection, reachability inside a CompoundStmt de-
pends on the previous node inside the CompoundStmt, or if there is no previous node, the reachability
of the CompoundStmt itself.

1 IR.IfStmt -> var

2 where

3 var = Solver.mkVariable (idGen a) [con] Solver.bot

4 con = case getIndex a of

5 0 -> Solver.forward (reachableIn parent) var

6

7 1 -> Solver.forwardIf (compose Boolean.AlwaysTrue)

8 (Boolean.booleanValue $ goDown 0 parent)

9 (reachableOut $ goDown 0 parent)

10 var

11

12 2 -> Solver.forwardIf (compose Boolean.AlwaysFalse)

13 (Boolean.booleanValue $ goDown 0 parent)

14 (reachableOut $ goDown 0 parent)

15 var

16

17 _ -> error "index out of bound"

If the target node is the then or else branch of an IfStmt, the reachability depends on the boolean value
of the condition. Therefore we need to conduct a boolean analysis as can be seen in lines 8 and 13.
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The condition is considered reachable if the IfStmt itself is reachable.

1 IR.WhileStmt -> var

2 where

3 var = Solver.mkVariable (idGen a) [con] Solver.bot

4 con = case getIndex a of

5 0 -> Solver.forward (reachableIn parent) var

6

7 1 -> Solver.forwardIf (compose Boolean.AlwaysTrue)

8 (Boolean.booleanValue $ goDown 0 parent)

9 (reachableOut $ goDown 0 parent)

10 var

11

12 _ -> error "index out of bound"

Regarding reachability, handling a WhileStmt is identical to handling an IfStmt except that there is
no else branch to worry about.

1 _ -> var

2 where

3 var = Solver.mkVariable (idGen a) [con] Solver.bot

4 con = Solver.forward (reachableIn parent) var

For all other nodes, the reachability of the target is equal to the reachability of the parent node.

Reachable Out

We now continue with the definition of reachableOut.

1 reachableOut :: NodeAddress -> Solver.TypedVar Reachable

2 reachableOut a = case getNodeType a of

3 -- ...

4 where

5 idGen a = Solver.mkIdentifierFromExpression reachableOutAnalysis a

For the main part we require a case distinction. The following code snippets replace line 3.

1 IR.ReturnStmt -> Solver.mkVariable (idGen a) [] Solver.bot

2

3 IR.ContinueStmt -> Solver.mkVariable (idGen a) [] Solver.bot

4

5 IR.BreakStmt -> Solver.mkVariable (idGen a) [] Solver.bot

The three simple cases are ReturnStmt, ContinueStmt, and BreakStmt. As they directly break the con-
trol flow, we can say that the end of these statements is never reachable, hence the use of Solver.bot,

83



4. Framework Implementation

corresponding to Reachable False.

1 IR.CompoundStmt -> var

2 where

3 var = Solver.mkVariable (idGen a) [cnt] Solver.bot

4 cnt = if numChildren a == 0

5 then Solver.forward (reachableIn a) var

6 else Solver.forward (reachableOut $ goDown (numChildren a - 1) a) var

The end of a CompoundStmt is reachable iff the end of the last statement in it is reachable. Note
that (for simplicity) we ignore the possibility of exceptions being raised on destructors, leading to an
over-approximation in the result.

1 IR.IfStmt -> var

2 where

3 var = Solver.mkVariable (idGen a) [t,e] Solver.bot

4 t = Solver.forward (reachableOut $ goDown 1 a) var

5 e = Solver.forward (reachableOut $ goDown 2 a) var

In case of an IfStmt, the end is reachable, iff the end of one of the branches is reachable.

1 IR.WhileStmt -> var

2 where

3 var = Solver.mkVariable (idGen a) [cnt] Solver.bot

4 cnt = Solver.forwardIf (ComposedValue.toComposed Boolean.AlwaysFalse)

5 (Boolean.booleanValue $ goDown 0 a)

6 (reachableOut $ goDown 0 a)

7 var

The end of a WhileStmt is reachable iff the condition can evaluate to false. Again, we therefore
require the boolean analysis.

1 _ -> var

2 where

3 var = Solver.mkVariable (idGen a) [con] Solver.bot

4 con = Solver.forward (reachableIn a) var

All other nodes follow the same schema where the end is reachable iff the beginning is reachable.

File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Analysis/Reachable.hs

4.11.2. Exit Point Analysis

The exit point analysis tries to determine the possible exit points of a functions. These are typically
ReturnStmts and the end of the function body. Reachability analysis (Section 4.11.1) is used to
determine whether the control flow can reach a potential exit point, or not.
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The definition of the corresponding property space is trivial:

1 newtype ExitPoint = ExitPoint NodeAddress

2 deriving (Eq,Ord,Generic,NFData)

3

4 type ExitPointSet = BSet.UnboundSet ExitPoint

5

6 instance Solver.Lattice ExitPointSet where

7 bot = BSet.empty

8 merge = BSet.union

Similar to the reachability analysis (previous section), the exit point analysis is not a DFA and there-
fore does not require the instantiation of an ExtLattice.

Only BindExpr and Lambda are of interest to this analysis. All other node types yield an empty set
of ExitPoints. For a BindExpr the exit point is simply the nested CallExpr. For a given Lambda,
all ReturnStmts are collected and checked for reachability. All reachable exit points are joined in an
ExitPointSet.

File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Analysis/ExitPoint.hs

4.11.3. Predecessor Analysis

The traversal of ProgramPoints has already been illustrated in Figure 9. The predecessor analysis
models this traversal accordingly. It is split into three main parts: the first part handles traversal from
a Pre ProgramPoint to its previous Post ProgramPoint, the second deals with Internal ProgramPoints,
and the last one is concerned with the predecessor of Post ProgramPoints.

For a given ProgramPoint the list of predecessors is computed and represented as constraints in our
framework. The property space simply consists of a list of ProgramPoints and concatenation.

1 type PredecessorList = [ProgramPoint]

2

3 instance Solver.Lattice PredecessorList where

4 join [] = []

5 join xs = foldr1 (++) xs

For the preprocessor analysis we do not use a (bound) set, since for each node, there only exist a
limited number of possible predecessors.

The definition of the corresponding analysis identifier and the signature of the analysis’ constraint
generator function follows.

1 data PredecessorAnalysis = PredecessorAnalysis

2 deriving (Typeable)

3

4 predecessorAnalysis :: Solver.AnalysisIdentifier

5 predecessorAnalysis = Solver.mkAnalysisIdentifier PredecessorAnalysis "pred_of"

6

7 predecessor :: ProgramPoint -> Solver.TypedVar PredecessorList

The three parts mentioned can be distinguished by pattern matching on the ProgramPoint parameter
of the function. The base case for this traversal is encountered when asking for the predecessors of
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the root’s Pre ProgramPoint. Since there is no execution step before this program point, the resulting
analysis variable is bound to the empty list.

1 predecessor p@(ProgramPoint a Pre) | isRoot a = Solver.mkVariable (idGen p) [] []

2 predecessor p@(ProgramPoint a Pre) = case getNodeType parent of

3 -- handle part 1

4

5 predecessor p@(ProgramPoint a Internal) = case getNodeType a of

6 -- handle part 2

7

8 predecessor p@(ProgramPoint a Post) = case getNodeType a of

9 -- handle part 3

10

11

12 idGen :: ProgramPoint -> Solver.Identifier

13 idGen pp = Solver.mkIdentifierFromProgramPoint predecessorAnalysis pp

The second part, concerned with Internal ProgramPoints, utilises the exit point Analysis (see Sec-
tion 4.11.2) and callable analysis (see Section 4.10.6) to link to exit points of potential target func-
tions.

An Internal ProgramPoint is returned by the third part only for CallExprs. All other node types either
yield a Pre ProgramPoint if they are a basic expression, like Variable or Literal, or the corresponding
Post ProgramPoint otherwise.

File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Analysis/Predecessor.hs

4.11.4. Call Site Analysis

The call site analysis identifies all possible call sites for a given Lambda or BindExpr. We can use
node addresses to reference a call site, the lattice definition follows:

1 newtype CallSite = CallSite NodeAddress

2 deriving (Eq,Ord,Generic,NFData)

3

4 instance Show CallSite where

5 show (CallSite na) = "Call@" ++ (prettyShow na)

6

7 type CallSiteSet = BSet.UnboundSet CallSite

8

9 instance Solver.Lattice CallSiteSet where

10 bot = BSet.empty

11 merge = BSet.union

Call sites can only be dervied for Lambda and BindExpr nodes, and only when it is not the root node.
In the simple case all call sites are statically determined. Otherwise, we have to utilise the callable
analysis (see Section 4.10.6) to identify all potential call sites.

File: code/analysis/src/cba/haskell/insieme-hat/src/Insieme/Analysis/CallSite.hs
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In this chapter we construct a new analysis using the established framework. Our goal is to implement
an array out-of-bounds analysis. We go through the construction, implementation, and integration
into INSIEME step by step:

1. Defining the goals of the new analysis.

2. Investigating the relevant constructs and language extensions of the INSieme Parallel Interme-
diate REpresentation (INSPIRE).

3. Deriving from the gathered information what components / additional analyses are required to
fulfil our goal.

4. Defining the property spaces of the analyses to implement.

5. Defining the interface for communication between INSIEME and the Haskell-based Analysis
Toolkit (HAT).

6. Setting up the required boilerplate code.

7. Writing a handful of test cases to allow for checking the implementation during development.

8. Implementing the required analyses.

9. Summarising what files have been added / modified by the process.

The implemented analysis is used to evaluate the current state of the framework.

5.1. Defining the Goals

The goal is to create an analysis which can identify out-of-bounds accesses to arrays. For simplicity
we will only concern ourselves with accessing elements of an array beyond its upper bound. Also
covering the lower bound will be a trivial extension and is left as an exercise to the reader.
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The following code fragment will illustrate the essentials:

1 { // Case 1

2 int a[21];

3 a[42];

4 }

5

6 { // case 2

7 int a[21];

8 a[20];

9 }

10

11 { // Case 3

12 int a[21];

13 int *ap = a + 10;

14 ap[20];

15 }

16

17 { // Case 4

18 auto a = new int[21];

19 a[42];

20 delete[] a;

21 }

22

23 { // Case 5

24 int a[21];

25 int b;

26 a[b];

27 }

28

29 { // Case 6

30 int a[21];

31 int b = a[42];

32 }

Case 1 Accessing an element beyond the array’s upper bound. The analysis returns IsOutOfBounds
for a[42].

Case 2 Accessing an element within the array’s upper bound. The analysis returns IsNotOutOfBou
nds for a[20].

Case 3 Same as Case 1, yet the array is accessed indirectly via a pointer offset to the base of the
array. Same result as in Case 1.

Case 4 Same as Case 1, yet the array is allocated using the new keyword. Same result as in Case 1.

Case 5 Accessing the array with an undefined index, the analysis returns MaybeOutOfBounds.

Case 6 Same as Case 1, but involves an assignment.

This marks the base for the following sections. Note that the framework will cover more complicated
cases (eg where a pointer to an array is passed to a function and the function accesses the underlying
array) automatically thanks to the generic Data-Flow Analysis (DFA).
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5.2. Investigating INSPIRE

The different cases defined in the previous section are used as input code the Insieme compiler. The
analysis runs on the resulting INSPIRE program, constructed by the frontend of the compiler. Using
insiemecc we can feed each of the cases to the compiler and retrieve the corresponding Intermedi-
ate Representation (IR) in various formats. case1.cpp is the input to the compiler, while case1.ir,
case1.tree, and case1.json compose the output we are interested in. The following command is
used to obtain the files.

insiemecc --dump-tree case1.tree --dump-json case1.json --dump-ir case1.ir case1.cpp

case1.ir contains the pretty-printed text representation of the corresponding INSPIRE program.
case1.tree can be viewed with a regular text editor to investigate the node structure of this INSPIRE
program. Furthermore case1.json also contains the node structure, but in a format that can be viewed
using INSPYER (see Appendix A), which provides a more interactive viewing experience.

Let us now take a look at the first case.
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1 int main(void) {

2 int a[21];

3 a[42];

4 }

1 decl IMP_main : () -> int<4>;

2 // Inspire Program

3 int<4> function IMP_main (){

4 var ref<array<int<4>,21>,f,f,plain> v1 =

5 ref_decl(type_lit(ref<array<int<4>,21>,f,f,plain>));

6 *ptr_subscript(ptr_from_array(v1), 42);

7 return 0;

8 }

1 (Program | ...

2 (CompoundStmt |

3 (DeclarationStmt |

4 (Declaration |

5 (GenericType | ... )

6 (CallExpr |

7 (GenericType |

8 (StringValue "ref")

9 (Parents )

10 (Types |

11 (GenericType |

12 (StringValue "array")

13 (Parents )

14 (Types |

15 (GenericType | ... )

16 (NumericType |

17 (Literal |

18 (GenericType | ... )

19 (StringValue "21"))))

20 ... )))

21 (Literal |

22 (FunctionType | ... )

23 (StringValue "ref_decl"))

24 (Declaration | ... )))

25 (Variable | ... ))

26 (CallExpr |

27 (GenericType | ...)

28 (Literal |

29 (FunctionType | ... )

30 (StringValue "ref_deref"))

31 (Declaration |

32 (GenericType | ... )

33 (CallExpr |

34 (GenericType | ...)

35 (LambdaExpr |

36 (FunctionType | ... )

37 (LambdaReference |

38 (FunctionType | ... )

39 (StringValue "ptr_subscript"))

40 (LambdaDefinition | ... ))

41 (Declaration | ... )

42 (Declaration | ... ))))

43 (ReturnStmt | ... ))...)

Listing 9: case1.{cpp,ir,tree}

As can be seen in case1.ir and case1.tree, the array is constructed using the operator ref_decl and
accessed via the ptr_subscript operator. Note that the pointer subscript operation is not prohibited,
however, dereferencing its result is. We therefore target calls to ref_deref with our analysis.

Furthermore, it is important to note that the array is never handled directly, but via a reference. Hence
our analysis is concerned with the type ref<array<'a>>. This also means that (at least one of the
components) is very similar to the reference analysis discussed earlier in Section 4.10.5. It follows
that a look at the reference language extension is essential. Furthermore, as the array is also handled
as pointer, taking a look at the pointer language extension is helpful too.

The relevant parts can be found in the header files insieme/core/lang/reference.h and insieme/c

ore/pointer.h. First thing to note here is that the pointer language extension builds on top of the
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reference extension.

For the creation process of the array, ref_decl is used. As this operator is not derived, we have to
handle it explicitly using an OperatorHandler. See the declaration in reference.h

LANG_EXT_LITERAL(RefDecl, "ref_decl", "(type<ref<'a,'c,'v,'k>>) -> ref<'a,'c,'v,'k>")

This size of the array (21) can be inferred from its argument type_lit(ref<array<int<4>, 21>, f,

f, plain>).

For the access we need to investigate the pointer language extension and immediately notice the
following type alias

TYPE_ALIAS("ptr<'a,'c,'v>", "( ref<array<'a>,'c,'v>, int<8> )");

which indicates that a pointer in INSPIRE is handled as a pair of array reference and offset. Its use
can be seen when inspecting the definition of the derived operator ptr_subscript.

1 LANG_EXT_DERIVED(PtrSubscript, R"(

2 (p : ptr<'a,'c,'v>, i : int<8>) -> ref<'a,'c,'v> {

3 return p.0[p.1 + i];

4 }

5 )")

In line 3, the offset i, used for the ptr_subscript call, is simply added to the second part of the pair
p before the actual subscript happens.

As this function requires a pointer as argument, the original array is converted to a pointer by the fron-
tend using the derived operator ptr_from_array, which in turn uses the abstract operator ref_reinterpret.
ref_reinterpret is a reinterpret cast altering the actual interpretation of the referenced memory
call.

1 // from pointer.h

2 LANG_EXT_DERIVED(PtrFromArray, R"(

3 (r : ref<array<'a,'s>,'c,'v>) -> ptr<'a,'c,'v> {

4 return ( ref_reinterpret(r,type_lit(array<'a,inf>)), 0l );

5 }

6 )")

7

8 // from reference.h

9 LANG_EXT_LITERAL(RefReinterpret, "ref_reinterpret", "(ref<'a,'c,'v,'k>, type<'b>)"

10 " -> ref<'b,'c,'v,'k>")

The structure of Case 2 is identical to this one, the only difference is the literal for accessing the array
element. We therefore now look at Case 3.
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1 int main(void) {

2 int a[21];

3 int *ap = a + 10;

4 ap[20];

5 }

1 decl IMP_main : () -> int<4>;

2 // Inspire Program

3 int<4> function IMP_main (){

4 var ref<array<int<4>,21>,f,f,plain> v1 =

5 ref_decl(type_lit(ref<array<int<4>,21>,f,f,plain>));

6

7 var ref<ptr<int<4>>,f,f,plain> v2 =

8 ptr_add(ptr_from_array(v1), 10);

9

10 *ptr_subscript(*v2, 20);

11

12 return 0;

13 }

Listing 10: case3.{cpp,ir}

In this INSPIRE program, the array is accessed via the pointer v2 which is already offset by 10
elements. This offset is created by using the derived operator ptr_add. Its definition follows:

1 LANG_EXT_DERIVED(PtrAdd, R"(

2 (p : ptr<'a,'c,'v>, i : int<8>) -> ptr<'a,'c,'v> {

3 return ( p.0, p.1 + i );

4 }

5 )")

As only this derived operator is used, no additional changes to the analysis are necessary compared
to Case 1 and 2.

Case 4 uses a different mechanism for allocating the array.

1 int main(void) {

2 auto a = new int[21];

3 a[42];

4 delete[] a;

5 }

1 decl IMP_main : () -> int<4>;

2 // Inspire Program

3 int<4> function IMP_main (){

4 var ref<ptr<int<4>>,f,f,plain> v1 =

5 ptr_from_array(

6 // type

7 <ref<array<int<4>,21>,f,f,plain>>

8

9 // memory location

10 (ref_new(type_lit(array<int<4>,21>)))

11

12 // initialisation

13 {}

14 );

15

16 *ptr_subscript(*v1, 42);

17

18 ref_delete(ptr_to_array(*v1));

19

20 return 0;

21 }

Listing 11: case4.{cpp,ir}

The syntax from line 6 to line 13 corresponds to an InitExpr, where the type is written between < >,
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the memory location between ( ), and the initialisation between { }. In this case the type is straight
forward, ref_new is used to allocate the array on the heap, and the array is not initialised.

We therefore have to look at the operator ref_new and see that it is derived and uses ref_alloc which
is an abstract operator. This abstract operator needs to be handled by the analysis using an Opera-

torHandler.

1 LANG_EXT_DERIVED(RefNew, R"(

2 (t : type<'a>) -> ref<'a,f,f> {

3 return ref_alloc(t, mem_loc_heap );

4 }

5 )")

6

7 LANG_EXT_LITERAL(RefAlloc, "ref_alloc", "(type<'a>, memloc) -> ref<'a,f,f>")

Case 5 does not introduce any new constructs, thus we can continue our investigation process.

In Case 6, the call to ref_deref we are interested in is wrapped in a Declaration which in turn is
wrapped in a DeclarationStmt to model the assignment. Since nothing else changed, we continue
with a summary.

To summarise our findings we put together a table listing the relevant operators, shortly describing
each of them.

Operator Type Description

ptr_add derived Offsets a given pointer with a given offset.

ptr_from_array derived Casts a given pointer to an array.

ptr_subscript derived Returns a reference to a specific array element.

ref_alloc abstract Allocate an object of the given type at a specific memory
location (stack / heap), returning a reference to it.

ref_decl abstract Declares an object of the given type and returning a refer-
ence to it.

ref_deref abstract Obtain the data stored in the memory location referenced
by the given reference.

ref_new derived Allocates an object of the given type at the heap, returning
a reference to it.

ref_reinterpret abstract Alters the actual interpretation of the referenced memory
cell.

5.3. Designing the Analysis

Our design of this new analysis is based on the investigations done in the previous section. As has
already been mentioned, the type we are concerned with the most is ref<array<'a>>. It follows that
the operators of the reference language extensions are relevant to this analysis.
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We decide to split the analysis into two parts. One for identifying the index (ie offset) used to access
the array, one for deriving the size (ie number of elements) of the array.

The first part can be accomplished fully by the reference analysis (see Section 4.10.5). The key to
this is by investigating the corresponding DataPath derived by the reference analysis.

For the second part we have create a new specialised DFA, tracking the number of elements of an
allocated array. We will therefore refer to this analysis as element count analysis.

A call to our (yet to construct) function outOfBounds will trigger both analyses and compare the
results. If an out-of-bounds access is noticed (ie an access where the offset is equal or greater to the
array’s element count), IsOutOfBounds is returned. If one (or both) of the triggered analyses could
not determine an accurate enough result, MaybeOutOfBounds is returned. Otherwise we can safely say
that no out-of-bounds (according to our set goals) occurs returning IsNotOutOfBounds.

Next we define the property spaces of our two sub-analyses.

5.4. Defining the Property Spaces

This is straightforward as we have already covered the reference analysis in Section 4.10.5 and Data-

Paths in Section 4.10.4. Using the established reference analysis on the offset, we will get back a set
of References, where References are defined as follows:

1 data Reference i = Reference { creationPoint :: Location

2 , dataPath :: DP.DataPath i }

3 | NullReference

4 | UninitializedReference

5 deriving (Eq,Ord,Show,Generic,NFData)

Where we are interested in the DataPath of a Reference. The type parameter iwill be a SimpleFieldIn-
dex (see Section 4.6). From the DataPath we can infer the index used for accessing the array.

The element count analysis provides us a SymbolicFormulaSet like the arithmetic analysis (see Sec-
tion 4.10.2). This set contains SymbolicFormulas modelling the element count of the array. We reuse
the Lattice and ExtLattice instance definitions of SymbolicFormula.

5.5. Defining the Interface

In this case, the interface is trivial and can be derived from the design process. The possible outcomes
are gathered in a single Algebraic Data Type (ADT).

1 OutOfBoundsResult = MayBeOutOfBounds

2 | IsNotOutOfBounds

3 | IsOutOfBounds

4 deriving (Eq,Ord,Enum,Show,Generic,NFData)

We could have used the same approach as for the boolean analysis (see Section 4.10.3), by defining
this enumeration in a dedicated header file, which is then used in Haskell and C++ to ensure that the
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mapping is always correct. Yet, for simplicity, we chose not to and define an identical enumeration
in C++. The definition goes into a new header file, dedicated to the out-of-bounds analysis:

1 // insieme/analysis/cba/haskell/out_of_bounds_analysis.h

2

3 // namespace insieme::analysis::cba::haskell

4 enum class OutOfBoundsResult : int {

5 MayBeOutOfBounds,

6 IsNotOutOfBounds,

7 IsOutOfBounds,

8 };

Furthermore we add the prototype of the analysis function to the same header file.

1 // insieme/analysis/cba/haskell/out_of_bounds_analysis.h

2

3 // namespace insieme::analysis::cba::haskell

4 OutOfBoundsResult getOutOfBounds(Context& ctxt, const CallExprAddress& expr);

The Haskell function representing the out-of-bounds analysis has the following signature and goes
into a new file OutOfBounds.hs:

outOfBounds :: SolverState -> NodeAddress -> (OutOfBoundsResult,SolverState)

As the interface for C++ as well as Haskell has now been established, the next step is to write the
necessary boiler plate code in the adapter.

5.6. Setup Boilerplate

The first thing we take care of is the exporting of the Haskell outOfBounds function. As our result
is an enumeration we can simply pass an integer representing the corresponding enum value via the
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Foreign Function Interface (FFI). The following code is added to Adapter.hs.

1 foreign export ccall "hat_out_of_bounds"

2 outOfBounds :: StablePtr Ctx.Context -> StablePtr Addr.NodeAddress -> IO CInt

3

4 outOfBounds ctx_hs expr_hs = do

5 ctx <- deRefStablePtr ctx_hs

6 expr <- deRefStablePtr expr_hs

7 let (result,ns) = OOB.outOfBounds (Ctx.getSolverState ctx) expr

8 let ctx_c = Ctx.getCContext ctx

9 ctx_nhs <- newStablePtr $ ctx { Ctx.getSolverState = ns }

10 updateContext ctx_c ctx_nhs

11 return $ fromIntegral $ fromEnum result

The export is available under the symbol hat_out_of_bounds which we import in C++ next.

1 extern "C" {

2 namespace hat = insieme::analysis::cba::haskell;

3 int hat_out_of_bounds(hat::StablePtr ctx, const hat::HaskellNodeAddress expr_hs);

4 }

This import and the wrapper around it (next code snippet) both go into a new source file out_of_bou
nds_analysis.cpp.

1 // namespace insieme::analysis::cba::haskell

2 OutOfBoundsResult getOutOfBounds(Context& ctxt, const core::CallExprAddress& call) {

3 const auto& refext = call.getNodeManager()

4 .getLangExtension<core::lang::ReferenceExtension>();

5

6 if (!refext.isCallOfRefDeref(call)) {

7 return OutOfBoundsResult::IsNotOutOfBounds;

8 }

9

10 auto call_hs = ctxt.resolveNodeAddress(call);

11 int res = hat_out_of_bounds(ctxt.getHaskellContext(), call_hs);

12 return static_cast<OutOfBoundsResult>(res);

13 }

As the analysis is to be only invoked on calls to the ref_deref operator, we import the reference
language extension in lines 3 and 4 and ensure that the argument call is indeed a call to ref_deref

in lines 6–8.

Note that we have to add the new Haskell module (defined by OutOfBounds.hs) to the list of modules
in insieme-hat.cabal.

5.7. Write Test Cases

Before actually implementing the analysis, setting up a few test cases is a good idea. This eases the
development process as we can immediately verify the correctness of our implementation. Since we
have already defined six cases the analysis should cover, we can morph these cases into unit tests.
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Insieme uses the Google Test Framework1 (aka gtest) for most of its infrastructure testing – therefore
we also use gtest and integrate the tests into the infrastructure.

Important to note here is that we are not using the original input code for our tests, but the correspond-
ing INSPIRE programs. Otherwise we would have a strong coupling between the analysis module
and Insieme’s frontend.

Each test case for the out-of-bounds analysis goes into the file out_of_bounds_analysis_test.cc and
will be structured as follows.

1 TEST(OutOfBounds, Basic) {

2 NodeManager mgr;

3 IRBuilder builder(mgr);

4 Context ctx;

5

6 auto stmt = builder.parseStmt(

7 "{"

8 " var ref<array<int<4>, 21>> a = ref_decl(type_lit(ref<array<int<4>, 21>>));"

9 " *ptr_subscript(ptr_from_array(a), 42);"

10 "}"

11 ).as<CompoundStmtPtr>();

12 auto call = CompoundStmtAddress(stmt)[1].as<core::CallExprAddress>();

13

14 ASSERT_EQ(OutOfBoundsResult::IsOutOfBounds, getOutOfBounds(ctx, call));

15 }

In line 1, OutOfBounds is the group this test case belongs to and Basic is its (unique) name. The
argument to the parseStmt call in line 6 is the INSPIRE program for this test. The CallExpr of
interest is extracted from it in line 12 and passed to the out-of-bounds analysis as input in line 14. We
expect the result to be IsOutOfBounds.

Note that the extracted CallExpr (input to the analysis) is a call to ref_deref as the problem of out-
of-bound access occurs only upon dereferencing.

The file out_of_bounds_analysis_test.cc is placed inside the test sub-directory of the analysis
module. Insieme’s build infrastructure will automatically create an executable allowing us to run all
test cases of the out-of-bounds analysis in a single go. We are also able to run only a subset of the
test cases by using the --gtest_filter option provided by gtest.

5.8. Implementation

The big picture of this analysis has been communicated in Section 5.3. Before starting with imple-
menting the element count analysis we define ourselves the following helper functions.

1 maybeToBool :: Maybe Bool -> Bool

2 maybeToBool = Data.Foldable.or

3

4 goesDown :: [Int] -> NodeAddress -> NodeAddress

5 goesDown l = foldr1 (.) $ goDown <$> reverse l

1https://github.com/google/googletest
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5.8.1. Element Count Analysis

The element count analysis is a specialised DFA and therefore requires some boilerplate code:

1 data ElementCountAnalysis = ElementCountAnalysis

2 deriving (Typeable)

3

4 elementCountAnalysis :: DataFlowAnalysis ElementCountAnalysis

5 (ValueTree SimpleFieldIndex

6 (SymbolicFormulaSet BSet.Bound10))

7

8 elementCountAnalysis = (mkDataFlowAnalysis ElementCountAnalysis "EC" elementCount)

9

10 elementCount :: NodeAddress -> Solver.TypedVar (ValueTree SimpleFieldIndex

11 (SymbolicFormulaSet BSet.Bound10))

12

13 elementCount addr = dataflowValue addr elementCountAnalysis ops

14 where -- ...

This analysis covers the operators of the reference language extension and therefore uses OperatorHan-
dlers (ops) to model their semantics. The simplest case is encountered when dealing with a ref_null
as the element count is zero.

1 refNull = OperatorHandler cov dep val

2 where

3 cov a = isBuiltin a "ref_null"

4 dep _ = []

5 val a = toComposed $ BSet.singleton $ Ar.zero

Next, the operators ref_cast, ref_reinterpret, ref_narrow, and ref_expand simply forward the ele-
ment count of their (first) argument as their semantics do not yield any modifications.

1 noChange = OperatorHandler cov dep val

2 where

3 cov a = any (isBuiltin a) ["ref_cast", "ref_reinterpret" , "ref_narrow", "ref_expand"]

4 dep _ = [Solver.toVar baseRefVar]

5 val a = Solver.get a baseRefVar

6

7 baseRefVar = elementCount $ goDown 1 $ goDown 2 addr

ref_decl and ref_new are used for the creation of arrays as we have observed at the beginning of this
chapter. From them we can extract the size of the array.

1 creation = OperatorHandler cov dep val

2 where

3 cov a = any (isBuiltin a) ["ref_decl", "ref_new"] && isRefArray

4 dep _ = Solver.toVar arraySize

5 val a = Solver.get a arraySize

6

7 arraySize = arithmeticValue $ goesDown [0,2,0,2,1,0] addr

8

9 isRefArray = maybeToBool $ isArrayType <$> (getReferencedType $ goDown 0 addr)

Note the check in line 3 as we only cover creations of arrays. From the call to ref_decl or ref_new
we invoke the arithmetic analysis on the node representing the size of the array and forward its result.
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The location of the array size, here the node path [0,2,0,2,1,0] can be inferred from Listing 9.

We also support scalars, their element count will be one.

1 scalar = OperatorHandler cov dep val

2 where

3 cov a = any (isBuiltin a) ["ref_decl", "ref_new"] && not isRefArray

4 dep _ = []

5 val _ = toComposed $ BSet.singleton $ Ar.one

This completes our list of operator handlers.

ops = [refNull, noChange, creation, scalar]

5.8.2. Getting the Array Index

The element count analysis provides us with a SymbolicFormulaSet. In order to (easily) check for out-
of-bounds accesses, the array index part should provide its result in a similar data structure. From
the reference analysis we get a ReferenceSet, where the containing References provide the DataPath
from which the index can be extracted. Therefore we now construct the parts responsible for bringing
the result into the wanted data structure

1 toDataPath :: Ref.Reference i -> Maybe (DP.DataPath i)

2 toDataPath (Ref.Reference _ dp) = Just dp

3 toDataPath _ = Nothing

4

5 toPath :: DP.DataPath i -> Maybe [i]

6 toPath dp | DP.isInvalid dp = Nothing

7 toPath dp = Just $ DP.getPath dp

8

9 toFormula :: [SimpleFieldIndex] -> Maybe SymbolicFormula

10 toFormula [] = Just Ar.zero

11 toFormula (Index i:_) = Just $ Ar.mkConst $ fromIntegral i

12 toFormula _ = Nothing

Note that each of the functions returns a Maybe as there exists the possibility for the conversion to fail.
This would happen, for instance, if the received ReferenceSet contains a NullReference.

All that is left to dos, is to combine these parts using Kleisli composition, convert the results to
ArrayAccess, and adjust the bound; yielding:

1 data ArrayAccess = ArrayAccess SymbolicFormula

2 | InvalidArrayAccess

3 deriving (Eq,Ord,Show,Generic,NFData)

4

5 convertArrayIndex :: Ref.ReferenceSet SimpleFieldIndex -> BSet.UnboundSet ArrayAccess

6 convertArrayIndex = BSet.changeBound

7 . BSet.map (maybe InvalidArrayAccess ArrayAccess)

8 . BSet.map (toDataPath >=> toPath >=> toFormula)
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5.8.3. Putting it Together

Now that we have the array size and the index used to access it in a usable format, we can put the
two parts together, finally implementing outOfBounds. arraySize and arrayIndex is processed as
follows.

1 (arrayIndex',ns) = Solver.resolve init

2 $ Ref.referenceValue

3 $ goDown 1 $ goDown 2 addr

4

5 arrayIndex :: BSet.UnboundSet ArrayAccess

6 arrayIndex = convertArrayIndex $ toValue arrayIndex'

7

8 (arraySize',ns') = Solver.resolve ns

9 $ elementCount

10 $ goDown 1 $ goDown 2 addr

11

12 arraySize :: SymbolicFormulaSet BSet.Unbound

13 arraySize = BSet.changeBound $ toValue arraySize'

First the arrayIndex is derived using the reference analysis and an initial SolverState (init). The
resulting SolverState (ns) is then used with the new element count analysis to derive arraySize.

Next, each element of arrayIndex is compared with each element of arraySize and checked for out-
of-bounds access.

1 isOutOfBound :: ArrayAccess -> SymbolicFormula -> Bool

2 isOutOfBound (ArrayAccess i) s = Ar.numCompare i s /= Ar.NumLT

3 isOutOfBound InvalidArrayAccess _ = True

4

5 oobs = BSet.toList $ BSet.lift2 isOutOfBound arrayIndex arraySize

The result of the analysis is determined by whether oobs contains at least a single True.

1 outOfBounds :: SolverState -> NodeAddress -> (OutOfBoundsResult,SolverState)

2 outOfBounds init addr = (result,ns')

3 where

4 result = case () of

5 _ | BSet.isUniverse arrayIndex -> MayBeOutOfBounds

6 | BSet.isUniverse arraySize -> MayBeOutOfBounds

7 | or oobs -> IsOutOfBounds

8 | otherwise -> IsNotOutOfBounds

5.9. Summary

To summarise the construction process a table is presented providing an overview of what files have
been added / modified together with a short description.
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File State Description

Adapter.hs modified Now also contains Haskell export declara-
tions for analysis function.

OutOfBounds.hs added Defines the out-of-bounds analysis and its
property space.

insieme-hat.cabal modified Contains a list of all Haskell modules of
HAT.

out_of_bounds_analysis.cpp added Wraps the imported out-of-bounds analysis
function for C++.

out_of_bounds_analysis.h added Defines the analysis result and function pro-
totype in C++.

out_of_bounds_analysis_test.cc added Contains a unit test suite for the out-of-
bounds analysis.

The adapter and insieme-hat.cabal are the only files that have beenmodified, all other files are simply
added to the code base. Note that it is not mandatory to have all FFI export declarations located in
the adapter. We could also have stated those directives in OutOfBounds.hs, yet we decided against it
in order to keep all FFI export declarations (and their relevant logic) in one single (Haskell) module.
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The evaluation of the toolkit is done by using the newly constructed analysis from Chapter 5. This
process is split into two parts, one focusing on the qualitative features, the other focusing on the
quantitative.

6.1. Qualitative Evaluation

The qualitative evaluation focuses on the ability of the toolkit to lift an analysis to more complex input
programs than explicitly covered by the analysis implementation. Non of the explicitly developed
analyses components is dealing with function calls. Yet, as we have used the mechanisms provided
by the framework, no modifications are needed to make the analysis inter-procedural. To show this,
two additional test cases are constructed:

1 def fun = function (arr : ref<ptr<int<4>>>) -> ptr<int<4>> {

2 return ptr_add(*arr, 20);

3 };

4

5 {

6 var ref<array<int<4>,21>> arr = ref_decl(type_lit(ref<array<int<4>,21>>));

7 var ref<ptr<int<4>>> ap = fun(ptr_from_array(arr));

8 *ptr_subscript(*ap, 10);

9 }

Listing 12: case7.ir

1 def fun = function (arr : ref<ptr<int<4>>>) -> ptr<int<4>> {

2 return ptr_add(*arr, 10);

3 };

4

5 {

6 var ref<array<int<4>,21>> arr = ref_decl(type_lit(ref<array<int<4>,21>>));

7 var ref<ptr<int<4>>> ap = fun(ptr_from_array(arr));

8 *ptr_subscript(*ap, 10);

9 }

Listing 13: case8.ir

Note the different offset in line 2 (both cases).

For the ref_deref in line 8 (the first * operator in both cases), IsOutOfBoundsmust be returned by the
analysis in Case 7, and IsNotOutOfBounds in Case 8.
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We also provide two more test cases running the analysis on a scalar, instead of an array.

1 {

2 var ref<int<4>> a = ref_decl(type_lit(ref<int<4>>));

3 var ref<ptr<int<4>>> ap = ptr_from_ref(a);

4 *ptr_subscript(*ap, 42);

5 }

Listing 14: case9.ir

1 {

2 var ref<int<4>> a = ref_decl(type_lit(ref<int<4>>));

3 var ref<ptr<int<4>>> ap = ptr_from_ref(a);

4 *ptr_subscript(*ap, 0);

5 }

Listing 15: case10.ir

Case 9 should yield IsOutOfBounds while Case 10 should yield IsNotOutOfBounds.
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As with the initial six cases in Section 5.7, Cases 7–10 are converted to unit tests and executed.

> ./ut_analysis_cba_haskell_out_of_bounds_analysis_test --gtest_filter=*AcrossFunctionCall*

Running main() from gtest_main.cc

Note: Google Test filter = *AcrossFunctionCall*

[==========] Running 2 tests from 1 test case.

[----------] Global test environment set-up.

[----------] 2 tests from OutOfBounds

[ RUN ] OutOfBounds.AcrossFunctionCall

[ OK ] OutOfBounds.AcrossFunctionCall (472 ms)

[ RUN ] OutOfBounds.AcrossFunctionCallNotOutOfBounds

[ OK ] OutOfBounds.AcrossFunctionCallNotOutOfBounds (286 ms)

[----------] 2 tests from OutOfBounds (758 ms total)

[----------] Global test environment tear-down

[==========] 2 tests from 1 test case ran. (759 ms total)

[ PASSED ] 2 tests.

> ./ut_analysis_cba_haskell_out_of_bounds_analysis_test --gtest_filter=*Scalar*

Running main() from gtest_main.cc

Note: Google Test filter = *Scalar*

[==========] Running 2 tests from 1 test case.

[----------] Global test environment set-up.

[----------] 2 tests from OutOfBounds

[ RUN ] OutOfBounds.Scalar

[ OK ] OutOfBounds.Scalar (456 ms)

[ RUN ] OutOfBounds.ScalarNotOutOfBounds

[ OK ] OutOfBounds.ScalarNotOutOfBounds (281 ms)

[----------] 2 tests from OutOfBounds (737 ms total)

[----------] Global test environment tear-down

[==========] 2 tests from 1 test case ran. (737 ms total)

[ PASSED ] 2 tests.

The new test cases pass, evincing that the framework indeed transparently integrates support for
language features not explicitly covered.

6.2. Quantitative Evaluation

For the quantitative evaluation we utilise Insieme’s integration tests and run the out-of-bounds anal-
ysis on every ref_deref contained. For this, we do not care about the actual result, but about the run-
time. This evaluates whether the analysis and framework provide sufficient enough performance.

As the integration tests are input files to the compiler, they are only available as C/C++ sources. We
therefore chose to create another driver (haskell_dumper) dedicated to reading C/C++ input files and
dumping the binary representation of the corresponding INSieme Parallel Intermediate REpresen-
tation (INSPIRE) program. Next, this dump is read by another binary (insieme-hat) which then
collects all node address of ref_deref calls and runs the out-of-bounds analysis on them. To max-
imise modularity, the part for finding target nodes (in this case calls to ref_deref) and running the
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analysis is kept concise in dedicated functions.

1 findTargets :: NodeAddress -> [NodeAddress] -> [NodeAddress]

2 findTargets addr xs = case getNode addr of

3 IR.Node IR.CallExpr _ | Q.isBuiltin (goDown 1 addr) "ref_deref" -> addr : xs

4 _ -> xs

5

6 analysis :: NodeAddress -> State SolverState OutOfBoundsResult

7 analysis addr = do

8 state <- get

9 let (res, state') = outOfBounds state addr

10 put state'

11 return res

The binary dump is read from stdin and each analysis run uses the SolverState outputted by the
previous run.

1 main :: IO ()

2 main = do

3 -- parse binary dump (valid input expected)

4 dump <- .getContents

5 let Right ir = parseBinaryDump dump

6

7 let targets = foldTreePrune findTargets Q.isType ir

8 let res = evalState (sequence $ analysis <$> targets) initState

9

10 start <- getCurrentTime

11 evaluate $ force res

12 end <- getCurrentTime

13

14 let ms = round $ (*1000) $ toRational $ diffUTCTime end start :: Integer

15 printf "%d ms" ms

Note that in line 11 res is evaluated to normal form using force from the deepseq package. This
is necessary since Haskell features lazy-evaluation and evaluate will only evaluate the argument to
weak head normal form1 (ie not fully). force on the other hand evaluates the argument completely.

The evaluation is performed on an Intel(R)Xeon(R)CPUE5-2699v3@2.30GHz with 256GB of mem-
ory.

Overall 320 integration tests have been used, containing about 3.81×108 nodes (not shared) alto-
gether, from which 63 662 are calls to ref_deref. To minimise measurement errors, each integration
test is processed by insieme-hat 10 times from which the arithmetic mean of the outputted execution
times is recorded. The result is displayed in Figure 11. It shows that the majority of the test cases
can be completed in under 30ms. The full list of integration tests (with the average execution time
of the 10 runs) is provided in Appendix B.

1See https://wiki.haskell.org/Weak_head_normal_form for more details.
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Figure 11.: Runtime of the 320 test cases.

Furthermore, memory consumption has been recorded using GNU time 1.7. Figure 12 displays the
recorded Maximum Resident Set Size. The majority of test cases do not consume more than 100MB
of memory.
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Figure 12.: Memory consumption of the 320 test cases.
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7. Conclusion

In this thesis a framework for implementing various static program analyses has been presented. It
utilises a Constraint-Based Analysis (CBA) framework, which is originally derived from the Data-
Flow Analysis (DFA) framework presented by Nielson et al. [15] and has further been customised by
Jordan [10]. This toolkit, created using Haskell, integrates seamlessly into the Insieme compiler, but
can also be used as standalone.

It enables developers and researchers to rapidly develop and use specialised static program analyses,
for various different kinds of applications (eg auto-tuning or identifying optimisation candidates in a
compilation process). In Chapter 5 we have shown that crafting a new analysis only requires a small
amount of boiler plate code and some moderate implementation effort. Furthermore we have shown
that the framework elevates the capabilities of newly realised analyses while maintaining decent per-
formance.

7.1. Future work

While the framework’s current state already allows one to use it for various tasks, certain language
features of the INSieme Parallel Intermediate REpresentation (INSPIRE) are not yet supported. As
stated in Section 1.3, this merely builds the foundation upon which development will iterate on in
future.

Regarding documentation, the core concept of the framework itself, as well as analyses implemented
using it, are quite straight forward to grasp. Yet, further documentation of certain edge cases would
be helpful. However, the main challenge encountered by new developers is understanding the dif-
ferent node types, constructs, and language extensions of INSPIRE. This issue can be addressed by
providing more in-depth documentation on language extensions and their underlying semantics, as
well as their connections to other language extensions and the INSPIRE core language.

On the framework side, creating a catalogue of convenience functions (mainly queries) for all the
different INSPIRE constructs would further ease the creation and prototype process of analysis.

Unit-testing an analysis is not that much of a hassle when using the framework together with Insieme.
For standalone purposes, however more tooling would be required to be efficient at writing tests.

And last, but certainly not least, debugging techniques and tools are needed. At the current state of
development, debugging mainly resorts to using Haskell’s Debug.Trace and dumping the computed
Assignment, render it via graphviz1. A notable improvement would be to have a dedicated viewer for
the Assignment, in a similar fashion as INSPYER to INSPIRE.

1http://www.graphviz.org/
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A. INSPYER

The INSPYER tool was created to visualise a program represented in Insieme’s Intermediate Rep-
resentation (IR), also known as the INSieme Parallel Intermediate REpresentation (INSPIRE), in
an interactive way. Using the text representation of INSPIRE, as seen in Section 3.4, is helpful for
inspecting an INSPIRE program. Yet it is a bit cumbersome to work with – even when using an edi-
tor, like Vim1, which supports code folding, jumping to corresponding closing brackets, and allows
bookmarking locations. The main idea is to have a Graphical User Interface (GUI) application which
allows one to collapse subtrees which are not interesting and display useful information for each node
in one line (ie row). Navigation functions like goto and search are available as well.

INSPYER is created as server-less web application using only HTML2, CSS3, and JavaScript. This
allows for it to be run locally using a browser or even host it online4 – in our case we are using GitHub
Pages5. Bootstrap6, an HTML, CSS, and JavaScript framework is used to create the user interface in
little time and to provide a pleasing look and feel. A screenshot of INSPYER can be seen in Figure 13
where Insieme’s FFT7 integration test has been loaded.

Figure 13.: Screenshot of INSPYER visualising the FFT integration test.

1http://www.vim.org
2HyperText Markup Language
3Cascading Style Sheets
4https://insieme.github.io/inspyer
5https://pages.github.com
6http://getbootstrap.com
7Fast Fourier Transformation
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A.1. JSON Export

An INSPIRE program is exported using Insieme’s JavaScript Object Notation (JSON) dumper. The
format is straight forward and similar to the binary dump. An example is given in Listing 16. The
JSON object is required to have a field named root which identifies the root node. Each IR node is
attached to the object using a unique key, for simplicity the original memory address is used. The
information dumped for one node consists of the node type, its children and (in case its a value node)
the value. One can already see in the example, that the list of children is just a list of the memory
locations of the child nodes. The memory location serves as a unique identifier for each node. This
representation produces node sharing, similar to the binary dump.

1 {

2 "root" : "0x30b8270",

3 "0x30b8270" : {

4 "Kind" : "Program",

5 "Children" : ["0x30b86c0"]

6 },

7 "0x30b86c0" : {

8 "Kind" : "LambdaExpr",

9 "Children" : ["0x218f910","0x21ad1b0","0x30b8760"]

10 },

11 "0x1f588f0" : {

12 "Kind" : "StringValue",

13 "Value" : "int",

14 "Children" : []

15 },

16 ...

17 }

Listing 16: Example of an INSPIRE JSON dump.

The user loads the JSON dump either by selecting it via the corresponding dialogue (using the button
labelled Load located in the top bar) or by dragging and dropping the file into the main area of IN-
SPYER. Doing this will trigger the JavaScript logic, loading the file using FileReader and JSON.parse.
The JSON dump is then interpreted. A class Node, dedicated for maintaining and working with nodes,
has been implemented. The tree visualisation is generated incrementally – upon expanding a node,
its children will be created. This keeps the DOM1 small and simple, which is important to provide
adequate performance – even small input programs can yield a big INSPIRE program. Having more
than 1000 nodes displayed simultaneously results in an unresponsive (ie laggy) user experience. This
limitation is inherited by the browser.

A.2. User Interface

The tree can be navigated either by using the mouse or the keyboard. Clicking on a node will cause
it to expand (or collapse if it is already expanded). When using the keyboard, the currently selected
node is outlined by a thicker, darker border. Hitting Space will do the same to the selected
node as clicking on it. Other nodes can be selected by using the cursor keys to move the selection.

1Document Object Model
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and will change the selection on the current level of the tree. moves the selection to the
parent node. selects the first child of the currently selected node, expanding it if necessary.

Each line, representing a node, consists of (from left to right):

• an indicator showing whether the node is expanded or collapsed;
• a bookmark button;
• the corresponding node address;
• the node type;
• its INSPIRE type1 (eg int<4>);
• its value1 (eg 9 or "Hello";
• its variable id1; and
• the unique identifier in form of the original memory location.

The controls (navigation bar in Figure 13) of INSPYER allow you to (again from left to right):

• load an INSPIRE program from a JSON dump;
• load meta information from a meta file (see Appendix A.3);
• reload the JSON dump and meta file (keeping bookmarks and search results);
• reload the JSON dump and meta file (clearing bookmarks and search results);
• move the selection back and forth between bookmarked nodes;
• show / hide node addresses – useful deep inside the tree, where node addresses can get unpleas-
antly long;

• directly jump to a node given a node address;
• search the tree using a Regular Expression (RegEx), jumping back and forth between results;
and

• show a modal window containing information about hotkeys.

The modal window can be extended easily to hold more, infrequently used functions. There are
currently no such functions implemented, but may be needed in the future. An example for this
would be statistics about the currently loaded dump.

The search functionality is implemented using web workers2. This allows us to search the tree using
a dedicated thread – the GUI remains responsive even if it takes multiple seconds to search the whole
tree. The set of search results will be updated periodically so the user can inspect results matching
the query before the search process is completed.

The Fast Fourier Transform (FFT) example contains 34 254 nodes and can be fully searched in about
15 seconds – ‘InitExpr’ was used as search string, yielding 25 hits. Note that the number of hits
has a huge performance impact as each hit results in a new JavaScript object, which also has to be
transferred from the web worker to the main thread. Searching the FFT example for ‘StringValue’
yields over 2 500 000 results before the browser kills the main thread (and web worker). This took
about two minutes to happen. These tests have been run on an Intel(R) Core(TM) i3-3120M CPU @

2.50GHz with 16 GB DDR3 Memory @ 1600Hz in Chromium 51.

The web worker API requires an external script file for the thread, but loading the script later on is
not possible from a clients filesystem due to security concerns. A workaround is to have the script
embedded into the page and create a Binary Long OBject (blob) from it. This blob will then be
passed to the worker. Therefore the logic of the search web worker is found in index.html at the

1If available.
2https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
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bottom, inside a script tag with type javascript/worker. It is important to set the type to something
different from text/javascript to prevent the browser from executing this code right away.

A.3. Meta Data

Themeta file is a JSON formatted file that is associated with one JSON dump of an INSPIRE program
and holds additional information. Neither what kind of information can be contained nor where that
information comes from is fixed. The meta file can:

• bookmark specific nodes, the first bookmark will be jumped to on load;
• expand specific nodes;
• highlight specific nodes;
• attach labels to specific nodes; and
• attach multiline information (including markup), shown when a node is expanded.

As can be seen in Listing 17, node addresses are used to reference the specific nodes.

1 {

2 "bookmarks": [

3 "0-0-2-0-1-1",

4 "0-0-2-0-1-2"

5 ],

6 "expands": [

7 "0-0-2-0-1-2-1-0",

8 "0-0-2-0-1-2-6-0",

9 "0-0-2-0-1-2-12-0",

10 "0-0-2-0-1-2-15-0"

11 ],

12 "labels": {

13 "0-0-2-0-1-2-1": "some information",

14 "0-0-2-0-1-2-3": "some other information"

15 },

16 "highlights": [

17 "0-0-2-0-1-2-4",

18 "0-0-2-0-1-2-5",

19 "0-0-2-0-1-2-6",

20 "0-0-2-0-1-2-7",

21 "0-0-2-0-1-2-8"

22 ],

23 "bodies": {

24 "0-0-2-0-1-2-6": "Some <b>additional</b> information text"

25 }

26 }

Listing 17: An example meta file.

Insieme maintains a helper class for generating meta files. It is currently used in the analysis stress
test and the module responsible for semantic checks. The class declaration is seen in Listing 18. One
can manually instantiate this class, save the information and export it afterwards. This, on the other
hand, requires making the instance available at every point where information needs to be added –
and at the location where it should be exported. Because of this, and since there usually only exists
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one INSPIRE program per run of the Insieme compiler, one static instance of the class and functions
wrapping the default instance’s functionality are provided. Listing 19 displays these provided utility
functions.

1 class MetaGenerator {

2 private:

3 NodePtr root;

4 std::set<NodeAddress> bookmarks;

5 std::set<NodeAddress> expands;

6 std::set<NodeAddress> highlights;

7 std::map<NodeAddress, std::string> labels;

8 std::map<NodeAddress, std::string> bodies;

9

10 void checkRoot(const NodePtr root);

11

12 public:

13 explicit MetaGenerator(const NodePtr root);

14 void addBookmark(const NodeAddress addr);

15 void addExpand(const NodeAddress addr);

16 void addHighlight(const NodeAddress addr);

17 void addLabel(const NodeAddress addr, const std::string label);

18 void addBody(const NodeAddress addr, const std::string body);

19 void dump(std::ostream& out);

20 };

Listing 18: MetaGenerator utility class declaration.

1 void addBookmark(const NodeAddress addr);

2

3 void addExpand(const NodeAddress addr);

4

5 void addHighlight(const NodeAddress addr);

6

7 void addLabel(const NodeAddress addr, const std::string label);

8

9 void addBody(const NodeAddress addr, const std::string body);

10

11 void dumpTree(std::ostream& out, const NodePtr root);

12

13 void dumpMeta(std::ostream& out);

Listing 19: Declarations of functions wrapping the static, default instance of MetaGenerator.
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B. Integration Test List

The following list contains all 320 integration tests used for the quantitative evaluation (see Sec-
tion 6.2). Each has been run 10 times and the execution time of the out-of-bounds analysis, as well
as the overall memory consumption has been recorded. The number in parenthesis states the average
time consumed by all 10 runs, followed by the memory consumption.

cilk/fib (14.8ms, 5780 kB)
ocl/ocl_mat_mult (1203.7ms, 140 736 kB)
ocl/ocl_mat_trans (582.2ms, 69 052 kB)
ocl/ocl_stencil_3d (899.8ms, 83 396 kB)
omp/c/atomic (32.2ms, 7300 kB)
omp/c/autocollapse (155.6ms, 19 896 kB)
omp/c/backward (509.7ms, 56 768 kB)
omp/c/barrier (29.6ms, 6872 kB)
omp/c/barrier_numthreads (26.6ms, 6868 kB)
omp/c/barrier_simple (37.9ms, 7880 kB)
omp/c/bots/fib/fib_if (3495.4ms, 426 680 kB)
omp/c/bots/fib/fib_manual (3389.3ms, 428 728 kB)
omp/c/bots/nqueens/nqueens_if (3283.2ms, 418 484 kB)
omp/c/bots/nqueens/nqueens_manual (6425.0ms, 650 944 kB)
omp/c/capture_be (7.6ms, 8580 kB)
omp/c/critical (7.2ms, 6816 kB)
omp/c/datasharing (6.6ms, 6916 kB)
omp/c/delannoy (13.1ms, 27 016 kB)
omp/c/dijkstra (24.4ms, 178 612 kB)
omp/c/even_odd_task (10.7ms, 20 056 kB)
omp/c/flush (6.5ms, 7892 kB)
omp/c/func_pointer (8.2ms, 7508 kB)
omp/c/functions (6.5ms, 9816 kB)
omp/c/global_firstprivate (6.6ms, 7772 kB)
omp/c/heated_plate (19.9ms, 101 760 kB)
omp/c/jacobi (21.8ms, 79 260 kB)
omp/c/locks (11.2ms, 12 716 kB)
omp/c/matrix_mul_dyn_1D_omp (14.9ms, 39 348 kB)
omp/c/matrix_mul_dyn_2D (18.5ms, 120 760 kB)
omp/c/matrix_mul_static (13.7ms, 30 116 kB)
omp/c/meta_info_test (3.5ms, 5644 kB)
omp/c/nested_loops (13.9ms, 43 444 kB)
omp/c/odd_even_sort (14.8ms, 40 376 kB)
omp/c/parallel_merge_stress (5.0ms, 5788 kB)
omp/c/pendulum (53.5ms, 577 208 kB)
omp/c/private_iterator (10.5ms, 11 660 kB)
omp/c/privatized_global (7.7ms, 13 972 kB)
omp/c/qap2 (30.8ms, 230 856 kB)
omp/c/rec_global (6.1ms, 5884 kB)
omp/c/reduction (8.3ms, 13 696 kB)
omp/c/scr/loopsA (30.2ms, 323 248 kB)
omp/c/scr/loopsB (29.3ms, 328 364 kB)
omp/c/scr/loopsC (31.3ms, 335 544 kB)
omp/c/scr/loopsD (28.2ms, 327 348 kB)
omp/c/scr/lu_reduction (12.5ms, 36 244 kB)
omp/c/scr/pi (7.2ms, 8852 kB)
omp/c/set_num_threads (5.4ms, 7428 kB)
omp/c/simple_pfor (9.7ms, 8856 kB)
omp/c/single (7.2ms, 7836 kB)
omp/c/stream/stream_d (23.6ms, 100 788 kB)
omp/c/void_ptr_capturing (5.2ms, 12 376 kB)
omp/c/volatile (5.9ms, 8612 kB)
omp/c/wavefront (10.9ms, 38 288 kB)
omp/c/wtime (7.5ms, 8532 kB)
seq/c/anon_enum (5.1ms, 7312 kB)
seq/c/anonymous (12.3ms, 42 380 kB)
seq/c/anyref (11.3ms, 40 324 kB)
seq/c/args (4.9ms, 6932 kB)
seq/c/arithmetic (7.1ms, 13 108 kB)

seq/c/assert (11.5ms, 30 104 kB)
seq/c/assign (5.5ms, 10 892 kB)
seq/c/assign_expr (11.1ms, 17 828 kB)
seq/c/backward (12.8ms, 70 084 kB)
seq/c/bind (4.5ms, 9056 kB)
seq/c/bots/fib (44.6ms, 301 744 kB)
seq/c/bots/nqueens (46.3ms, 479 684 kB)
seq/c/bugs/anon_multi_tu (6.9ms, 11 900 kB)
seq/c/bugs/basename_bug (3.6ms, 5692 kB)
seq/c/bugs/char_ops (2.8ms, 6748 kB)
seq/c/bugs/extern_array (7.4ms, 20 088 kB)
seq/c/bugs/for_loops (5.2ms, 7904 kB)
seq/c/bugs/function_ptr (18.8ms, 105 880 kB)
seq/c/bugs/global_func_ptr (7.4ms, 12 156 kB)
seq/c/bugs/global_rec_struct (10.4ms, 47 520 kB)
seq/c/bugs/global_rec_struct_typedef (10.6ms, 47 512 kB)
seq/c/bugs/hex (4.3ms, 8264 kB)
seq/c/bugs/long_long_replace (6.8ms, 11 892 kB)
seq/c/bugs/multiple_tu_struct_decl (9.1ms, 20 876 kB)
seq/c/bugs/null_function_ptr (12.1ms, 57 744 kB)
seq/c/bugs/ptrptr_bug (7.8ms, 19 868 kB)
seq/c/bugs/rec_data_struct (5.4ms, 49 360 kB)
seq/c/bugs/rec_func_param_type (13.1ms, 66 980 kB)
seq/c/bugs/rec_func_ptr (3.5ms, 8580 kB)
seq/c/bugs/rec_struct_typedef (8.6ms, 47 488 kB)
seq/c/bugs/scalar_pointer (9.8ms, 17 808 kB)
seq/c/bugs/static_ptr (6.0ms, 6236 kB)
seq/c/bugs/string_escape_chars (4.0ms, 7744 kB)
seq/c/bugs/switch_cases (4.7ms, 7816 kB)
seq/c/bugs/void_ptr (8.7ms, 17 812 kB)
seq/c/c/comma (1.1ms, 5240 kB)
seq/c/c/long_long (4.6ms, 8000 kB)
seq/c/capture_global (8.3ms, 12 708 kB)
seq/c/comma (7.1ms, 14 448 kB)
seq/c/compound_operators (10.6ms, 29 096 kB)
seq/c/conditional_strings (4.8ms, 9784 kB)
seq/c/delannoy (9.3ms, 28 816 kB)
seq/c/demo/loop (5.5ms, 7872 kB)
seq/c/demo/loop_parallel (5.9ms, 7864 kB)
seq/c/enum (17.6ms, 23 420 kB)
seq/c/even_odd (5.8ms, 24 948 kB)
seq/c/expressions (6.6ms, 10 044 kB)
seq/c/ext_multi (3.2ms, 5696 kB)
seq/c/extended_for_test (13.0ms, 16 784 kB)
seq/c/extern_global (1.0ms, 4456 kB)
seq/c/external (3.1ms, 5696 kB)
seq/c/external_type (6.4ms, 8012 kB)
seq/c/external_value (4.2ms, 5720 kB)
seq/c/file_io (8.4ms, 27 280 kB)
seq/c/for_loops (19.4ms, 217 524 kB)
seq/c/func_pointer (15.5ms, 65 980 kB)
seq/c/func_pointer_simple (7.5ms, 11 968 kB)
seq/c/gettimeoftheday (8.3ms, 12 880 kB)
seq/c/global_data (6.2ms, 9380 kB)
seq/c/global_init (1.0ms, 3284 kB)
seq/c/global_multi (6.3ms, 7288 kB)
seq/c/global_nested (6.2ms, 9888 kB)
seq/c/health_struct (10.5ms, 77 460 kB)
seq/c/hello_world (3.1ms, 5584 kB)
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seq/c/indirection (8.0ms, 19 888 kB)
seq/c/initialization (6.5ms, 18 780 kB)
seq/c/instrumentation_region (5.5ms, 7844 kB)
seq/c/jacobi (13.3ms, 66 988 kB)
seq/c/literals (5.1ms, 7804 kB)
seq/c/loop_transform (42.8ms, 446 120 kB)
seq/c/loops (17.9ms, 55 732 kB)
seq/c/lu_decomposition (13.1ms, 58 820 kB)
seq/c/matrix_mul_dyn_1D (13.4ms, 35 240 kB)
seq/c/matrix_mul_dyn_2D (17.7ms, 90 552 kB)
seq/c/matrix_mul_dynamic_size (9.3ms, 32 180 kB)
seq/c/matrix_mul_recursive (11.5ms, 177 600 kB)
seq/c/matrix_mul_static (9.7ms, 30 124 kB)
seq/c/matrix_transpose (8.0ms, 11 880 kB)
seq/c/mem_alloc (10.6ms, 19 644 kB)
seq/c/minMax (4.2ms, 6996 kB)
seq/c/multi_tu (3.9ms, 5720 kB)
seq/c/multi_tu_mutual (6.1ms, 23 924 kB)
seq/c/mutual_recursion_global (7.9ms, 51 396 kB)
seq/c/n_body (27.4ms, 254 356 kB)
seq/c/param_passing (8.4ms, 16 800 kB)
seq/c/pendulum (55.2ms, 639 676 kB)
seq/c/pointer_arith (11.9ms, 44 700 kB)
seq/c/pointers (11.8ms, 42 372 kB)
seq/c/post_assign (9.5ms, 47 792 kB)
seq/c/pragma_match (1.0ms, 3404 kB)
seq/c/pthread/single_thread (9.0ms, 10 340 kB)
seq/c/ptr_offset (12.2ms, 50 600 kB)
seq/c/qap (23.4ms, 171 464 kB)
seq/c/quicksort (14.4ms, 116 156 kB)
seq/c/rec_nasty (5.1ms, 7852 kB)
seq/c/rec_struct (8.4ms, 33 180 kB)
seq/c/recursions (7.2ms, 44 400 kB)
seq/c/recursions2 (8.2ms, 18 824 kB)
seq/c/ref_passing (6.2ms, 10 064 kB)
seq/c/ref_vector_array_pointer (14.4ms, 33 164 kB)
seq/c/sigrt (6.7ms, 11 896 kB)
seq/c/simple_jacobi (14.7ms, 64 180 kB)
seq/c/simple_kernel (5.3ms, 8032 kB)
seq/c/simple_recursion (5.9ms, 10 852 kB)
seq/c/sizeof (3.9ms, 6444 kB)
seq/c/stack (17.1ms, 74 160 kB)
seq/c/static_init (7.5ms, 12 676 kB)
seq/c/stencil3d (18.5ms, 112 072 kB)
seq/c/structs (7.5ms, 11 932 kB)
seq/c/tiling/dsyrk (12.0ms, 41 400 kB)
seq/c/tiling/dtrmm (9.0ms, 31 152 kB)
seq/c/transpose (23.5ms, 246 220 kB)
seq/c/trunc (4.3ms, 6964 kB)
seq/c/union (8.8ms, 33 144 kB)
seq/c/variable_arrays (10.7ms, 20 868 kB)
seq/c/variable_sized_struct (19.2ms, 191 932 kB)
seq/c/vector_partial_init (9.2ms, 31 092 kB)
seq/c/vectors (8.6ms, 19 832 kB)
seq/c/void_ptr (7.0ms, 18 284 kB)
seq/cpp/adv_op_overl (24.2ms, 2 630 244 kB)
seq/cpp/argument_types (9.4ms, 287 128 kB)
seq/cpp/assign_expr (11.5ms, 25 000 kB)
seq/cpp/base_of (7.7ms, 13 412 kB)
seq/cpp/boost/regex (12.8ms, 43 640 kB)
seq/cpp/boost/shared_ptr (14.7ms, 6 384 616 kB)
seq/cpp/bugs/allocate_matrix (8.7ms, 16 760 kB)
seq/cpp/bugs/boost/boost_array (2.9ms, 5136 kB)
seq/cpp/bugs/boost/boost_regex_search (13.7ms, 88 696 kB)
seq/cpp/bugs/boost/def_initialization (12.9ms, 1 155 720 kB)
seq/cpp/bugs/boost/global_intercepted (8.5ms, 16 992 kB)
seq/cpp/bugs/case_default (9.9ms, 41 588 kB)
seq/cpp/bugs/const_obj_init (12.8ms, 122 212 kB)
seq/cpp/bugs/const_obj_param (11.5ms, 389 496 kB)
seq/cpp/bugs/const_ref_arg (12.6ms, 937 568 kB)
seq/cpp/bugs/ctor_base_ptr (11.2ms, 1 958 492 kB)
seq/cpp/bugs/ctor_inherit (9.4ms, 414 352 kB)
seq/cpp/bugs/ctor_ptr_overload (8.7ms, 95 904 kB)
seq/cpp/bugs/duplicated_ctor (7.1ms, 44 732 kB)
seq/cpp/bugs/empty_pod (7.5ms, 32 372 kB)
seq/cpp/bugs/error_handler (12.8ms, 14 172 kB)
seq/cpp/bugs/ewc_capturing (6.2ms, 9056 kB)
seq/cpp/bugs/expr_with_cleanups (11.6ms, 54 900 kB)
seq/cpp/bugs/expression_with_cleanups (6.6ms, 699 028 kB)
seq/cpp/bugs/gettimeoftheday (7.4ms, 8528 kB)

seq/cpp/bugs/global_init (9.5ms, 46 944 kB)
seq/cpp/bugs/globals_dtor (9.1ms, 47 652 kB)
seq/cpp/bugs/init_ptr (9.4ms, 52 864 kB)
seq/cpp/bugs/init_struct (9.4ms, 18 060 kB)
seq/cpp/bugs/intlit (3.2ms, 5712 kB)
seq/cpp/bugs/just_decl_template (5.5ms, 6124 kB)
seq/cpp/bugs/long_long_thing (11.9ms, 14 996 kB)
seq/cpp/bugs/loops (8.5ms, 31 164 kB)
seq/cpp/bugs/malformed_logical_operator (7.4ms, 1 483 392 kB)
seq/cpp/bugs/map_iterator (7.0ms, 23 104 kB)
seq/cpp/bugs/mem_alloc_ctor (10.3ms, 1 003 152 kB)
seq/cpp/bugs/member_function_as_field (6.0ms, 17 744 kB)
seq/cpp/bugs/merge_bugs/ctor_ptr (5.9ms, 594 452 kB)
seq/cpp/bugs/new_pod (7.6ms, 22 180 kB)
seq/cpp/bugs/non_default_global (8.3ms, 22 888 kB)
seq/cpp/bugs/rec_struct (6.9ms, 14 976 kB)
seq/cpp/bugs/ref_to_pointer (5.5ms, 8552 kB)
seq/cpp/bugs/reference_in_condition_expression (6.3ms,
29 304 kB)
seq/cpp/bugs/return_overload (10.0ms, 113 264 kB)
seq/cpp/bugs/return_string (4.2ms, 5744 kB)
seq/cpp/bugs/static_cast_in_return (6.3ms, 39 244 kB)
seq/cpp/bugs/static_data_member_in_one_tu (8.2ms, 36 124 kB)
seq/cpp/bugs/static_member (8.3ms, 16 484 kB)
seq/cpp/bugs/strings_array (7.9ms, 7520 kB)
seq/cpp/bugs/temp_dtor (10.8ms, 95 608 kB)
seq/cpp/bugs/template_integrals (9.0ms, 16 280 kB)
seq/cpp/bugs/template_integrals_intercept (7.7ms, 14 440 kB)
seq/cpp/bugs/templated_casts (5.6ms, 300 572 kB)
seq/cpp/bugs/this (12.5ms, 150 228 kB)
seq/cpp/bugs/union (3.7ms, 9796 kB)
seq/cpp/bugs/union_member_func (9.0ms, 18 796 kB)
seq/cpp/bugs/vector_pointers (5.5ms, 7284 kB)
seq/cpp/bugs/zero_ptr (5.6ms, 18 024 kB)
seq/cpp/class (9.0ms, 86 372 kB)
seq/cpp/class_def_and_decl_splitup (9.3ms, 162 136 kB)
seq/cpp/const_pointer (8.5ms, 15 208 kB)
seq/cpp/const_ptr_param (7.1ms, 132 720 kB)
seq/cpp/const_ref_arguments (3.8ms, 19 944 kB)
seq/cpp/counter (5.6ms, 243 356 kB)
seq/cpp/cpp11/auto (5.5ms, 5860 kB)
seq/cpp/cpp11/constexpr (8.3ms, 6944 kB)
seq/cpp/cpp11/cpp11enums (3.7ms, 6660 kB)
seq/cpp/cpp11/decltype (11.5ms, 234 900 kB)
seq/cpp/cpp11/declval (3.3ms, 5704 kB)
seq/cpp/cpp11/lambda_to_funptr (13.1ms, 24 960 kB)
seq/cpp/cpp11/range_for (12.2ms, 49 608 kB)
seq/cpp/cpp11/rec_lambda (13.5ms, 38 516 kB)
seq/cpp/cpp11/sizeofpack (3.5ms, 5768 kB)
seq/cpp/cpp11/std_array (2.5ms, 4908 kB)
seq/cpp/cpp11/variadic_templates (7.6ms, 15 716 kB)
seq/cpp/ctor_inherit (14.3ms, 717 224 kB)
seq/cpp/ctor_return (13.3ms, 3 270 284 kB)
seq/cpp/dtor (6.1ms, 215 672 kB)
seq/cpp/enum (16.8ms, 23 216 kB)
seq/cpp/for_loop (3.2ms, 5380 kB)
seq/cpp/friend (6.9ms, 104 048 kB)
seq/cpp/func (3.7ms, 6128 kB)
seq/cpp/global_const (4.5ms, 7512 kB)
seq/cpp/globals_in_classes (9.1ms, 242 080 kB)
seq/cpp/header (6.8ms, 139 888 kB)
seq/cpp/hello_stream (3.5ms, 6764 kB)
seq/cpp/hello_world (2.5ms, 4748 kB)
seq/cpp/identical_class_structure (6.0ms, 17 620 kB)
seq/cpp/includes (7.6ms, 6044 kB)
seq/cpp/inherit (6.7ms, 264 620 kB)
seq/cpp/inherit_multiple (6.4ms, 540 308 kB)
seq/cpp/inherit_ptr (6.9ms, 33 396 kB)
seq/cpp/inherit_single (8.9ms, 59 748 kB)
seq/cpp/inherit_single_dynmem (11.5ms, 188 780 kB)
seq/cpp/inherit_virtual (11.5ms, 337 488 kB)
seq/cpp/initialization (10.5ms, 66 924 kB)
seq/cpp/isomorphic (9.8ms, 80 288 kB)
seq/cpp/long_long (8.4ms, 42 328 kB)
seq/cpp/materialize_with_bind_expr (13.7ms, 283 284 kB)
seq/cpp/mem_alloc (8.7ms, 44 432 kB)
seq/cpp/mem_alloc_ctor (13.2ms, 943 764 kB)
seq/cpp/mem_alloc_ctor_inherit (20.8ms, 1 310 368 kB)
seq/cpp/member_func (5.3ms, 36 372 kB)
seq/cpp/member_func_overload (4.6ms, 26 056 kB)
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seq/cpp/meta_fib (5.4ms, 5896 kB)
seq/cpp/multiple_tu (6.0ms, 46 460 kB)
seq/cpp/naive (8.8ms, 70 032 kB)
seq/cpp/nameless_struct (7.7ms, 33 904 kB)
seq/cpp/nested_class (6.8ms, 243 068 kB)
seq/cpp/new_string (5.2ms, 7792 kB)
seq/cpp/object_array_new (8.1ms, 24 208 kB)
seq/cpp/object_bug (4.8ms, 14 652 kB)
seq/cpp/op_overl (15.3ms, 1 880 756 kB)
seq/cpp/pairs (5.4ms, 7816 kB)
seq/cpp/partial_interception (4.1ms, 10 744 kB)
seq/cpp/pod_struct (9.0ms, 18 280 kB)
seq/cpp/pod_struct_assignment (9.1ms, 15 932 kB)
seq/cpp/pod_struct_bug (11.3ms, 28 032 kB)
seq/cpp/pod_struct_return (4.0ms, 9688 kB)
seq/cpp/ptr_offset (8.4ms, 29 096 kB)
seq/cpp/rec_class (8.1ms, 103 804 kB)
seq/cpp/rec_memberfunc (5.6ms, 60 036 kB)
seq/cpp/refs (4.3ms, 5908 kB)
seq/cpp/refs_ctor (7.9ms, 22 896 kB)
seq/cpp/refs_obj (7.9ms, 59 760 kB)
seq/cpp/return (13.5ms, 193 908 kB)

seq/cpp/return_types (9.3ms, 132 664 kB)
seq/cpp/scalar_value_init_expr (5.6ms, 10 068 kB)
seq/cpp/scope (10.8ms, 33 948 kB)
seq/cpp/scoped_enum (19.0ms, 21 928 kB)
seq/cpp/simple_sort (17.0ms, 30 108 kB)
seq/cpp/sort (20.4ms, 263 820 kB)
seq/cpp/static_method (7.3ms, 6032 kB)
seq/cpp/std/chrono (9.8ms, 14 752 kB)
seq/cpp/std/distance (5.2ms, 7804 kB)
seq/cpp/stl_vector_iterator (4.1ms, 6996 kB)
seq/cpp/struct (17.8ms, 107 144 kB)
seq/cpp/template1 (13.5ms, 34 444 kB)
seq/cpp/template2 (9.9ms, 67 944 kB)
seq/cpp/template3 (19.4ms, 83 604 kB)
seq/cpp/template_assignment_op (5.5ms, 26 220 kB)
seq/cpp/this (10.0ms, 118 136 kB)
seq/cpp/union_member (10.8ms, 75 412 kB)
seq/cpp/user_defined_cast (9.5ms, 38 296 kB)
seq/cpp/vector_ctor (6.5ms, 19 912 kB)
seq/cpp/vector_push_back (3.0ms, 5476 kB)
seq/cpp/xvalue (5.3ms, 270 648 kB)
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ADT Algebraic Data Type. 2, 23, 40, 94

AST Abstract Syntax Tree. 8, 11, 13, 31

blob Binary Long OBject. 113

CBA Constraint-Based Analysis. 2, 3, 5, 12, 13, 109

CFG Control-Flow Graph. 5–13

DAG Direct Acyclic Graph. 18

DFA Data-Flow Analysis. 1–3, 5, 6, 8, 9, 12, 13, 34, 60–62, 66–68, 70, 74, 81, 85, 88, 94, 98, 109

ELF Executable and Linkable Format. 39

FFI Foreign Function Interface. 39–41, 49, 53, 72, 75, 96, 101

FFT Fast Fourier Transform. 113

GHC Glasgow Haskell Compiler. 37, 38, 41

GMP GNU Multiple Precision. 38

GUI Graphical User Interface. 111, 113

Haskell RTS Haskell RunTime System. 40, 41

HAT Haskell-based Analysis Toolkit. v, 1, 3, 12, 13, 18, 19, 33, 38, 39, 87, 101

IMP Insieme Mangling Prefix. 28

INSPIRE INSieme Parallel Intermediate REpresentation. 2, 3, 13, 17–20, 22–24, 26, 28, 30, 34, 37,
40–45, 47, 49, 52, 58, 62–64, 66, 67, 69, 74, 79, 81, 82, 87, 89, 91, 92, 97, 105, 109, 111–115

IR Intermediate Representation. 1, 2, 18, 28, 41, 43, 48, 49, 68, 89, 111, 112

JSON JavaScript Object Notation. 18, 112–114
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